-
1
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
DOI 10.1109/34.990133
-
P. Mitra, C. Murthy, and S. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002. (Pubitemid 35289348)
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.3
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
3
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, nos. 1-2, pp. 245-271, Dec. 1997. (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
4
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1-2, pp. 273-324, Dec. 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
5
-
-
26444454606
-
Feature selection for unsupervised learning
-
Dec.
-
J. G. Dy, C. E. Brodley, and S. Wrobel, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Dec. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
Wrobel, S.3
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar.
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
7
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
DOI 10.1109/TKDE.2005.66
-
H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005. (Pubitemid 40495592)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
8
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
Dec.
-
L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
9
-
-
79957454703
-
Semisupervised dimensionality reduction and classification through virtual label regression
-
Jun.
-
F. Nie, D. Xu, X. Li, and S. Xiang, "Semisupervised dimensionality reduction and classification through virtual label regression," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 3, pp. 675-685, Jun. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B
, vol.41
, Issue.3
, pp. 675-685
-
-
Nie, F.1
Xu, D.2
Li, X.3
Xiang, S.4
-
10
-
-
77956531771
-
From transformation-based dimensionality reduction to feature selection
-
Jun.
-
M. Masaeli, G. Fung, and J. G. Dy, "From transformation-based dimensionality reduction to feature selection," in Proc. Int. Conf. Mach. Learn., Jun. 2010, pp. 751-758.
-
(2010)
Proc. Int. Conf. Mach. Learn.
, pp. 751-758
-
-
Masaeli, M.1
Fung, G.2
Dy, J.G.3
-
11
-
-
79952901555
-
Supervised gaussian process latent variable model for dimensionality reduction
-
Apr.
-
X. Gao, X. Wang, D. Tao, and X. Li, "Supervised gaussian process latent variable model for dimensionality reduction," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 2, pp. 425-434, Apr. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B
, vol.41
, Issue.2
, pp. 425-434
-
-
Gao, X.1
Wang, X.2
Tao, D.3
Li, X.4
-
12
-
-
67349170432
-
Stable local dimensionality reduction approaches
-
C. Hou, C. Zhang, Y. Wu, and Y. Jiao, "Stable local dimensionality reduction approaches," Pattern Recogn., vol. 42, no. 9, pp. 2054-2066, 2009.
-
(2009)
Pattern Recogn.
, vol.42
, Issue.9
, pp. 2054-2066
-
-
Hou, C.1
Zhang, C.2
Wu, Y.3
Jiao, Y.4
-
13
-
-
78149289039
-
Feature selection for clustering-A filter solution
-
Dec.
-
M. Dash, K. Choi, P. Scheuermann, and H. Liu, "Feature selection for clustering-A filter solution," in Proc. Int. Conf. Data Mining, Dec. 2002, pp. 115-122.
-
(2002)
Proc. Int. Conf. Data Mining
, pp. 115-122
-
-
Dash, M.1
Choi, K.2
Scheuermann, P.3
Liu, H.4
-
14
-
-
81955163023
-
Exploiting local coherent patterns for unsupervised feature ranking
-
Dec.
-
Q. Huang, D. Tao, X. Li, L. Jin, and G. Wei, "Exploiting local coherent patterns for unsupervised feature ranking," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 6, pp. 1471-1482, Dec. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B
, vol.41
, Issue.6
, pp. 1471-1482
-
-
Huang, Q.1
Tao, D.2
Li, X.3
Jin, L.4
Wei, G.5
-
15
-
-
57749182885
-
Trace ratio criterion for feature selection
-
Jul.
-
F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, "Trace ratio criterion for feature selection," in Proc. Assoc. Adv. Artif. Intell., Jul. 2008, pp. 671-676.
-
(2008)
Proc. Assoc. Adv. Artif. Intell.
, pp. 671-676
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
16
-
-
84899029465
-
Feature selection in clustering problems
-
Cambridge, MA, USA: MIT Press, Dec.
-
V. Roth and T. Lange, "Feature selection in clustering problems," in Advances in Neural Information Processing Systems 16. Cambridge, MA, USA: MIT Press, Dec. 2004.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Roth, V.1
Lange, T.2
-
17
-
-
33645957324
-
Bayesian feature and model selection for gaussian mixture models
-
Jun.
-
C. Constantinopoulos, M. Titsias, and A. Likas, "Bayesian feature and model selection for gaussian mixture models," IEEE Trans Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1013-1018, Jun. 2006.
