메뉴 건너뛰기




Volumn , Issue , 2010, Pages 333-342

Unsupervised feature selection for Multi-Cluster data

Author keywords

Clustering; Feature selection; Unsupervised

Indexed keywords

CLASS LABELS; CLUSTER FEATURE; CLUSTERING; COMBINATORIAL OPTIMIZATION PROBLEMS; DATA ANALYSIS; FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SELECTION PROBLEM; FEATURE SUBSET; HIGH DIMENSIONAL DATA; MANIFOLD LEARNING; MULTI-CLUSTER STRUCTURE; NEW APPROACHES; OPTIMIZATION PROBLEMS; REAL LIFE DATASETS; REGULARIZED LEAST SQUARES; SUBSET SELECTION; UNSUPERVISED; UNSUPERVISED FEATURE SELECTION;

EID: 77956216411     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835848     Document Type: Conference Paper
Times cited : (1128)

References (30)
  • 18
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • J. J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell., 16(5), 1994.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell. , vol.16 , Issue.5
    • Hull, J.J.1
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 21
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491-502, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 23
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1):59-66, 1988.
    • (1988) The American Statistician , vol.42 , Issue.1 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 27
    • 70449397497 scopus 로고    scopus 로고
    • Matrix algorithms volume II: Eigensystems
    • G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, 2001.
    • (2001) SIAM
    • Stewart, G.W.1
  • 28
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 29
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. Journal of Machine Learning Research, 6:1855-1887, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.