메뉴 건너뛰기




Volumn 44, Issue 6, 2014, Pages 793-804

Joint embedding learning and sparse regression: A framework for unsupervised feature selection

Author keywords

Embedding learning; feature selection; pattern recognition; sparse regression

Indexed keywords

APPROXIMATION ALGORITHMS; BIOINFORMATICS; FEATURE EXTRACTION; OPTIMIZATION; PATTERN RECOGNITION;

EID: 84901250680     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2013.2272642     Document Type: Article
Times cited : (542)

References (45)
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, nos. 1-2, pp. 245-271, Dec. 1997. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1-2, pp. 273-324, Dec. 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dec.
    • J. G. Dy, C. E. Brodley, and S. Wrobel, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2    Wrobel, S.3
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 8
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Dec.
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 9
    • 79957454703 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction and classification through virtual label regression
    • Jun.
    • F. Nie, D. Xu, X. Li, and S. Xiang, "Semisupervised dimensionality reduction and classification through virtual label regression," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 3, pp. 675-685, Jun. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B , vol.41 , Issue.3 , pp. 675-685
    • Nie, F.1    Xu, D.2    Li, X.3    Xiang, S.4
  • 10
    • 77956531771 scopus 로고    scopus 로고
    • From transformation-based dimensionality reduction to feature selection
    • Jun.
    • M. Masaeli, G. Fung, and J. G. Dy, "From transformation-based dimensionality reduction to feature selection," in Proc. Int. Conf. Mach. Learn., Jun. 2010, pp. 751-758.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 751-758
    • Masaeli, M.1    Fung, G.2    Dy, J.G.3
  • 11
    • 79952901555 scopus 로고    scopus 로고
    • Supervised gaussian process latent variable model for dimensionality reduction
    • Apr.
    • X. Gao, X. Wang, D. Tao, and X. Li, "Supervised gaussian process latent variable model for dimensionality reduction," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 2, pp. 425-434, Apr. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B , vol.41 , Issue.2 , pp. 425-434
    • Gao, X.1    Wang, X.2    Tao, D.3    Li, X.4
  • 12
    • 67349170432 scopus 로고    scopus 로고
    • Stable local dimensionality reduction approaches
    • C. Hou, C. Zhang, Y. Wu, and Y. Jiao, "Stable local dimensionality reduction approaches," Pattern Recogn., vol. 42, no. 9, pp. 2054-2066, 2009.
    • (2009) Pattern Recogn. , vol.42 , Issue.9 , pp. 2054-2066
    • Hou, C.1    Zhang, C.2    Wu, Y.3    Jiao, Y.4
  • 14
    • 81955163023 scopus 로고    scopus 로고
    • Exploiting local coherent patterns for unsupervised feature ranking
    • Dec.
    • Q. Huang, D. Tao, X. Li, L. Jin, and G. Wei, "Exploiting local coherent patterns for unsupervised feature ranking," IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 6, pp. 1471-1482, Dec. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B , vol.41 , Issue.6 , pp. 1471-1482
    • Huang, Q.1    Tao, D.2    Li, X.3    Jin, L.4    Wei, G.5
  • 17
    • 33645957324 scopus 로고    scopus 로고
    • Bayesian feature and model selection for gaussian mixture models
    • Jun.
    • C. Constantinopoulos, M. Titsias, and A. Likas, "Bayesian feature and model selection for gaussian mixture models," IEEE Trans Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1013-1018, Jun. 2006.
    • (2006) IEEE Trans Pattern Anal. Mach. Intell. , vol.28 , Issue.6 , pp. 1013-1018
    • Constantinopoulos, C.1    Titsias, M.2    Likas, A.3
  • 18
    • 34548626233 scopus 로고    scopus 로고
    • Bilinear analysis for Kernel selection and nonlinear feature extraction
    • DOI 10.1109/TNN.2007.894042
    • S. Yang, S. Yan, C. Zhang, and X. Tang, "Bilinear analysis for kernel selection and nonlinear feature extraction," IEEE Trans. Neural Netw., vol. 18, no. 5, pp. 1442-1452, Sep. 2007. (Pubitemid 47408543)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1442-1452
    • Yang, S.1    Yan, S.2    Zhang, C.3    Tang, X.4
  • 19
    • 84866678530 scopus 로고    scopus 로고
    • Feature selection via joint embedding learning and sparse regression
    • Jul.
    • C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning and sparse regression," in Proc. IJCAI, Jul. 2011, pp. 1324-1329.
    • (2011) Proc. IJCAI , pp. 1324-1329
    • Hou, C.1    Nie, F.2    Yi, D.3    Wu, Y.4
  • 20
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Aug.
    • R. Jensen and Q. Shen, "New approaches to fuzzy-rough feature selection," IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 824-838, Aug. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 21
