메뉴 건너뛰기




Volumn 93, Issue 6, 2013, Pages 1408-1425

Sparse representation and learning in visual recognition: Theory and applications

Author keywords

Sparse representation; Sparse subspace learning; Sparsity Induced Similarity; Structured sparsity; Visual recognition

Indexed keywords

SPARSE REPRESENTATION; SPARSITY INDUCED SIMILARITY; STRUCTURED SPARSITIES; SUBSPACE LEARNING; VISUAL RECOGNITION;

EID: 84875252662     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2012.09.011     Document Type: Article
Times cited : (151)

References (195)
  • 3
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections universal encoding strategies?
    • E. Candes, and T. Tao Near-optimal signal recovery from random projections universal encoding strategies? IEEE Transactions on Information Theory 52 12 2006 5406 5425
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.1    Tao, T.2
  • 7
    • 84946077141 scopus 로고    scopus 로고
    • Sparse Representation for Signal Classification
    • K. Huang, S. Aviyente, Sparse Representation for Signal Classification, in: NIPS, 2006.
    • (2006) NIPS
    • Huang, K.1    Aviyente, S.2
  • 8
    • 80052873889 scopus 로고    scopus 로고
    • P2C2: Programmable Pixel Compressive Camera for High Speed Imaging
    • D. Reddy, A. Veeraraghavan, R. Chellappa, P2C2: Programmable Pixel Compressive Camera for High Speed Imaging, in: CVPR, 2011.
    • (2011) CVPR
    • Reddy, D.1    Veeraraghavan, A.2    Chellappa, R.3
  • 9
    • 78149352245 scopus 로고    scopus 로고
    • Hybrid compressive sampling via a new total variation TVL1
    • X. Shu, N. Ahuja, Hybrid compressive sampling via a new total variation TVL1, in: ECCV, vol. 6316, 2010.
    • (2010) ECCV , vol.6316
    • Shu, X.1    Ahuja, N.2
  • 10
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net a unified framework for sparse dimension reduction
    • T. Zhou, D. Tao, and X. Wu Manifold elastic net a unified framework for sparse dimension reduction Data Mining and Knowledge Discovery 22 3 2011 340 371
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.3 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 13
    • 78149237605 scopus 로고    scopus 로고
    • Tree-structured compressive sensing with variational Bayesian analysis
    • L. He, H. Chen, and L. Carin Tree-structured compressive sensing with variational Bayesian analysis IEEE Signal Processing Letters 17 3 2010 233 236
    • (2010) IEEE Signal Processing Letters , vol.17 , Issue.3 , pp. 233-236
    • He, L.1    Chen, H.2    Carin, L.3
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 6755 1999 788 791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 0000473139 scopus 로고    scopus 로고
    • A sparse representation for function approximation
    • T. Poggio, and F. Girosi A sparse representation for function approximation Neural Computation 10 1998 1445 1454
    • (1998) Neural Computation , vol.10 , pp. 1445-1454
    • Poggio, T.1    Girosi, F.2
  • 21
    • 77955991166 scopus 로고    scopus 로고
    • Sparsity model for robust optical flow estimation at motion discontinuities
    • X. Shen, Y. Wu, Sparsity model for robust optical flow estimation at motion discontinuities, in: CVPR, 2010.
    • (2010) CVPR
    • Shen, X.1    Wu, Y.2
  • 22
    • 84863070418 scopus 로고    scopus 로고
    • Optical flow estimation using learned sparse model
    • K. Jia, X. Wang, X. Tang, Optical flow estimation using learned sparse model, in: ICCV, 2011.
    • (2011) ICCV
    • Jia, K.1    Wang, X.2    Tang, X.3
  • 23
    • 77955997106 scopus 로고    scopus 로고
    • Estimation of image bias field with sparsity constraints
    • Y. Zheng, J. Gee, Estimation of image bias field with sparsity constraints, in: CVPR, 2010.
    • (2010) CVPR
    • Zheng, Y.1    Gee, J.2
  • 24
    • 84863012902 scopus 로고    scopus 로고
    • Centralized sparse representation for image restoration
    • W. Dong, L. Zhang, G. Shi, Centralized sparse representation for image restoration, in: ICCV, 2011.
    • (2011) ICCV
    • Dong, W.1    Zhang, L.2    Shi, G.3
  • 25
    • 70450203952 scopus 로고    scopus 로고
    • Blind motion deblurring from a single image using sparse approximation
    • J.-F. Cai, H. Ji, C. Liu, Z. Shen, Blind motion deblurring from a single image using sparse approximation, in: CVPR, 2009.
    • (2009) CVPR
    • Cai, J.-F.1    Ji, H.2    Liu, C.3    Shen, Z.4
  • 27
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • E. Elhamifar, R. Vidal, Sparse subspace clustering, in: CVPR, 2009.
    • (2009) CVPR
    • Elhamifar, E.1    Vidal, R.2
  • 28
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 29
    • 77953177416 scopus 로고    scopus 로고
    • Sparsity induced similarity measure for label propagation
    • H. Cheng, Z. Liu, J. Yang, Sparsity induced similarity measure for label propagation, in: ICCV, 2009.
