메뉴 건너뛰기




Volumn 25, Issue 6, 2014, Pages 1083-1095

Global and local structure preservation for feature selection

Author keywords

Feature selection; global similarity preservation; local geometric structure; similarity preservation.

Indexed keywords

ALGORITHMS; DATA STRUCTURES; FEATURE EXTRACTION; OPTIMIZATION; SUPERVISED LEARNING;

EID: 84901431072     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2013.2287275     Document Type: Article
Times cited : (265)

References (57)
  • 1
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997. (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 2
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint 2,1-norms minimization
    • Cambridge, MA, USA: MIT Press
    • F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint 2,1-norms minimization," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2010, pp. 1813-1821.
    • (2010) Advances in Neural Information Processing Systems , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 3
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 7
    • 77958565426 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 673-678.
    • (2010) Proc. 24th AAAI Conf. Artif. Intell. , pp. 673-678
    • Zhao, Z.1    Wang, L.2    Liu, H.3
  • 9
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • Sep
    • L. Wang, "Feature selection with kernel class separability," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1534-1546, Sep. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.9 , pp. 1534-1546
    • Wang, L.1
  • 10
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Jan.
    • J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Jan. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 11
    • 84870535269 scopus 로고    scopus 로고
    • Joint feature selection and subspace learning
    • Q. Gu, Z. Li, and J. Han, "Joint feature selection and subspace learning," in Proc. 22nd IJCAI, 2011, pp. 1294-1299.
    • (2011) Proc. 22nd IJCAI , pp. 1294-1299
    • Gu, Q.1    Li, Z.2    Han, J.3
  • 12
    • 84866678530 scopus 로고    scopus 로고
    • Feature selection via joint embedding learning and sparse regression
    • C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning and sparse regression," in Proc. 22nd IJCAI, 2011, pp. 1324-1229.
    • (2011) Proc. 22nd IJCAI , pp. 1324-1229
    • Hou, C.1    Nie, F.2    Yi, D.3    Wu, Y.4
  • 13
    • 84881041271 scopus 로고    scopus 로고
    • 2,1-norm regularized discriminative feature selection for unsupervised learning
    • Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. 22nd IJCAI, 2011, pp. 1589-1594.
    • (2011) Proc. 22nd IJCAI , pp. 1589-1594
    • Yang, Y.1    Shen, H.T.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 14
    • 34547989065 scopus 로고    scopus 로고
    • Semi-supervised feature selection via spectral analysis
    • Z. Zhao and H. Liu, "Semi-supervised feature selection via spectral analysis," in Proc. ICDM, 2007, pp. 1-6.
    • (2007) Proc. ICDM , pp. 1-6
    • Zhao, Z.1    Liu, H.2
  • 15
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • J. Zhao, K. Lu, and X. He, "Locality sensitive semi-supervised feature selection," Neurocomputing, vol. 71, nos. 10-12, pp. 1842-1849, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 16
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • Jul
    • Z. Xu, I. King, M.-T. Lyu, and R. Jin, "Discriminative semi-supervised feature selection via manifold regularization," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, Jul. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.-T.3    Jin, R.4
  • 17
    • 84873278481 scopus 로고    scopus 로고
    • On similarity preserving feature selection
    • Mar
    • Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.3 , pp. 619-632
    • Zhao, Z.1    Wang, L.2    Liu, H.3    Ye, J.4
  • 18
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Sep
    • Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 19
    • 84875878163 scopus 로고    scopus 로고
    • Discriminative least squares regression for multiclass classification and feature selection
    • Nov
    • S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, "Discriminative least squares regression for multiclass classification and feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1738-1754, Nov. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.11 , pp. 1738-1754
    • Xiang, S.1    Nie, F.2    Meng, G.3    Pan, C.4    Zhang, C.5
  • 20
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancyconstrained class separability