-
(2006)
IEEE Trans Pattern Anal. Mach. Intell.
, vol.28
, Issue.6
, pp. 1013-1018
-
-
Constantinopoulos, C.1
Titsias, M.2
Likas, A.3
-
18
-
-
34548626233
-
Bilinear analysis for Kernel selection and nonlinear feature extraction
-
DOI 10.1109/TNN.2007.894042
-
S. Yang, S. Yan, C. Zhang, and X. Tang, "Bilinear analysis for kernel selection and nonlinear feature extraction," IEEE Trans. Neural Netw., vol. 18, no. 5, pp. 1442-1452, Sep. 2007. (Pubitemid 47408543)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.5
, pp. 1442-1452
-
-
Yang, S.1
Yan, S.2
Zhang, C.3
Tang, X.4
-
19
-
-
84866678530
-
Feature selection via joint embedding learning and sparse regression
-
Jul.
-
C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning and sparse regression," in Proc. IJCAI, Jul. 2011, pp. 1324-1329.
-
(2011)
Proc. IJCAI
, pp. 1324-1329
-
-
Hou, C.1
Nie, F.2
Yi, D.3
Wu, Y.4
-
20
-
-
68849126540
-
New approaches to fuzzy-rough feature selection
-
Aug.
-
R. Jensen and Q. Shen, "New approaches to fuzzy-rough feature selection," IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 824-838, Aug. 2009.
-
(2009)
IEEE Trans. Fuzzy Syst.
, vol.17
, Issue.4
, pp. 824-838
-
-
Jensen, R.1
Shen, Q.2
-
21
-
-
84873298078
-
Measures for unsupervised fuzzyrough feature selection
-
N. MacParthalain and R. Jensen, "Measures for unsupervised fuzzyrough feature selection," Int. J. Hybrid Intell. Syst., vol. 7, no. 4, pp. 249-259, 2010.
-
(2010)
Int. J. Hybrid Intell. Syst.
, vol.7
, Issue.4
, pp. 249-259
-
-
MacParthalain, N.1
Jensen, R.2
-
22
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
DOI 10.1109/TPAMI.2007.250598
-
S. Yan and D. Xu, "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007. (Pubitemid 46415944)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
23
-
-
41649120173
-
Discriminant locally linear embedding with high-order tensor data
-
DOI 10.1109/TSMCB.2007.911536
-
X. Li, S. Lin, S. Yan, and D. Xu, "Discriminant locally linear embedding with high-order tensor data," IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 2, pp. 342-352, Apr. 2008. (Pubitemid 351479557)
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.38
, Issue.2
, pp. 342-352
-
-
Li, X.1
Lin, S.2
Yan, S.3
Xu, D.4
-
24
-
-
77953705810
-
Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
-
Jul.
-
F. Nie, D. Xu, I. W.-H. Tsang, and C. Zhang, "Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1921-1932, Jul. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.7
, pp. 1921-1932
-
-
Nie, F.1
Xu, D.2
Tsang, I.W.-H.3
Zhang, C.4
-
25
-
-
57049188382
-
Effective feature extraction in highdimensional space
-
Dec.
-
Y. Pang, Y. Yuan, and X. Li, "Effective feature extraction in highdimensional space," IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 6, pp. 1652-1656, Dec. 2008.
-
(2008)
IEEE Trans. Syst., Man, Cybern. B
, vol.38
, Issue.6
, pp. 1652-1656
-
-
Pang, Y.1
Yuan, Y.2
Li, X.3
-
26
-
-
0002457803
-
Selection of variables to preserve multivariate data structure, using principal components
-
W. J. Krzanowski, "Selection of variables to preserve multivariate data structure, using principal components," J. Royal Stat. Soc. Ser. C (Appl. Stat.), vol. 36, no. 1, pp. 22-33, 1987.
-
(1987)
J. Royal Stat. Soc. Ser. C (Appl. Stat.)
, vol.36
, Issue.1
, pp. 22-33
-
-
Krzanowski, W.J.1
-
28
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1151-1157. (Pubitemid 47275183)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
29
-
-
77956216411
-
Unsupervised feature selection for multicluster data
-
Jul.
-
D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multicluster data," in Proc. KDD, Jul. 2010, pp. 333-342.