    • (2009) ICCV
    • Cheng, H.1    Liu, Z.2    Yang, J.3
  • 30
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. Bruckstein, D. Donoho, and M. Elad From sparse solutions of systems of equations to sparse modeling of signals and images SIAM Review 51 1 2009 34 81
    • (2009) SIAM Review , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 31
  • 32
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution
    • D.L. Donoho For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution Communications on Pure and Applied Mathematics 59 6 2006 797 829
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 33
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • 9C10
    • E.J. Candes The restricted isometry property and its implications for compressed sensing Comptes Rendus Mathematique 346 9C10 2008 589 592
    • (2008) Comptes Rendus Mathematique , vol.346 , pp. 589-592
    • Candes, E.J.1
  • 35
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles exact signal reconstruction from highly incomplete frequency information
    • E. Candes, J. Romberg, and T. Tao Robust uncertainty principles exact signal reconstruction from highly incomplete frequency information IEEE Transactions on Information Theory 52 2 2006 489 509
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.1    Romberg, J.2    Tao, T.3
  • 37
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems
    • M. Figueiredo, R. Nowak, and S. Wright Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems IEEE Journal of Selected Topics in Signal Processing 1 4 2007 586 597
    • (2007) IEEE Journal of Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 38
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. De Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Communications on Pure and Applied Mathematics 57 11 2004 1413 1457
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 39
    • 79957484872 scopus 로고    scopus 로고
    • Backtracking-based matching pursuit method for sparse signal reconstruction
    • H. Huang, and A. Makur Backtracking-based matching pursuit method for sparse signal reconstruction IEEE Signal Processing Letters 18 7 2011 391
    • (2011) IEEE Signal Processing Letters , vol.18 , Issue.7 , pp. 391
    • Huang, H.1    Makur, A.2
  • 41
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. Tropp, and A. Gilbert Signal recovery from random measurements via orthogonal matching pursuit IEEE Transactions on Information Theory 53 12 2007 4655 4666
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 42
    • 77949732443 scopus 로고    scopus 로고
    • Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit
    • D. Needell, and R. Vershynin Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit IEEE Journal of Selected Topics in Signal Processing 4 2 2010 310 316
    • (2010) IEEE Journal of Selected Topics in Signal Processing , vol.4 , Issue.2 , pp. 310-316
    • Needell, D.1    Vershynin, R.2
  • 43
    • 64749092799 scopus 로고    scopus 로고
    • Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit
    • D. Needell, and R. Vershynin Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit Foundations of Computational Mathematics 9 3 2009 317 334
    • (2009) Foundations of Computational Mathematics , vol.9 , Issue.3 , pp. 317-334
    • Needell, D.1    Vershynin, R.2
  • 45
    • 30844452004 scopus 로고    scopus 로고
    • Improved time bounds for near-optimal sparse Fourier representations
    • A. Gilbert, S. Muthukrishnan, M. Strauss, Improved time bounds for near-optimal sparse Fourier representations, in: Proceedings of SPIE, vol. 5914, 2005.
    • (2005) Proceedings of SPIE , vol.5914
    • Gilbert, A.1    Muthukrishnan, S.2    Strauss, M.3
  • 47
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat, and Z. Zhang Matching pursuits with time-frequency dictionaries IEEE Transactions on Signal Processing 41 12 1993 3397 3415
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 48
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good algorithmic results for sparse approximation
    • J. Tropp Greed is good algorithmic results for sparse approximation IEEE Transactions on Information Theory 50 10 2004 2231 2242
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.1
  • 50
    • 0028392323 scopus 로고
    • Signal representation using adaptive normalized Gaussian functions
    • S. Qian, and D. Chen Signal representation using adaptive normalized Gaussian functions Signal Processing 36 1 1994 1 11
    • (1994) Signal Processing , vol.36 , Issue.1 , pp. 1-11
    • Qian, S.1    Chen, D.2
  • 51
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell, and J.A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Applied and Computational Harmonic Analysis 26 3 2008 301 321
    • (2008) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 53
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO and its oracle properties
    • H. Zou The adaptive LASSO and its oracle properties Journal of the American Statistical Association 101 476 2006 1418 1429
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 54
    • 80052893496 scopus 로고    scopus 로고
    • Generalized group sparse classifiers with application in fMRI brain decoding
    • B. Ng, R. Abugharbieh, Generalized group sparse classifiers with application in fMRI brain decoding, in: CVPR, 2011.
    • (2011) CVPR
    • Ng, B.1    Abugharbieh, R.2
  • 56
    • 80052884525 scopus 로고    scopus 로고
    • Intrinsic images decomposition using a local and global sparse representation of reflectance
    • L. Shen, C. Yeo, Intrinsic images decomposition using a local and global sparse representation of reflectance, in: CVPR, 2011.
