-
1
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997. (Pubitemid 127828334)
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
-
2
-
-
85135939782
-
Efficient and robust feature selection via joint 2,1-norms minimization
-
Cambridge, MA, USA: MIT Press
-
F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint 2,1-norms minimization," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2010, pp. 1813-1821.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
3
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005. (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
4
-
-
0003922190
-
-
New York, NY, USA: Wiley
-
R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New York, NY, USA: Wiley, 2001.
-
(2001)
Pattern Classification, 2nd Ed
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
7
-
-
77958565426
-
Efficient spectral feature selection with minimum redundancy
-
Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 673-678.
-
(2010)
Proc. 24th AAAI Conf. Artif. Intell.
, pp. 673-678
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
-
8
-
-
84864039505
-
Laplacian score for feature selection
-
Cambridge, MA, USA: MIT Press
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
9
-
-
48049087439
-
Feature selection with kernel class separability
-
Sep
-
L. Wang, "Feature selection with kernel class separability," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1534-1546, Sep. 2008.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.9
, pp. 1534-1546
-
-
Wang, L.1
-
10
-
-
26444454606
-
Feature selection for unsupervised learning
-
Jan.
-
J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Jan. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
11
-
-
84870535269
-
Joint feature selection and subspace learning
-
Q. Gu, Z. Li, and J. Han, "Joint feature selection and subspace learning," in Proc. 22nd IJCAI, 2011, pp. 1294-1299.
-
(2011)
Proc. 22nd IJCAI
, pp. 1294-1299
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
12
-
-
84866678530
-
Feature selection via joint embedding learning and sparse regression
-
C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning and sparse regression," in Proc. 22nd IJCAI, 2011, pp. 1324-1229.
-
(2011)
Proc. 22nd IJCAI
, pp. 1324-1229
-
-
Hou, C.1
Nie, F.2
Yi, D.3
Wu, Y.4
-
13
-
-
84881041271
-
2,1-norm regularized discriminative feature selection for unsupervised learning
-
Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. 22nd IJCAI, 2011, pp. 1589-1594.
-
(2011)
Proc. 22nd IJCAI
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
14
-
-
34547989065
-
Semi-supervised feature selection via spectral analysis
-
Z. Zhao and H. Liu, "Semi-supervised feature selection via spectral analysis," in Proc. ICDM, 2007, pp. 1-6.
-
(2007)
Proc. ICDM
, pp. 1-6
-
-
Zhao, Z.1
Liu, H.2
-
15
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
J. Zhao, K. Lu, and X. He, "Locality sensitive semi-supervised feature selection," Neurocomputing, vol. 71, nos. 10-12, pp. 1842-1849, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
16
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regularization
-
Jul
-
Z. Xu, I. King, M.-T. Lyu, and R. Jin, "Discriminative semi-supervised feature selection via manifold regularization," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, Jul. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.-T.3
Jin, R.4
-
17
-
-
84873278481
-
On similarity preserving feature selection
-
Mar
-
Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
18
-
-
77955397866
-
Local-learning-based feature selection for high-dimensional data analysis
-
Sep
-
Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1610-1626
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
19
-
-
84875878163
-
Discriminative least squares regression for multiclass classification and feature selection
-
Nov
-
S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, "Discriminative least squares regression for multiclass classification and feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1738-1754, Nov. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.11
, pp. 1738-1754
-
-
Xiang, S.1
Nie, F.2
Meng, G.3
Pan, C.4
Zhang, C.5
-
20
-
-
77951937407
-
Feature selection with redundancyconstrained class separability
-
May
-
L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancyconstrained class separability," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 853-858, May 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.5
, pp. 853-858
-
-
Zhou, L.1
Wang, L.2
Shen, C.3
-
21
-
-
84876921784
-
Multiclass feature selection with kernel gram-matrix-based criteria
-
Oct
-
M. Ramona, G. Richard, and B. David, "Multiclass feature selection with kernel gram-matrix-based criteria," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1611-1623, Oct. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.10
, pp. 1611-1623
-
-
Ramona, M.1
Richard, G.2
David, B.3
-
22
-
-
79957992972
-
Feature selection using probabilistic prediction of support vector regression
-
Jun
-
J.-B. Yang and C. J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Netw., vol. 22, no. 6, pp. 954-962, Jun. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.6
