메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3918-3924

A soft version of predicate invention based on structured sparsity

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84949805508     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (34)
  • 1
    • 80051666179 scopus 로고    scopus 로고
    • Local partitioning for directed graphs using pagerank
    • Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local partitioning for directed graphs using pagerank. Internet Mathematics, 5(1):3-22, 2008.
    • (2008) Internet Mathematics , vol.5 , Issue.1 , pp. 3-22
    • Andersen, R.1    Chung, F.R.K.2    Lang, K.J.3
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 2006.
    • (2006) JMLR
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 84949842926 scopus 로고    scopus 로고
    • Can predicate invention in meta-interpretive learning compensate for incomplete background knowledge?
    • Andrew Cropper and Stephen H Muggleton. Can predicate invention in meta-interpretive learning compensate for incomplete background knowledge? Proc. of ILP, 2014.
    • (2014) Proc. of ILP
    • Cropper, A.1    Muggleton, S.H.2
  • 6
    • 84924122981 scopus 로고    scopus 로고
    • Towards scaling fully personalized PageRank: Algorithms, lower bounds, and experiments
    • Kroly Csalogny, Dniel Fogaras, Balzs Rcz, and Tams Sarls. Towards scaling fully personalized PageRank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2(3):333-358, 2005.
    • (2005) Internet Mathematics , vol.2 , Issue.3 , pp. 333-358
    • Csalogny, K.1    Fogaras, D.2    Rcz, B.3    Sarls, T.4
  • 7
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • James Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001.
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 8
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • John Duchi and Yoram Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2899-2934, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 9
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • George Forman. An extensive empirical study of feature selection metrics for text classification. The Journal of machine learning research, 3:1289-1305, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 13
    • 34247470526 scopus 로고    scopus 로고
    • Learning systems of concepts with an infinite relational model
    • Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and Naonori Ueda. Learning systems of concepts with an infinite relational model. In AAAI, 2006.
    • (2006) AAAI
    • Kemp, C.1    Tenenbaum, J.B.2    Griffiths, T.L.3    Yamada, T.4    Ueda, N.5
  • 14
    • 77958615695 scopus 로고    scopus 로고
    • Structure learning for Markov logic networks with many descriptive attributes
    • Hassan Khosravi, Oliver Schulte, Tong Man, Xiaoyuan Xu, and Bahareh Bina. Structure learning for Markov logic networks with many descriptive attributes. In AAAI, pages 487-493, 2010.
    • (2010) AAAI , pp. 487-493
    • Khosravi, H.1    Schulte, O.2    Man, T.3    Xu, X.4    Bina, B.5
  • 15
    • 84857184874 scopus 로고    scopus 로고
    • Learning Markov logic networks via functional gradient boosting
    • Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik. Learning Markov logic networks via functional gradient boosting. In ICDM, 2011.
    • (2011) ICDM
    • Khot, T.1    Natarajan, S.2    Kersting, K.3    Shavlik, J.W.4
  • 16
    • 18544378013 scopus 로고
    • Discrimination-based constructive induction of logic programs
    • Boonserm Kijsirikul, Masayuki Numao, and Masamichi Shimura. Discrimination-based constructive induction of logic programs. In AAAI, 1992.
    • (1992) AAAI
    • Kijsirikul, B.1    Numao, M.2    Shimura, M.3
  • 17
    • 65349190968 scopus 로고    scopus 로고
    • Statistical predicate invention
    • Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proc. of ICML, 2007.
    • (2007) Proc. of ICML
    • Kok, S.1    Domingos, P.2
  • 19
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • Quinn McNemar. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157, 1947.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 21
    • 84969731474 scopus 로고    scopus 로고
    • Metabayes: Bayesian meta-interpretative learning using higher-order stochastic refinement
    • Springer
    • Stephen H Muggleton, Dianhuan Lin, Jianzhong Chen, and Alireza Tamaddoni-Nezhad. Metabayes: Bayesian meta-interpretative learning using higher-order stochastic refinement. In Inductive Logic Programming, pages 1-17. Springer, 2014.
    • (2014) Inductive Logic Programming , pp. 1-17
    • Muggleton, S.H.1    Lin, D.2    Chen, J.3    Tamaddoni-Nezhad, A.4
  • 24
    • 84974794165 scopus 로고    scopus 로고
    • A sparse parameter learning method for probabilistic logic programs
    • Masaaki Nishino, Akihiro Yamamoto, and Masaaki Nagata. A sparse parameter learning method for probabilistic logic programs. In StarAI, 2014.
    • (2014) StarAI
    • Nishino, M.1    Yamamoto, A.2    Nagata, M.3
  • 25
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision research, 37(23):3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 29
    • 84889589680 scopus 로고    scopus 로고
    • Programming with personalized pagerank: A locally groundable first-order probabilistic logic
    • William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized pagerank: a locally groundable first-order probabilistic logic. In Proc. of CIKM, 2013.
    • (2013) Proc. of CIKM
    • Wang, W.Y.1    Mazaitis, K.2    Cohen, W.W.3
  • 30
  • 32
    • 0344889661 scopus 로고
    • Improving efficiency by learning intermediate concepts
    • Citeseer
    • James Wogulis and Pat Langley. Improving efficiency by learning intermediate concepts. In IJCAI, pages 657-662. Citeseer, 1989.
    • (1989) IJCAI , pp. 657-662
    • Wogulis, J.1    Langley, P.2
  • 33
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • John Wright, Yi Ma, Julien Mairal, Guillermo Sapiro, Thomas S Huang, and Shuicheng Yan. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6):1031-1044, 2010.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Yi, M.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.