    • 84873298078 scopus 로고    scopus 로고
    • Measures for unsupervised fuzzyrough feature selection
    • N. MacParthalain and R. Jensen, "Measures for unsupervised fuzzyrough feature selection," Int. J. Hybrid Intell. Syst., vol. 7, no. 4, pp. 249-259, 2010.
    • (2010) Int. J. Hybrid Intell. Syst. , vol.7 , Issue.4 , pp. 249-259
    • MacParthalain, N.1    Jensen, R.2
  • 24
    • 77953705810 scopus 로고    scopus 로고
    • Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
    • Jul.
    • F. Nie, D. Xu, I. W.-H. Tsang, and C. Zhang, "Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1921-1932, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1921-1932
    • Nie, F.1    Xu, D.2    Tsang, I.W.-H.3    Zhang, C.4
  • 25
    • 57049188382 scopus 로고    scopus 로고
    • Effective feature extraction in highdimensional space
    • Dec.
    • Y. Pang, Y. Yuan, and X. Li, "Effective feature extraction in highdimensional space," IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 6, pp. 1652-1656, Dec. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. B , vol.38 , Issue.6 , pp. 1652-1656
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 26
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • W. J. Krzanowski, "Selection of variables to preserve multivariate data structure, using principal components," J. Royal Stat. Soc. Ser. C (Appl. Stat.), vol. 36, no. 1, pp. 22-33, 1987.
    • (1987) J. Royal Stat. Soc. Ser. C (Appl. Stat.) , vol.36 , Issue.1 , pp. 22-33
    • Krzanowski, W.J.1
  • 28
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1151-1157. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 29
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multicluster data
    • Jul.
    • D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multicluster data," in Proc. KDD, Jul. 2010, pp. 333-342.
    • (2010) Proc. KDD , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3
  • 30
    • 77958565426 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Jul.
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. Assoc. Adv. Artif. Intell., Jul. 2010, pp. 673-678.
    • (2010) Proc. Assoc. Adv. Artif. Intell. , pp. 673-678
    • Zhao, Z.1    Wang, L.2    Liu, H.3
  • 34
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 35
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc., vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Royal Stat. Soc. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 37
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2004.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 38
    • 68549104123 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction with local spline embedding
    • Sep.
    • S. Xiang, F. Nie, C. Zhang, and C. Zhang, "Nonlinear dimensionality reduction with local spline embedding," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1285-1298, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1285-1298
    • Xiang, S.1    Nie, F.2    Zhang, C.3    Zhang, C.4
  • 39
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • Jan.
    • F. Wang and C. Zhang, "Label propagation through linear neighborhoods," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55-67, Jan. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.1 , pp. 55-67
    • Wang, F.1    Zhang, C.2
  • 40
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2, 1-norms minimization
    • Dec.
    • F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint l2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst. 23, Dec. 2010, pp. 1813-1821.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. 23 , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 41
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning
    • Oct.
    • D. Cai, X. He, and J. Han, "Spectral regression for efficient regularized subspace learning," in Proc. Int. Conf. Comput. Vision, Oct. 2007, pp. 1-8.
    • (2007) Proc. Int. Conf. Comput. Vision , pp. 1-8
    • Cai, D.1    He, X.2    Han, J.3
  • 43
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • Mar.
    • A. Strehl and J. Ghosh, "Cluster ensembles-A knowledge reuse framework for combining multiple partitions," J. Mach. Learn. Res., vol. 3, p. 583 617, Mar. 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 44
    • 84856283959 scopus 로고    scopus 로고
    • Initialization independent clustering with actively self-training method
    • Feb.
    • F. Nie, D. Xu, and X. Li, "Initialization independent clustering with actively self-training method," IEEE Trans. Syst., Man, Cybern. B, vol. 42, no. 1, pp. 17-27, Feb. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B , vol.42 , Issue.1 , pp. 17-27
    • Nie, F.1    Xu, D.2    Li, X.3
  • 45
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of relieff and rrelieff," Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.