    • (2011) CVPR
    • Shen, L.1    Yeo, C.2
  • 57
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group LASSO and multiple kernel learning
    • F. Bach Consistency of the group LASSO and multiple kernel learning Journal of Machine Learning Research 9 2008 1179 1225
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 58
    • 77955997530 scopus 로고    scopus 로고
    • The Benefit of Group Sparsity
    • Rutgers University
    • J. Huang, T. Zhang, The Benefit of Group Sparsity, Technical Report, Rutgers University, 2009.
    • (2009) Technical Report
    • Huang, J.1    Zhang, T.2
  • 59
    • 68249141421 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • M. Stojnic, F. Parvaresh, and B. Hassibi On the reconstruction of block-sparse signals with an optimal number of measurements IEEE Transactions on Signal Processing 57 8 2009 3075 3085
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.8 , pp. 3075-3085
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 61
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms
    • A. Rakotomamonjy Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms Signal Processing 91 7 2011 1505 1526
    • (2011) Signal Processing , vol.91 , Issue.7 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 62
    • 84872577379 scopus 로고    scopus 로고
    • Sparse and structured decomposition of audio signals in overcomplete spaces
    • L. Daudet, Sparse and structured decomposition of audio signals in overcomplete spaces, in: International Conference on Digital Audio Effects, 2004.
    • (2004) International Conference on Digital Audio Effects
    • Daudet, L.1
  • 63
    • 70349192993 scopus 로고    scopus 로고
    • Classification via group sparsity promoting regularization
    • A. Majumdar, R. Ward, Classification via group sparsity promoting regularization, in: ICASSP, 2009.
    • (2009) ICASSP
    • Majumdar, A.1    Ward, R.2
  • 64
    • 77953220298 scopus 로고    scopus 로고
    • Learning with dynamic group sparsity
    • J. Huang, X. Huang, D. Metaxas, Learning with dynamic group sparsity, in: ICCV, 2009.
    • (2009) ICCV
    • Huang, J.1    Huang, X.2    Metaxas, D.3
  • 66
    • 80052904929 scopus 로고    scopus 로고
    • Tag localization with spatial correlations and joint group sparsity
    • Y. Yang, Y. Yang, Z. Huang, H.T. Shen, F. Nie, Tag localization with spatial correlations and joint group sparsity, in: CVPR, 2011.
    • (2011) CVPR
    • Yang, Y.1    Yang, Y.2    Huang, Z.3    Shen, H.T.4    Nie, F.5
  • 67
    • 71149112556 scopus 로고    scopus 로고
    • Learning with structured sparsity
    • J. Huang, T. Zhang, D. Metaxas, Learning with structured sparsity, in: ICML, 2009.
    • (2009) ICML
    • Huang, J.1    Zhang, T.2    Metaxas, D.3
  • 69
    • 80052897165 scopus 로고    scopus 로고
    • Robust classification using structured sparse representation
    • E. Elhamifar, R. Vidal, Robust classification using structured sparse representation, in: CVPR, 2011.
    • (2011) CVPR
    • Elhamifar, E.1    Vidal, R.2
  • 70
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding, in: NIPS, 2009.
    • (2009) NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3
  • 71
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323
    • Roweis, S.1    Saul, L.2
  • 72
    • 84930230785 scopus 로고    scopus 로고
    • High dimensional nonlinear learning using local coordinate coding
    • K. Yu, T. Zhang, High dimensional nonlinear learning using local coordinate coding, in: ICML, 2009.
    • (2009) ICML
    • Yu, K.1    Zhang, T.2
  • 73
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in: CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 74
    • 78149343905 scopus 로고    scopus 로고
    • Kernel sparse representation for image classification and face recognition
    • S. Gao, I. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: ECCV, vol. 6314, 2010.
    • (2010) ECCV , vol.6314
    • Gao, S.1    Tsang, I.2    Chia, L.-T.3
  • 77
    • 56449105690 scopus 로고    scopus 로고
    • Multi-task compressive sensing with Dirichlet process priors
    • Y. Qi, D. Liu, D. Dunson, L. Carin, Multi-task compressive sensing with Dirichlet process priors, in: ICML, 2008.
    • (2008) ICML
    • Qi, Y.1    Liu, D.2    Dunson, D.3    Carin, L.4
  • 78
    • 69349089478 scopus 로고    scopus 로고
    • Exploiting structure in wavelet-based Bayesian compressive sensing
    • L. He, and L. Carin Exploiting structure in wavelet-based Bayesian compressive sensing IEEE Transactions on Signal Processing 57 9 2009 3488 3497
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.9 , pp. 3488-3497
    • He, L.1    Carin, L.2
  • 79
    • 84863386014 scopus 로고    scopus 로고
    • Non-parametric Bayesian dictionary learning for sparse image representations
    • M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, L. Carin, Non-parametric Bayesian dictionary learning for sparse image representations, in: NIPS, 2009.
