메뉴 건너뛰기




Volumn 105, Issue 490, 2010, Pages 713-726

A framework for feature selection in clustering

Author keywords

means clustering; Hierarchical clustering; High dimensional; Lasso; Model selection; Sparsity; Unsupervised learning

Indexed keywords


EID: 77954603019     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/jasa.2010.tm09415     Document Type: Article
Times cited : (574)

References (36)
  • 1
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge, U.K.: Cambridge University Press. [715]
    • Boyd, S., and Vandenberghe, L. (2004), Convex Optimization, Cambridge, U.K.: Cambridge University Press. [715]
    • (2004) Convex Optimization
    • Boyd, S.1    Vandenberghe, L.2
  • 2
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • [713]
    • Chang, W.-C. (1983), "On Using Principal Components Before Separating a Mixture of Two Multivariate Normal Distributions," Journal of the Royal Statistical Society, Ser. C, 32, 267-275. [713]
    • (1983) Journal of the Royal Statistical Society, Ser. C , vol.32 , pp. 267-275
    • Chang, W.-C.1
  • 3
    • 33645579248 scopus 로고    scopus 로고
    • Hybrid hierarchical clustering with applications to microarray data
    • [716]
    • Chipman, H., and Tibshirani, R. (2005), "Hybrid Hierarchical Clustering With Applications to Microarray Data," Biostatistics, 7, 286-301. [716]
    • (2005) Biostatistics , vol.7 , pp. 286-301
    • Chipman, H.1    Tibshirani, R.2
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • (with discussion), [714]
    • Dempster, A., Laird, N., and Rubin, D. (1977), "Maximum Likelihood From Incomplete Data via the EM Algorithm" (with discussion), Journal of the Royal Statistical Society, Ser. B, 39, 1-38. [714]
    • (1977) Journal of the Royal Statistical Society, Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 6
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • [715]
    • Fan, J., and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties," Journal of the American Statistical Association, 96, 1348-1360. [715]
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 7
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • [714]
    • Fraley, C., and Raftery, A. (2002), "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, 97, 611-631. [714]
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 9
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • [713,717]
    • Ghosh, D., and Chinnaiyan, A.M. (2002), "MixtureModelling of Gene Expression Data From Microarray Experiments," Bioinformatics, 18, 275-286. [713,717]
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 10
    • 79959524146 scopus 로고    scopus 로고
    • A haplotype map of the human genome
    • International HapMap Consortium, [723]
    • International HapMap Consortium (2005), "A Haplotype Map of the Human Genome," Nature, 437, 1299-1320. [723]
    • (2005) Nature , vol.437 , pp. 1299-1320
  • 11
    • 35348983887 scopus 로고    scopus 로고
    • A second generation human haplotype map of over 3.1 million SNPs
    • [723]
    • -(2007), "A Second Generation Human Haplotype Map of Over 3.1 Million SNPs," Nature, 449, 851-861. [723]
    • (2007) Nature , vol.449 , pp. 851-861
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non- negative matrix factorization
    • [713]
    • Lee, D. D., and Seung, H. S. (1999), "Learning the Parts of Objects by Non- Negative Matrix Factorization," Nature, 401, 788. [713]
    • (1999) Nature , vol.401 , pp. 788
    • Lee, D.D.1    Seung, H.S.2
  • 14
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Vancouver, BC, Canada. [713]
    • -(2001), "Algorithms for Non-Negative Matrix Factorization," in Advances in Neural Information Processing Systems (NIPS 2001), Vancouver, BC, Canada. [713]
    • (2001) Advances in Neural Information Processing Systems (NIPS 2001)
  • 15
    • 15044339834 scopus 로고    scopus 로고
    • Bayesian Statistics 7, eds. J.M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Clarendon Press, [713,717]
    • Liu, J. S., Zhang, J. L., Palumbo, M. J., and Lawrence, C. E. (2003), "Bayesian Clustering With Variable and Transformation Selections," in Bayesian Statistics 7, eds. J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Clarendon Press, pp. 249-275. [713,717]
    • (2003) Bayesian Clustering With Variable and Transformation Selections , pp. 249-275
    • Liu, J.S.1    Zhang, J.L.2    Palumbo, M.J.3    Lawrence, C.E.4
  • 16
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • [715]
    • Lv, J., and Fan, Y. (2009), "A Unified Approach to Model Selection and Sparse Recovery Using Regularized Least Squares," The Annals of Statistics, 37, 3498-3528. [715]
    • (2009) The Annals of Statistics , vol.37 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 17