, pp. 954-962
-
-
Yang, J.-B.1
Ong, C.J.2
-
23
-
-
80053281077
-
Feature selection via block-regularized regression
-
S. Kim and E. P. Xing, "Feature selection via block-regularized regression," in Proc. 24th Conf. UAI, 2008, pp. 325-332.
-
(2008)
Proc. 24th Conf. UAI
, pp. 325-332
-
-
Kim, S.1
Xing, E.P.2
-
24
-
-
14344256001
-
Gradient LASSO for feature selection
-
Y. Kim and J. Kim, "Gradient LASSO for feature selection," in Proc. 21st ICML, 2004.
-
(2004)
Proc. 21st ICML
-
-
Kim, Y.1
Kim, J.2
-
25
-
-
80555129673
-
Structured variable selection with sparsity-inducing norms
-
Oct
-
R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," J. Mach. Learn. Res., vol. 12, pp. 2777-2824, Oct. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2777-2824
-
-
Jenatton, R.1
Audibert, J.-Y.2
Bach, F.3
-
26
-
-
84867122131
-
Discovering support and affiliated features from very high dimensions
-
Y. Zhai, M. Tan, I. W. Tsang, and Y.-S. Ong, "Discovering support and affiliated features from very high dimensions," in Proc. 29th ICML, 2012, pp. 1455-1462.
-
(2012)
Proc. 29th ICML
, pp. 1455-1462
-
-
Zhai, Y.1
Tan, M.2
Tsang, I.W.3
Ong, Y.-S.4
-
27
-
-
80053445747
-
Eigenvalue sensitive feature selection
-
Y. Jiang and J. Ren, "Eigenvalue sensitive feature selection," in Proc. 28th ICML, 2011, pp. 89-96.
-
(2011)
Proc. 28th ICML
, pp. 89-96
-
-
Jiang, Y.1
Ren, J.2
-
28
-
-
57749182885
-
Trace ratio criterion for feature selection
-
F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, "Trace ratio criterion for feature selection," in Proc. 23rd AAAI Conf. Artif. Intell., 2008, pp. 671-676.
-
(2008)
Proc. 23rd AAAI Conf. Artif. Intell.
, pp. 671-676
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
29
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. 24th ICML, 2007, pp. 1151-1157. (Pubitemid 47275183)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
30
-
-
84876913577
-
A discrimination analysis for unsupervised feature selection via optic diffraction principle
-
Oct
-
P. Padungweang, C. Lursinsap, and K. Sunat, "A discrimination analysis for unsupervised feature selection via optic diffraction principle," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1587-1600, Oct. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.10
, pp. 1587-1600
-
-
Padungweang, P.1
Lursinsap, C.2
Sunat, K.3
-
31
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RreliefF
-
M. Robnik-Šikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RreliefF," Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
-
(2003)
Mach. Learn.
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
32
-
-
84862024860
-
Feature selection via dependence maximization
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection via dependence maximization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1393-1434, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
33
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
34
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. K. Saul and S. T. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," J. Mach. Learn. Res., vol. 4, pp. 119-155, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
36
-
-
15044358511
-
Face recognition using Laplacianfaces
-
DOI 10.1109/TPAMI.2005.55
-
X. He, S. Yan, Y. Hu, P. Niyogi, and H. J. Zhang, "Face recognition using Laplacianfaces," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 328-340, Mar. 2005. (Pubitemid 40377326)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.3
, pp. 328-340
-
-
He, X.1
Yan, S.2
Hu, Y.3
Niyogi, P.4
Zhang, H.-J.5
-
37
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006. (Pubitemid 44708005)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
38
-
-
35048841672
-
Nonlinear Dimension Reduction via Local Tangent Space Alignment
-
Intelligent Data Engineering and Automated Learning
-
Z. Zhang and H. Zha, "Nonlinear dimension reduction via local tangent space alignment," in Proc. 4th IDEAL, 2003, pp. 477-481. (Pubitemid 36996128)
-
(2003)
Lecture Notes In Computer Science
, Issue.2690
, pp. 477-481
-
-
Zhang, Z.1
Zha, H.2
-
39
-
-
84884936397
-
Local coordinates alignment with global preservation for dimensionality reduction
-
Jan
-
J. Chen, Z. Ma, and Y. Liu, "Local coordinates alignment with global preservation for dimensionality reduction," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 106-117, Jan. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.1
, pp. 106-117
-
-
Chen, J.1
Ma, Z.2
Liu, Y.3
-
40
-
-
34249086815
-
Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
-
M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, Jan. 2007. (Pubitemid 46798409)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1027-1061
-
-
Sugiyama, M.1
-
41
-
-
33745444835
-
A framework for local supervised dimensionality reduction of high dimensional data
-
Proceedings of the Sixth SIAM International Conference on Data Mining
-
C. C. Aggarwal, "A framework for local supervised dimensionality reduction of high dimensional data," in Proc. 6th SIAM Int. Conf. Data Mining, 2006, pp. 360-371. (Pubitemid 43955551)
-
(2006)
Proceedings of the Sixth SIAM International Conference on Data Mining
, vol.2006
, pp. 360-371
-
-
Aggarwal, C.C.1
-
42
-
-
33947492041
-
Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics
-
DOI 10.1109/TPAMI.2007.1008, Special issue on Biometrics: Progress and Directions
-
J. Yang, D. Zhang, J. Y. Yang, and B. Niu, "Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 650-664, Apr. 2007. (Pubitemid 46464405)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.4
, pp. 650-664
-
-
Yang, J.1
Zhang, D.2
Yang, J.-Y.3
Niu, B.4
-
43
-
-
42549169322
-
Locality-preserved maximum information projection
-
DOI 10.1109/TNN.2007.910733
-
H. Wang, S. Chen, Z. Hu, and W. Zheng, "Locality-preserved maximum information projection," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 571-585, Apr. 2008. (Pubitemid 351583575)
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.4
, pp. 571-585
-
-
Wang, H.1
Chen, S.2
Hu, Z.3
Zheng, W.4
-
44
-
-
35148833127
-
Integrating global and local structures: A least squares framework for dimensionality reduction
-
Jun
-
J. Chen, J. Ye, and Q. Li, "Integrating global and local structures: A least squares framework for dimensionality reduction," in Proc. IEEE Conf. CVPR, Jun. 2007, pp. 1-8.