    • (2009) NIPS
    • Zhou, M.1    Chen, H.2    Paisley, J.3    Ren, L.4    Sapiro, G.5    Carin, L.6
  • 80
    • 78649303140 scopus 로고    scopus 로고
    • Compressive sensing on manifolds using a nonparametric mixture of factor analyzers algorithm and performance bounds
    • M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin Compressive sensing on manifolds using a nonparametric mixture of factor analyzers algorithm and performance bounds IEEE Transactions on Signal Processing 58 12 2010 6140 6155
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.12 , pp. 6140-6155
    • Chen, M.1    Silva, J.2    Paisley, J.3    Wang, C.4    Dunson, D.5    Carin, L.6
  • 83
    • 78049388384 scopus 로고    scopus 로고
    • Clustering disjoint subspaces via sparse representation
    • E. Elhamifar, R. Vidal, Clustering disjoint subspaces via sparse representation, in: ICASSP, 2010.
    • (2010) ICASSP
    • Elhamifar, E.1    Vidal, R.2
  • 84
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in: ICML, 2010.
    • (2010) ICML
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 85
    • 80052870941 scopus 로고    scopus 로고
    • Graph connectivity in sparse subspace clustering
    • B. Nasihatkon, R. Hartley, Graph connectivity in sparse subspace clustering, in: CVPR, 2011.
    • (2011) CVPR
    • Nasihatkon, B.1    Hartley, R.2
  • 86
    • 84863034396 scopus 로고    scopus 로고
    • A linear subspace learning approach via sparse coding
    • L. Zhang, P. Zhu, Q. Hu, D. Zhang, A linear subspace learning approach via sparse coding, in: ICCV, 2011.
    • (2011) ICCV
    • Zhang, L.1    Zhu, P.2    Hu, Q.3    Zhang, D.4
  • 88
    • 77956005941 scopus 로고    scopus 로고
    • Sparse representation using nonnegative curds and whey
    • Y. Liu, F. Wu, Z. Zhang, Y. Zhuang, S. Yan, Sparse representation using nonnegative curds and whey, in: CVPR, 2010.
    • (2010) CVPR
    • Liu, Y.1    Wu, F.2    Zhang, Z.3    Zhuang, Y.4    Yan, S.5
  • 89
    • 78049378315 scopus 로고    scopus 로고
    • A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images
    • Y. Gao, A. Choudhary, G. Hua, A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images, in: ICASSP, 2010.
    • (2010) ICASSP
    • Gao, Y.1    Choudhary, A.2    Hua, G.3
  • 90
    • 80052892322 scopus 로고    scopus 로고
    • Image classification by non-negative sparse coding, low-rank and sparse decomposition
    • C. Zhang, J. Liu, Q. Tian, C. Xu, H. Lu, S. Ma, Image classification by non-negative sparse coding, low-rank and sparse decomposition, in: CVPR, 2011.
    • (2011) CVPR
    • Zhang, C.1    Liu, J.2    Tian, Q.3    Xu, C.4    Lu, H.5    Ma, S.6
  • 91
    • 77952712716 scopus 로고    scopus 로고
    • Sparse representation of cast shadows via L1-regularized least squares
    • X. Mei, H. Ling, D. Jacobs, Sparse representation of cast shadows via L1-regularized least squares, in: ICCV, 2009.
    • (2009) ICCV
    • Mei, X.1    Ling, H.2    Jacobs, D.3
  • 92
    • 80052892989 scopus 로고    scopus 로고
    • Nonnegative sparse coding for discriminative semi-supervised learning
    • R. He, W.-S. Zheng, B.-G. Hu, X.-W. Kong, Nonnegative sparse coding for discriminative semi-supervised learning, in: CVPR, 2011.
    • (2011) CVPR
    • He, R.1    Zheng, W.-S.2    Hu, B.-G.3    Kong, X.-W.4
  • 95
    • 0001033261 scopus 로고
    • Robust regression asymptotics, conjectures and Monte Carlo
    • P. Huber Robust regression asymptotics, conjectures and Monte Carlo Annals of Statistics 1 5 1973 799 821
    • (1973) Annals of Statistics , vol.1 , Issue.5 , pp. 799-821
    • Huber, P.1
  • 96
    • 80052913149 scopus 로고    scopus 로고
    • Robust sparse coding for face recognition
    • M. Yang, L. Zhang, J. Yang, D. Zhang, Robust sparse coding for face recognition, in: CVPR, 2011.
    • (2011) CVPR
    • Yang, M.1    Zhang, L.2    Yang, J.3    Zhang, D.4
  • 97
    • 78149335980 scopus 로고    scopus 로고
    • Robust and fast collaborative tracking with two stage sparse optimization
    • B. Liu, L. Yang, J. Huang, P. Meer, L. Gong, C. Kulikowski, Robust and fast collaborative tracking with two stage sparse optimization, in: ECCV, vol. 6314, 2010.
    • (2010) ECCV , vol.6314
    • Liu, B.1    Yang, L.2    Huang, J.3    Meer, P.4    Gong, L.5    Kulikowski, C.6
  • 98
    • 80052879604 scopus 로고    scopus 로고
    • Robust tracking using local sparse appearance model and K-selection
    • B. Liu, J. Huang, L. Yang, C. Kulikowski, Robust tracking using local sparse appearance model and K-selection, in: CVPR, 2011.