-
(2010)
Proc. KDD
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
30
-
-
77958565426
-
Efficient spectral feature selection with minimum redundancy
-
Jul.
-
Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. Assoc. Adv. Artif. Intell., Jul. 2010, pp. 673-678.
-
(2010)
Proc. Assoc. Adv. Artif. Intell.
, pp. 673-678
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
-
31
-
-
37849000197
-
Feature selection using principal feature analysis
-
Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, "Feature selection using principal feature analysis," in Proc. 15th Int. Conf. Multimedia, 2007, pp. 301-304.
-
(2007)
Proc. 15th Int. Conf. Multimedia
, pp. 301-304
-
-
Lu, Y.1
Cohen, I.2
Zhou, X.S.3
Tian, Q.4
-
32
-
-
77956505189
-
Convex principal feature selection
-
M. Masaeli, Y. Yan, Y. Cui, G. Fung, and J. G. Dy, "Convex principal feature selection," in Proc. SDM, 2010, pp. 619-628.
-
(2010)
Proc. SDM
, pp. 619-628
-
-
Masaeli, M.1
Yan, Y.2
Cui, Y.3
Fung, G.4
Dy, J.G.5
-
33
-
-
65449139217
-
Unsupervised feature selection for principal components analysis
-
C. Boutsidis, M. W. Mahoney, and P. Drineas, "Unsupervised feature selection for principal components analysis," in Proc. 14th Annu. ACM SIGKDD Conf., 2008, pp. 61-69.
-
(2008)
Proc. 14th Annu. ACM SIGKDD Conf.
, pp. 61-69
-
-
Boutsidis, C.1
Mahoney, M.W.2
Drineas, P.3
-
34
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
35
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc., vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Royal Stat. Soc.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
36
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
37
-
-
14544307975
-
Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
-
Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2004.
-
(2004)
SIAM J. Sci. Comput.
, vol.26
, Issue.1
, pp. 313-338
-
-
Zhang, Z.1
Zha, H.2
-
38
-
-
68549104123
-
Nonlinear dimensionality reduction with local spline embedding
-
Sep.
-
S. Xiang, F. Nie, C. Zhang, and C. Zhang, "Nonlinear dimensionality reduction with local spline embedding," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1285-1298, Sep. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1285-1298
-
-
Xiang, S.1
Nie, F.2
Zhang, C.3
Zhang, C.4
-
39
-
-
36648998944
-
Label propagation through linear neighborhoods
-
Jan.
-
F. Wang and C. Zhang, "Label propagation through linear neighborhoods," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55-67, Jan. 2008.
-
(2008)
IEEE Trans. Knowl. Data Eng.
, vol.20
, Issue.1
, pp. 55-67
-
-
Wang, F.1
Zhang, C.2
-
40
-
-
85135939782
-
Efficient and robust feature selection via joint l2, 1-norms minimization
-
Dec.
-
F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint l2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst. 23, Dec. 2010, pp. 1813-1821.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst. 23
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
41
-
-
50649123949
-
Spectral regression for efficient regularized subspace learning
-
Oct.
-
D. Cai, X. He, and J. Han, "Spectral regression for efficient regularized subspace learning," in Proc. Int. Conf. Comput. Vision, Oct. 2007, pp. 1-8.
-
(2007)
Proc. Int. Conf. Comput. Vision
, pp. 1-8
-
-
Cai, D.1
He, X.2
Han, J.3
-
43
-
-
0041965980
-
Cluster ensembles-A knowledge reuse framework for combining multiple partitions
-
Mar.
-
A. Strehl and J. Ghosh, "Cluster ensembles-A knowledge reuse framework for combining multiple partitions," J. Mach. Learn. Res., vol. 3, p. 583 617, Mar. 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
44
-
-
84856283959
-
Initialization independent clustering with actively self-training method
-
Feb.
-
F. Nie, D. Xu, and X. Li, "Initialization independent clustering with actively self-training method," IEEE Trans. Syst., Man, Cybern. B, vol. 42, no. 1, pp. 17-27, Feb. 2012.
-
(2012)
IEEE Trans. Syst., Man, Cybern. B
, vol.42
, Issue.1
, pp. 17-27
-
-
Nie, F.1
Xu, D.2
Li, X.3
-
45
-
-
0141990695
-
Theoretical and empirical analysis of relieff and rrelieff
-
M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of relieff and rrelieff," Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
-
(2003)
Mach. Learn.
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
|