-
(2007)
Proc. IEEE Conf. CVPR
, pp. 1-8
-
-
Chen, J.1
Ye, J.2
Li, Q.3
-
45
-
-
33847374231
-
Linear local tangent space alignment and application to face recognition
-
DOI 10.1016/j.neucom.2006.11.007, PII S0925231206004577, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
-
T. Zhang, J. Yang, D. Zhao, and X. Ge, "Linear local tangent space alignment and application to face recognition," Neurocomputing, vol. 70, nos. 7-9, pp. 1547-1553, 2007. (Pubitemid 46336768)
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1547-1553
-
-
Zhang, T.1
Yang, J.2
Zhao, D.3
Ge, X.4
-
47
-
-
84855903743
-
Efficient linear discriminant analysis with locality preserving for face recognition
-
X. Shu, Y. Gao, and H. Lu, "Efficient linear discriminant analysis with locality preserving for face recognition," Pattern Recognit., vol. 45, no. 5, pp. 1892-1898, 2012.
-
(2012)
Pattern Recognit
, vol.45
, Issue.5
, pp. 1892-1898
-
-
Shu, X.1
Gao, Y.2
Lu, H.3
-
48
-
-
33745881038
-
Neighborhood preserving embedding
-
1544858, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
-
X. He, D. Cai, S. Yan, and H.-J. Zhang, "Neighborhood preserving embedding," in Proc. 10th IEEE ICCV, Oct. 2005, pp. 1208-1213. (Pubitemid 44042318)
-
(2005)
Proceedings of the IEEE International Conference on Computer Vision
, vol.II
, pp. 1208-1213
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.-J.4
-
49
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
50
-
-
33750743381
-
An introduction to nonlinear dimensionality reduction by maximum variance unfolding
-
Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
-
K. Q. Weinberger and L. K. Saul, "An introduction to nonlinear dimensionality reduction by maximum variance unfolding," in Proc. 21st AAAI Conf. Artif. Intell., 2006, pp. 1683-1686. (Pubitemid 44705525)
-
(2006)
Proceedings of the National Conference on Artificial Intelligence
, vol.2
, pp. 1683-1686
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
51
-
-
84901422351
-
-
Accessed: Sep
-
(Accessed: Sep. 2012). L21RFS [Online]. Available: http://sites.google. com/site/feipingnie/publications/
-
(2012)
L21RFS
-
-
-
52
-
-
84901387129
-
-
Accessed: Sep
-
(Accessed: Sep. 2012). mRMR [Online]. Available: http://penglab.janelia. org/proj/mRMR/
-
(2012)
MRMR
-
-
-
53
-
-
84901472609
-
-
Accessed: Sep
-
(Accessed: Sep. 2012). LLFS [Online]. Available: http://plaza.ufl.edu/ sunyijun/PAMI2.htm/
-
(2012)
LLFS
-
-
-
54
-
-
24644515558
-
1-norm support vector machines
-
Cambridge, MA, USA: MIT Press
-
J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, "1-norm support vector machines," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
55
-
-
9744243208
-
Feature selection, 1 vs. 2 regularization, and rotational invariance
-
A. Y. Ng, "Feature selection, -1 vs. -2 regularization, and rotational invariance," in Proc. 21st ICML, 2004, pp. 78-85.
-
(2004)
Proc. 21st ICML
, pp. 78-85
-
-
Ng, A.Y.1
-
56
-
-
84901410459
-
-
Accessed: Sep
-
(Accessed: Sep. 2012). LapScore [Online]. Available: http:// featureselection.asu.edu/
-
(2012)
LapScore
-
-
|