    • (2011) CVPR
    • Liu, B.1    Huang, J.2    Yang, L.3    Kulikowski, C.4
  • 99
    • 78149327980 scopus 로고    scopus 로고
    • Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary
    • M. Yang, L. Zhang, Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary, in: ECCV, vol. 6316, 2010.
    • (2010) ECCV , vol.6316
    • Yang, M.1    Zhang, L.2
  • 100
    • 84863011935 scopus 로고    scopus 로고
    • Fisher discrimination dictionary learning for sparse representation
    • M. Yang, L. Zhang, X. Feng, D. Zhang, Fisher discrimination dictionary learning for sparse representation, in: ICCV, 2011.
    • (2011) ICCV
    • Yang, M.1    Zhang, L.2    Feng, X.3    Zhang, D.4
  • 101
    • 84861611636 scopus 로고    scopus 로고
    • Fast sparse representation model for L1-norm minimisation problem
    • C. Peng, and J. Li Fast sparse representation model for L1-norm minimisation problem Electronics Letters 48 3 2012 162 164
    • (2012) Electronics Letters , vol.48 , Issue.3 , pp. 162-164
    • Peng, C.1    Li, J.2
  • 103
    • 70450203896 scopus 로고    scopus 로고
    • Efficiently training a better visual detector with sparse eigenvectors
    • S. Paisitkriangkrai, C. Shen, J. Zhang, Efficiently training a better visual detector with sparse eigenvectors, in: CVPR, 2009.
    • (2009) CVPR
    • Paisitkriangkrai, S.1    Shen, C.2    Zhang, J.3
  • 104
    • 77955985602 scopus 로고    scopus 로고
    • Fast sparse representation with prototypes
    • J.-B. Huang, M.-H. Yang, Fast sparse representation with prototypes, in: CVPR, 2010.
    • (2010) CVPR
    • Huang, J.-B.1    Yang, M.-H.2
  • 105
    • 84856647878 scopus 로고    scopus 로고
    • Informative feature selection for object recognition via sparse PCA
    • N. Naikal, A.Y. Yang, S. Shankar Sastry, Informative feature selection for object recognition via sparse PCA, in: ICCV, 2011.
    • (2011) ICCV
    • Naikal, N.1    Yang, A.Y.2    Shankar Sastry, S.3
  • 106
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • K. Sohn, D.Y. Jung, H. Lee, A.O. Hero, Efficient learning of sparse, distributed, convolutional feature representations for object recognition, in: ICCV, 2011.
    • (2011) ICCV
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero, A.O.4
  • 107
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR, vol. 1, 2005.
    • (2005) CVPR , vol.1
    • Dalal, N.1    Triggs, B.2
  • 108
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 109
  • 112
    • 77955995785 scopus 로고    scopus 로고
    • Supervised translation-invariant sparse coding
    • J. Yang, K. Yu, T. Huang, Supervised translation-invariant sparse coding, in: CVPR, 2010.
    • (2010) CVPR
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 113
    • 80052910212 scopus 로고    scopus 로고
    • Blind deconvolution using a normalized sparsity measure
    • D. Krishnan, T. Tay, R. Fergus, Blind deconvolution using a normalized sparsity measure, in: CVPR, 2011.
    • (2011) CVPR
    • Krishnan, D.1    Tay, T.2    Fergus, R.3
  • 114
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, J. Lafferty, Learning image representations from the pixel level via hierarchical sparse coding, in: CVPR, 2011.
    • (2011) CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 115
    • 77956006199 scopus 로고    scopus 로고
    • Learning shift-invariant sparse representation of actions
    • Y. Li, C. Fermuller, Y. Aloimonos, H. Ji, Learning shift-invariant sparse representation of actions, in: CVPR, 2010.
    • (2010) CVPR
    • Li, Y.1    Fermuller, C.2    Aloimonos, Y.3    Ji, H.4
  • 116
    • 85018540432 scopus 로고    scopus 로고
    • ASIFT a new framework for fully affine invariant image comparison
    • J. Morel, and G. Yu ASIFT a new framework for fully affine invariant image comparison SIAM Journal on Imaging Sciences 2 2 2009 438 469
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.2 , pp. 438-469
    • Morel, J.1    Yu, G.2
  • 117
    • 80052875476 scopus 로고    scopus 로고
    • Discriminative affine sparse codes for image classification
    • N. Kulkarni, B. Li, Discriminative affine sparse codes for image classification, in: CVPR, 2011.
    • (2011) CVPR
    • Kulkarni, N.1    Li, B.2
  • 118
    • 70450208136 scopus 로고    scopus 로고
    • Expression-insensitive 3D face recognition using sparse representation
    • X. Li, T. Jia, H. Zhang, Expression-insensitive 3D face recognition using sparse representation, in: CVPR, 2009.
    • (2009) CVPR
    • Li, X.1    Jia, T.2    Zhang, H.3
  • 119
    • 70450186137 scopus 로고    scopus 로고
    • A compressive sensing approach for expression-invariant face recognition
    • P. Nagesh, B. Li, A compressive sensing approach for expression-invariant face recognition, in: CVPR, 2009.