    • May
    • L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancyconstrained class separability," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 853-858, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 21
    • 84876921784 scopus 로고    scopus 로고
    • Multiclass feature selection with kernel gram-matrix-based criteria
    • Oct
    • M. Ramona, G. Richard, and B. David, "Multiclass feature selection with kernel gram-matrix-based criteria," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1611-1623, Oct. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1611-1623
    • Ramona, M.1    Richard, G.2    David, B.3
  • 22
    • 79957992972 scopus 로고    scopus 로고
    • Feature selection using probabilistic prediction of support vector regression
    • Jun
    • J.-B. Yang and C. J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Netw., vol. 22, no. 6, pp. 954-962, Jun. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.6 , pp. 954-962
    • Yang, J.-B.1    Ong, C.J.2
  • 23
    • 80053281077 scopus 로고    scopus 로고
    • Feature selection via block-regularized regression
    • S. Kim and E. P. Xing, "Feature selection via block-regularized regression," in Proc. 24th Conf. UAI, 2008, pp. 325-332.
    • (2008) Proc. 24th Conf. UAI , pp. 325-332
    • Kim, S.1    Xing, E.P.2
  • 24
    • 14344256001 scopus 로고    scopus 로고
    • Gradient LASSO for feature selection
    • Y. Kim and J. Kim, "Gradient LASSO for feature selection," in Proc. 21st ICML, 2004.
    • (2004) Proc. 21st ICML
    • Kim, Y.1    Kim, J.2
  • 25
    • 80555129673 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • Oct
    • R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," J. Mach. Learn. Res., vol. 12, pp. 2777-2824, Oct. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.-Y.2    Bach, F.3
  • 26
    • 84867122131 scopus 로고    scopus 로고
    • Discovering support and affiliated features from very high dimensions
    • Y. Zhai, M. Tan, I. W. Tsang, and Y.-S. Ong, "Discovering support and affiliated features from very high dimensions," in Proc. 29th ICML, 2012, pp. 1455-1462.
    • (2012) Proc. 29th ICML , pp. 1455-1462
    • Zhai, Y.1    Tan, M.2    Tsang, I.W.3    Ong, Y.-S.4
  • 27
    • 80053445747 scopus 로고    scopus 로고
    • Eigenvalue sensitive feature selection
    • Y. Jiang and J. Ren, "Eigenvalue sensitive feature selection," in Proc. 28th ICML, 2011, pp. 89-96.
    • (2011) Proc. 28th ICML , pp. 89-96
    • Jiang, Y.1    Ren, J.2
  • 29
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. 24th ICML, 2007, pp. 1151-1157. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 30
    • 84876913577 scopus 로고    scopus 로고
    • A discrimination analysis for unsupervised feature selection via optic diffraction principle
    • Oct
    • P. Padungweang, C. Lursinsap, and K. Sunat, "A discrimination analysis for unsupervised feature selection via optic diffraction principle," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1587-1600, Oct. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1587-1600
    • Padungweang, P.1    Lursinsap, C.2    Sunat, K.3
  • 31
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RreliefF
    • M. Robnik-Šikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RreliefF," Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 33
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 34
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," J. Mach. Learn. Res., vol. 4, pp. 119-155, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 37
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 38
    • 35048841672 scopus 로고    scopus 로고
    • Nonlinear Dimension Reduction via Local Tangent Space Alignment
    • Intelligent Data Engineering and Automated Learning
    • Z. Zhang and H. Zha, "Nonlinear dimension reduction via local tangent space alignment," in Proc. 4th IDEAL, 2003, pp. 477-481. (Pubitemid 36996128)
    • (2003) Lecture Notes In Computer Science , Issue.2690 , pp. 477-481
    • Zhang, Z.1    Zha, H.2
  • 39
    • 84884936397 scopus 로고    scopus 로고
    • Local coordinates alignment with global preservation for dimensionality reduction
    • Jan
    • J. Chen, Z. Ma, and Y. Liu, "Local coordinates alignment with global preservation for dimensionality reduction," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 106-117, Jan. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.1 , pp. 106-117
    • Chen, J.1    Ma, Z.2    Liu, Y.3
  • 40