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • eds. L. M. LeCamand J. Neyman, Berkeley, CA: University of California Press, [716]
    • MacQueen, J. (1967), "Some Methods for Classification and Analysis of Multivariate Observations," in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds. L. M. LeCamand J. Neyman, Berkeley, CA: University of California Press, pp. 281-297. [716]
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.1
  • 18
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with gaussian mixture models
    • [714]
    • Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009), "Variable Selection for Clustering With Gaussian Mixture Models," Biometrics, 65, 701- 709. [714]
    • (2009) Biometrics , vol.65 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 20
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • [714]
    • McLachlan, G. J., Bean, R. W., and Peel, D. (2002), "A Mixture Model-Based Approach to the Clustering of Microarray Expression Data," Bioinformatics, 18, 413-422. [714]
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 22
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • [716]
    • Milligan, G. W., and Cooper, M. C. (1985), "An Examination of Procedures for Determining the Number of Clusters in a Data Set," Psychometrika, 50, 159-179. [716]
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 23
    • 45849097530 scopus 로고    scopus 로고
    • Complementary hierarchical clustering
    • [720]
    • Nowak, G., and Tibshirani, R. (2008), "Complementary Hierarchical Clustering," Biostatistics, 9 (3), 467-483. [720]
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 467-483
    • Nowak, G.1    Tibshirani, R.2
  • 24
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • [714,717,718]
    • Pan, W., and Shen, X. (2007), "Penalized Model-Based Clustering With Application to Variable Selection," Journal of Machine Learning Research, 8, 1145-1164. [714,717,718]
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 26
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • [725]
    • Price, A. L., Patterson, N. J., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006), "Principal Components Analysis Corrects for Stratification in Genome-Wide Association Studies," Nature Genetics, 38, 904-909. [725]
    • (2006) Nature Genetics , vol.38 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Weinblatt, M.E.3    Shadick, N.A.4    Reich, D.5
  • 28
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • [717]
    • Rand,W. M. (1971), "Objective Criteria for the Evaluation of Clustering Methods," Journal of the American Statistical Association, 66, 846-850. [717]
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 29
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset: An information-theoretic approach
    • [716]
    • Sugar, C. A., and James, G. M. (2003), "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, 98, 750-763. [716]
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 30
    • 34347219009 scopus 로고    scopus 로고
    • Metagene projection for cross-platform, cross- species characterization of global transcriptional states
    • [713,717]
    • Tamayo, P., Scanfeld, D., Ebert, B. L., Gillette, M. A., Roberts, C. W. M., and Mesirov, J. P. (2007), "Metagene Projection for Cross-Platform, Cross- Species Characterization of Global Transcriptional States," PNAS, 104, 5959-5964. [713,717]
    • (2007) PNAS , vol.104 , pp. 5959-5964
    • Tamayo, P.1    Scanfeld, D.2    Ebert, B.L.3    Gillette, M.A.4    Roberts, C.W.M.5    Mesirov, J.P.6
  • 34
    • 43749096785 scopus 로고    scopus 로고
    • Variable selection for model-based high- dimensional clustering and its application to microarray data
    • [714]
    • Wang, S., and Zhu, J. (2008), "Variable Selection for Model-Based High- Dimensional Clustering and Its Application to Microarray Data," Biometrics, 64, 440-448. [714]
    • (2008) Biometrics , vol.64 , pp. 440-448
    • Wang, S.1    Zhu, J.2
  • 35
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • [715,719,721]
    • Witten, D., Tibshirani, R., and Hastie, T. (2009), "A Penalized Matrix Decomposition, With Applications to Sparse Principal Components and Canonical Correlation Analysis," Biostatistics, 10 (3), 515-534. [715,719,721]
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.1    Tibshirani, R.2    Hastie, T.3
  • 36
    • 70449374222 scopus 로고    scopus 로고
    • Penalized model-based clusteringwith cluster-specific diagonal covariance matrices and grouped variables
    • [714]
    • Xie, B., Pan,W., and Shen, X. (2008), "Penalized Model-Based ClusteringWith Cluster-Specific Diagonal Covariance Matrices and Grouped Variables," Electronic Journal of Statistics, 2, 168-212. [714]
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 168-212
    • Xie, B.1    Pan, W.2    Shen, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.