    • (2009) CVPR
    • Nagesh, P.1    Li, B.2
  • 120
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set a strategy employed by V1?
    • B. Olshausen, and D. Field Sparse coding with an overcomplete basis set a strategy employed by V1? Vision Research 37 23 1997 3311 3325
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 122
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: ICML, 2009.
    • (2009) ICML
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 123
    • 80052910914 scopus 로고    scopus 로고
    • A non-convex relaxation approach to sparse dictionary learning
    • J. Shi, X. Ren, G. Dai, J. Wang, Z. Zhang, A non-convex relaxation approach to sparse dictionary learning, in: CVPR, 2011.
    • (2011) CVPR
    • Shi, J.1    Ren, X.2    Dai, G.3    Wang, J.4    Zhang, Z.5
  • 124
    • 80052872021 scopus 로고    scopus 로고
    • Sparse reconstruction cost for abnormal event detection
    • Y. Cong, J. Yuan, J. Liu, Sparse reconstruction cost for abnormal event detection, in: CVPR, 2011.
    • (2011) CVPR
    • Cong, Y.1    Yuan, J.2    Liu, J.3
  • 125
    • 84863062028 scopus 로고    scopus 로고
    • Learning component-level sparse representation using histogram information for image classification
    • C.-K. Chiang, C.-H. Duan, S.-H. Lai, S.-F. Chang, Learning component-level sparse representation using histogram information for image classification, in: ICCV, 2011.
    • (2011) ICCV
    • Chiang, C.-K.1    Duan, C.-H.2    Lai, S.-H.3    Chang, S.-F.4
  • 126
    • 80052872689 scopus 로고    scopus 로고
    • Online detection of unusual events in videos via dynamic sparse coding
    • B. Zhao, L. Fei-Fei, E. Xing, Online detection of unusual events in videos via dynamic sparse coding, in: CVPR, 2011.
    • (2011) CVPR
    • Zhao, B.1    Fei-Fei, L.2    Xing, E.3
  • 127
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • I. Ramirez, P. Sprechmann, G. Sapiro, Classification and clustering via dictionary learning with structured incoherence and shared features, in: CVPR, 2010.
    • (2010) CVPR
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 128
    • 80052901219 scopus 로고    scopus 로고
    • Learning a discriminative dictionary for sparse coding via label consistent K-SVD
    • Z. Jiang, Z. Lin, L. Davis, Learning a discriminative dictionary for sparse coding via label consistent K-SVD, in: CVPR, 2011.
    • (2011) CVPR
    • Jiang, Z.1    Lin, Z.2    Davis, L.3
  • 129
    • 84866666336 scopus 로고    scopus 로고
    • Submodular dictionary learning for sparse coding
    • Z. Jiang, G. Zhang, L.S. Davis, Submodular dictionary learning for sparse coding, in: CVPR, 2012.
    • (2012) CVPR
    • Jiang, Z.1    Zhang, G.2    Davis, L.S.3
  • 130
    • 51949086512 scopus 로고    scopus 로고
    • Joint learning and dictionary construction for pattern recognition
    • D. Pham, S. Venkatesh, Joint learning and dictionary construction for pattern recognition, in: CVPR, 2008.
    • (2008) CVPR
    • Pham, D.1    Venkatesh, S.2
  • 132
    • 80052896677 scopus 로고    scopus 로고
    • Sparsity-based image denoising via dictionary learning and structural clustering
    • W. Dong, X. Li, L. Zhang, G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering, in: CVPR, 2011.
    • (2011) CVPR
    • Dong, W.1    Li, X.2    Zhang, L.3    Shi, G.4
  • 133
    • 84866658673 scopus 로고    scopus 로고
    • Bilevel sparse coding for coupled feature spaces
    • J. Yang, Z. Wang, Z. Lin, X. Shu, T. Huang, Bilevel sparse coding for coupled feature spaces, in: CVPR, 2012.
    • (2012) CVPR
    • Yang, J.1    Wang, Z.2    Lin, Z.3    Shu, X.4    Huang, T.5
  • 134
    • 84866678444 scopus 로고    scopus 로고
    • Robust visual tracking via multi-task sparse learning
    • T. Zhang, B. Ghanem, S. Liu, N. Ahuja, Robust visual tracking via multi-task sparse learning, in: CVPR, 2012.
    • (2012) CVPR
    • Zhang, T.1    Ghanem, B.2    Liu, S.3    Ahuja, N.4
  • 135
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic, A. Zisserman, Video Google: a text retrieval approach to object matching in videos, in: ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 136
    • 33745934686 scopus 로고    scopus 로고
    • Creating efficient codebooks for visual recognition
    • F. Jurie, B. Triggs, Creating efficient codebooks for visual recognition, in: ICCV, vol. 1, 2005.
    • (2005) ICCV , vol.1
    • Jurie, F.1    Triggs, B.2
  • 137
    • 59349100009 scopus 로고    scopus 로고
    • Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval
    • Y. Jiang, and C. Ngo Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval Computer Vision and Image Understanding 113 3 2009 405 414
    • (2009) Computer Vision and Image Understanding , vol.113 , Issue.3 , pp. 405-414
    • Jiang, Y.1    Ngo, C.2
  • 139
    • 84856660881 scopus 로고    scopus 로고
    • Sparse dictionary-based representation and recognition of action attributes
    • Q. Qiu, Z. Jiang, R. Chellappa, Sparse dictionary-based representation and recognition of action attributes, in: ICCV, 2011.
