메뉴 건너뛰기




Volumn , Issue , 2011, Pages 818-825

Informative feature selection for object recognition via Sparse PCA

Author keywords

[No Author keywords available]

Indexed keywords

AUGMENTED LAGRANGIAN METHODS; BAG OF WORDS; BREAK DOWN; EFFICIENT ALGORITHM; EPIPOLAR GEOMETRY; HIGH-DIMENSIONAL; IMAGE FEATURES; IMAGE SEGMENTS; LOW QUALITIES; LOW-DIMENSIONAL SUBSPACE; MULTIPLE-VIEW; OBJECT CATEGORIES; OBJECT DATABASE; PRINCIPAL VECTORS; RECOGNITION ACCURACY; RECOGNITION METHODS; RECOGNITION PROCESS; SEMIDEFINITE PROGRAMMING PROBLEM; STATE OF THE ART; STRUCTURE FROM MOTION;

EID: 84856647878     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126321     Document Type: Conference Paper
Times cited : (65)

References (30)
  • 1
    • 43049174575 scopus 로고    scopus 로고
    • SURF: Speeded up robust features
    • 2
    • H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. CVIU, 110(3):346-359, 2008. 2
    • (2008) CVIU , vol.110 , Issue.3 , pp. 346-359
    • Bay, H.1    Ess, A.2    Tuytelaars, T.3    Van Gool, L.4
  • 3
    • 33846201731 scopus 로고    scopus 로고
    • Determining vision graphs for distributed camera networks using feature digests
    • 1
    • Z. Cheng, D. Devarajan, and R. Radke. Determining vision graphs for distributed camera networks using feature digests. EURASIP J. Adv. In Sig. Proc., pages 1-11, 2007. 1
    • (2007) Eurasip J. Adv. In Sig. Proc. , pp. 1-11
    • Cheng, Z.1    Devarajan, D.2    Radke, R.3
  • 4
    • 51949084977 scopus 로고    scopus 로고
    • Unsupervised feature selection via distributed coding for multi-view object recognition
    • 1
    • C. Christoudias, R. Urtasun, and T. Darrell. Unsupervised feature selection via distributed coding for multi-view object recognition. In CVPR, 2008. 1
    • (2008) CVPR
    • Christoudias, C.1    Urtasun, R.2    Darrell, T.3
  • 5
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for Sparse PCA using semidefinite programming
    • 2, 4, 5
    • A. d'Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for Sparse PCA using semidefinite programming. SIAM Rev., 2007. 2, 4, 5
    • (2007) SIAM Rev.
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.3    Lanckriet, G.4
  • 7
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1
    • L. Fei-Fei. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005. 1
    • (2005) CVPR
    • Fei-Fei, L.1
  • 8
    • 5044224296 scopus 로고    scopus 로고
    • Integrating multiple model views for object recognition
    • V. Ferrari, T. Tuytelaars, and L. Van Gool. Integrating multiple model views for object recognition. In CVPR, 2004.
    • (2004) CVPR
    • Ferrari, V.1    Tuytelaars, T.2    Van Gool, L.3
  • 9
    • 36849003521 scopus 로고    scopus 로고
    • Towards optimal bag-offeatures for object categorization and semantic video retrieval
    • 1
    • Y. Jiang, C. Ngo, and J. Yang. Towards optimal bag-offeatures for object categorization and semantic video retrieval. In ACM Int. Conf. On Image and Video Retrieval, 2007. 1
    • (2007) ACM Int. Conf. On Image and Video Retrieval
    • Jiang, Y.1    Ngo, C.2    Yang, J.3
  • 10
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the lasso
    • 4
    • I. Jolliffe, N. Trendafilov, and M. Uddin. A modified principal component technique based on the lasso. JCGS, 2003. 4
    • (2003) JCGS
    • Jolliffe, I.1    Trendafilov, N.2    Uddin, M.3
  • 11
    • 84856439046 scopus 로고    scopus 로고
    • Avoiding confusing features in place recognition
    • 3
    • J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place recognition. In ECCV, 2010. 3
    • (2010) ECCV
    • Knopp, J.1    Sivic, J.2    Pajdla, T.3
  • 12
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 13
    • 51949091773 scopus 로고    scopus 로고
    • Technical Report MIT-CSAIL-TR-2008-017, MIT, 2
    • J. Lee. Libpmk: A pyramid match toolkit. Technical Report MIT-CSAIL-TR-2008-017, MIT, 2008. 2
    • (2008) Libpmk: A Pyramid Match Toolkit
    • Lee, J.1
  • 15
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • 2
    • D. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999. 2
    • (1999) ICCV
    • Lowe, D.1
  • 16
    • 77949425006 scopus 로고    scopus 로고
    • Clustering and feature selection using sparse principal component analysis
    • 4