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, Jan. 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 41
    • 33745444835 scopus 로고    scopus 로고
    • A framework for local supervised dimensionality reduction of high dimensional data
    • Proceedings of the Sixth SIAM International Conference on Data Mining
    • C. C. Aggarwal, "A framework for local supervised dimensionality reduction of high dimensional data," in Proc. 6th SIAM Int. Conf. Data Mining, 2006, pp. 360-371. (Pubitemid 43955551)
    • (2006) Proceedings of the Sixth SIAM International Conference on Data Mining , vol.2006 , pp. 360-371
    • Aggarwal, C.C.1
  • 42
    • 33947492041 scopus 로고    scopus 로고
    • Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics
    • DOI 10.1109/TPAMI.2007.1008, Special issue on Biometrics: Progress and Directions
    • J. Yang, D. Zhang, J. Y. Yang, and B. Niu, "Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 650-664, Apr. 2007. (Pubitemid 46464405)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.4 , pp. 650-664
    • Yang, J.1    Zhang, D.2    Yang, J.-Y.3    Niu, B.4
  • 43
    • 42549169322 scopus 로고    scopus 로고
    • Locality-preserved maximum information projection
    • DOI 10.1109/TNN.2007.910733
    • H. Wang, S. Chen, Z. Hu, and W. Zheng, "Locality-preserved maximum information projection," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 571-585, Apr. 2008. (Pubitemid 351583575)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.4 , pp. 571-585
    • Wang, H.1    Chen, S.2    Hu, Z.3    Zheng, W.4
  • 44
    • 35148833127 scopus 로고    scopus 로고
    • Integrating global and local structures: A least squares framework for dimensionality reduction
    • Jun
    • J. Chen, J. Ye, and Q. Li, "Integrating global and local structures: A least squares framework for dimensionality reduction," in Proc. IEEE Conf. CVPR, Jun. 2007, pp. 1-8.
    • (2007) Proc. IEEE Conf. CVPR , pp. 1-8
    • Chen, J.1    Ye, J.2    Li, Q.3
  • 45
    • 33847374231 scopus 로고    scopus 로고
    • Linear local tangent space alignment and application to face recognition
    • DOI 10.1016/j.neucom.2006.11.007, PII S0925231206004577, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • T. Zhang, J. Yang, D. Zhao, and X. Ge, "Linear local tangent space alignment and application to face recognition," Neurocomputing, vol. 70, nos. 7-9, pp. 1547-1553, 2007. (Pubitemid 46336768)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1547-1553
    • Zhang, T.1    Yang, J.2    Zhao, D.3    Ge, X.4
  • 47
    • 84855903743 scopus 로고    scopus 로고
    • Efficient linear discriminant analysis with locality preserving for face recognition
    • X. Shu, Y. Gao, and H. Lu, "Efficient linear discriminant analysis with locality preserving for face recognition," Pattern Recognit., vol. 45, no. 5, pp. 1892-1898, 2012.
    • (2012) Pattern Recognit , vol.45 , Issue.5 , pp. 1892-1898
    • Shu, X.1    Gao, Y.2    Lu, H.3
  • 49
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 50
    • 33750743381 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • K. Q. Weinberger and L. K. Saul, "An introduction to nonlinear dimensionality reduction by maximum variance unfolding," in Proc. 21st AAAI Conf. Artif. Intell., 2006, pp. 1683-1686. (Pubitemid 44705525)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 1683-1686
    • Weinberger, K.Q.1    Saul, L.K.2
  • 51
    • 84901422351 scopus 로고    scopus 로고
    • Accessed: Sep
    • (Accessed: Sep. 2012). L21RFS [Online]. Available: http://sites.google. com/site/feipingnie/publications/
    • (2012) L21RFS
  • 52
    • 84901387129 scopus 로고    scopus 로고
    • Accessed: Sep
    • (Accessed: Sep. 2012). mRMR [Online]. Available: http://penglab.janelia. org/proj/mRMR/
    • (2012) MRMR
  • 53
    • 84901472609 scopus 로고    scopus 로고
    • Accessed: Sep
    • (Accessed: Sep. 2012). LLFS [Online]. Available: http://plaza.ufl.edu/ sunyijun/PAMI2.htm/
    • (2012) LLFS
  • 55
    • 9744243208 scopus 로고    scopus 로고
    • Feature selection, 1 vs. 2 regularization, and rotational invariance
    • A. Y. Ng, "Feature selection, -1 vs. -2 regularization, and rotational invariance," in Proc. 21st ICML, 2004, pp. 78-85.
    • (2004) Proc. 21st ICML , pp. 78-85
    • Ng, A.Y.1
  • 56
    • 84901410459 scopus 로고    scopus 로고
    • Accessed: Sep
    • (Accessed: Sep. 2012). LapScore [Online]. Available: http:// featureselection.asu.edu/
    • (2012) LapScore


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.