    • (2011) ICCV
    • Qiu, Q.1    Jiang, Z.2    Chellappa, R.3
  • 140
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • D. Lowe Similarity metric learning for a variable-kernel classifier Neural Computation 7 1 1995 72 85
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.1
  • 142
    • 78149489288 scopus 로고    scopus 로고
    • Visual tracking using sparsity induced similarity
    • H. Liu, F. Sun, Visual tracking using sparsity induced similarity, in: ICPR, 2010.
    • (2010) ICPR
    • Liu, H.1    Sun, F.2
  • 143
    • 78149341724 scopus 로고    scopus 로고
    • Image categorization using directed graphs
    • H. Wang, H. Huang, C. Ding, Image categorization using directed graphs, in: ECCV, vol. 6313, 2010.
    • (2010) ECCV , vol.6313
    • Wang, H.1    Huang, H.2    Ding, C.3
  • 144
    • 33845572523 scopus 로고    scopus 로고
    • Beyond Bags of Features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, J. Ponce, Beyond Bags of Features: Spatial pyramid matching for recognizing natural scene categories, in: CVPR, vol. 2, 2006.
    • (2006) CVPR , vol.2
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 145
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely - Laplacian sparse coding for image classification
    • S. Gao, I. Tsang, L.-T. Chia, P. Zhao, Local features are not lonely - Laplacian sparse coding for image classification, in: CVPR, 2010.
    • (2010) CVPR
    • Gao, S.1    Tsang, I.2    Chia, L.-T.3    Zhao, P.4
  • 146
    • 78149477806 scopus 로고    scopus 로고
    • Three-layer spatial sparse coding for image classification
    • D. Dai, W. Yang, T. Wu, Three-layer spatial sparse coding for image classification, in: ICPR, 2010.
    • (2010) ICPR
    • Dai, D.1    Yang, W.2    Wu, T.3
  • 147
    • 77955986472 scopus 로고    scopus 로고
    • Visual classification with multi-task joint sparse representation
    • X.-T. Yuan, S. Yan, Visual classification with multi-task joint sparse representation, in: CVPR, 2010.
    • (2010) CVPR
    • Yuan, X.-T.1    Yan, S.2
  • 148
    • 80052898718 scopus 로고    scopus 로고
    • Multi-layer group sparse coding - For concurrent image classification and annotation
    • S. Gao, L.-T. Chia, I.-H. Tsang, Multi-layer group sparse coding - for concurrent image classification and annotation, in: CVPR, 2011.
    • (2011) CVPR
    • Gao, S.1    Chia, L.-T.2    Tsang, I.-H.3
  • 149
    • 84863041075 scopus 로고    scopus 로고
    • Close the loop: Joint blind image restoration and recognition with sparse representation prior
    • H. Zhang, J. Yang, Y. Zhang, N.M. Nasrabadi, T.S. Huang, Close the loop: joint blind image restoration and recognition with sparse representation prior, in: ICCV, 2011.
    • (2011) ICCV
    • Zhang, H.1    Yang, J.2    Zhang, Y.3    Nasrabadi, N.M.4    Huang, T.S.5
  • 150
    • 78149308464 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, T. Huang, Efficient highly over-complete sparse coding using a mixture model, in: ECCV, vol. 6315, 2010.
    • (2010) ECCV , vol.6315
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 151
    • 84863020215 scopus 로고    scopus 로고
    • Learning a mixture of sparse distance metrics for classification and dimensionality reduction
    • Y. Hong, Q. Li, J. Jiang, Z. Tu, Learning a mixture of sparse distance metrics for classification and dimensionality reduction, in: ICCV, 2011.
    • (2011) ICCV
    • Hong, Y.1    Li, Q.2    Jiang, J.3    Tu, Z.4
  • 152
    • 80052904248 scopus 로고    scopus 로고
    • Sparse approximated nearest points for image set classification
    • Y. Hu, A. Mian, R. Owens, Sparse approximated nearest points for image set classification, in: CVPR, 2011.
    • (2011) CVPR
    • Hu, Y.1    Mian, A.2    Owens, R.3
  • 153
    • 84866696970 scopus 로고    scopus 로고
    • Sharing features in multi-class boosting via group sparsity
    • S. Paisitkriangkrai, C. Shen, A. van den Hengel, Sharing features in multi-class boosting via group sparsity, in: CVPR, 2012.
    • (2012) CVPR
    • Paisitkriangkrai, S.1    Shen, C.2    Hengel Den A.Van3
  • 154
    • 84866644207 scopus 로고    scopus 로고
    • Sparse kernel approximations for efficient classification and detection
    • A. Vedaldi, A. Zisserman, Sparse kernel approximations for efficient classification and detection, in: CVPR, 2012.