    • R. Luss and A. d'Aspremont. Clustering and feature selection using sparse principal component analysis. Optimization and Engineering, 11(1):145-157, 2008. 4
    • (2008) Optimization and Engineering , vol.11 , Issue.1 , pp. 145-157
    • Luss, R.1    D'Aspremont, A.2
  • 17
    • 80053050337 scopus 로고    scopus 로고
    • Deflation methods for Sparse PCA
    • 4
    • L. Mackey. Deflation methods for Sparse PCA. In NIPS, 2009. 4
    • (2009) NIPS
    • Mackey, L.1
  • 18
    • 79952420431 scopus 로고    scopus 로고
    • Towards an efficient distributed object recognition system in wireless smart camera networks
    • 1, 3, 6, 7
    • N. Naikal, A. Yang, and S. Sastry. Towards an efficient distributed object recognition system in wireless smart camera networks. In Information Fusion, 2010. 1, 3, 6, 7
    • (2010) Information Fusion
    • Naikal, N.1    Yang, A.2    Sastry, S.3
  • 19
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate o (1/k2)
    • 5
    • Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Mathematics Doklady, 1983. 5
    • (1983) Soviet Mathematics Doklady
    • Nesterov, Y.1
  • 20
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • 1, 2
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006. 1, 2
    • (2006) CVPR
    • Nistér, D.1    Stewénius, H.2
  • 21
    • 80053392733 scopus 로고    scopus 로고
    • Geometric latent dirichlet allocation on a matching graph forlarge-scale image datasets
    • 3
    • J. Philbin and J. S. A. Zisserman. Geometric latent dirichlet allocation on a matching graph forlarge-scale image datasets. IJCV, 2010. 3
    • (2010) IJCV
    • Philbin, J.1    Zisserman, J.S.A.2
  • 22
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • 1
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, 2003. 1
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 23
    • 69949087570 scopus 로고    scopus 로고
    • Modeling the world from internet photo collections
    • 2, 3
    • N. Snavely, S. Seitz, and R. Szeliski. Modeling the world from internet photo collections. IJCV, 2007. 2, 3
    • (2007) IJCV
    • Snavely, N.1    Seitz, S.2    Szeliski, R.3
  • 25
    • 77953218614 scopus 로고    scopus 로고
    • Better matching with fewer features: The selection of useful features in large database recognition problems
    • 1, 2
    • P. Turcot and D. Lowe. Better matching with fewer features: The selection of useful features in large database recognition problems. In ICCV Workshop on Emergent Issues in Large Amounts of Visual Data, 2009. 1, 2
    • (2009) ICCV Workshop on Emergent Issues in Large Amounts of Visual Data
    • Turcot, P.1    Lowe, D.2
  • 26
    • 72149121282 scopus 로고    scopus 로고
    • Multiple-view object recognition in band-limited distributed camera networks
    • 1
    • A. Yang, S. Maji, C. Christoudias, T. Darrell, J. Malik, and S. Sastry. Multiple-view object recognition in band-limited distributed camera networks. In ICDSC, 2009. 1
    • (2009) ICDSC
    • Yang, A.1    Maji, S.2    Christoudias, C.3    Darrell, T.4    Malik, J.5    Sastry, S.6
  • 27
    • 84867091477 scopus 로고    scopus 로고
    • Fast minimization algorithms and an application in robust face recognition: A review
    • 2, 4
    • A. Yang, Z. Zhou, Y. Ma, and S. Sastry. Fast minimization algorithms and an application in robust face recognition: A review. In ICIP, 2010. 2, 4
    • (2010) ICIP
    • Yang, A.1    Zhou, Z.2    Ma, Y.3    Sastry, S.4
  • 28
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • 1
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 2007. 1
    • (2007) IJCV
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 29
    • 0036018630 scopus 로고    scopus 로고
    • Low-rank approximations with sparse factors I: Basic algorithms and error analysis
    • 4
    • Z. Zhang, H. Zha, and H. Simon. Low-rank approximations with sparse factors I: Basic algorithms and error analysis. SIAM J. Matrix Analysis Applications, 2002. 4
    • (2002) SIAM J. Matrix Analysis Applications
    • Zhang, Z.1    Zha, H.2    Simon, H.3
  • 30
    • 33745309913 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • 2, 4
    • H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. JCGS, 2006. 2, 4
    • (2006) JCGS
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.