    • (2012) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 156
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 21 1999 788 791
    • (1999) Nature , vol.401 , Issue.21 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 157
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • N. Guan, D. Tao, Z. Luo, and B. Yuan Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent IEEE Transactions on Image Processing 20 7 2011 2030 2048
    • (2011) IEEE Transactions on Image Processing , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 161
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for non-negative matrix factorization
    • 10.1109/TSP.2012.2190406, in press
    • N. Guan, D. Tao, Z. Luo, B. Yuan, NeNMF: An optimal gradient method for non-negative matrix factorization, IEEE Transactions on Signal Processing, 10.1109/TSP.2012.2190406, in press.
    • IEEE Transactions on Signal Processing
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 167
    • 80053437358 scopus 로고    scopus 로고
    • GoDec: Randomized low-rank & sparse matrix decomposition in noisy case
    • T. Zhou, D. Tao, GoDec: Randomized low-rank & sparse matrix decomposition in noisy case, in: ICML, 2011.
    • (2011) ICML
    • Zhou, T.1    Tao, D.2
  • 168
    • 77956007151 scopus 로고    scopus 로고
    • RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images
    • Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images, in: CVPR, 2010.
    • (2010) CVPR
    • Peng, Y.1    Ganesh, A.2    Wright, J.3    Xu, W.4    Ma, Y.5
  • 169
    • 78149300210 scopus 로고    scopus 로고
    • Face liveness detection from a single image with sparse low rank bilinear discriminative model
    • X. Tan, Y. Li, J. Liu, L. Jiang, Face liveness detection from a single image with sparse low rank bilinear discriminative model, in: ECCV, vol. 6316, 2010.
    • (2010) ECCV , vol.6316
    • Tan, X.1    Li, Y.2    Liu, J.3    Jiang, L.4
  • 170
    • 84856675922 scopus 로고    scopus 로고
    • Imaging via three-dimensional compressive sampling (3DCS)
    • X. Shu, N. Ahuja, Imaging via three-dimensional compressive sampling (3DCS), in: ICCV, 2011.
    • (2011) ICCV
    • Shu, X.1    Ahuja, N.2
  • 171
    • 84863042818 scopus 로고    scopus 로고
    • Latent low-rank representation for subspace segmentation and feature extraction
    • G. Liu, S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, in: ICCV, 2011.
    • (2011) ICCV
    • Liu, G.1    Yan, S.2
  • 174
    • 80052913141 scopus 로고    scopus 로고
    • Sparse concept coding for visual analysis
    • D. Cai, H. Bao, X. He, Sparse concept coding for visual analysis, in: CVPR, 2011.
    • (2011) CVPR
    • Cai, D.1    Bao, H.2    He, X.3
  • 175
  • 176
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, J. Lafferty, Learning image representations from the pixel level via hierarchical sparse coding, in: CVPR, 2011.
    • (2011) CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 177
    • 70450196280 scopus 로고    scopus 로고
    • Multi-label sparse coding for automatic image annotation
    • C. Wang, S. Yan, L. Zhang, H.-J. Zhang, Multi-label sparse coding for automatic image annotation, in: CVPR, 2009.
    • (2009) CVPR
    • Wang, C.1    Yan, S.2    Zhang, L.3    Zhang, H.-J.4
  • 178
    • 80051474783 scopus 로고    scopus 로고
    • A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity
    • L. Jacques, L. Duval, C. Chaux, and G. Peyre A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity Signal Processing 91 12 2011 2699 2730
    • (2011) Signal Processing , vol.91 , Issue.12 , pp. 2699-2730
    • Jacques, L.1    Duval, L.2    Chaux, C.3    Peyre, G.4
  • 179
    • 84862779169 scopus 로고    scopus 로고
    • Image-based facial sketch-to-photo synthesis via online coupled dictionary learning
    • M. Song, C. Chen, J. Bu, and T. Sha Image-based facial sketch-to-photo synthesis via online coupled dictionary learning Information Sciences 193 0 2012 233 246
    • (2012) Information Sciences , vol.193 , Issue.0 , pp. 233-246
    • Song, M.1    Chen, C.2    Bu, J.3    Sha, T.4
  • 181
  • 182
    • 84862828849 scopus 로고    scopus 로고
    • Interactive cartoon reusing by transfer learning
    • J. Yu, J. Cheng, and D. Tao Interactive cartoon reusing by transfer learning Signal Processing 92 9 2012 2147 2158
    • (2012) Signal Processing , vol.92 , Issue.9 , pp. 2147-2158
    • Yu, J.1    Cheng, J.2    Tao, D.3
  • 183
    • 79955882134 scopus 로고    scopus 로고
    • Video denoising using shape-adaptive sparse representation over similar spatio-temporal patches
    • W. Li, J. Zhang, and Q.-H. Dai Video denoising using shape-adaptive sparse representation over similar spatio-temporal patches Signal Processing Image Communication 26 4-5 2011 250 265
    • (2011) Signal Processing Image Communication , vol.26 , Issue.45 , pp. 250-265
    • Li, W.1    Zhang, J.2    Dai, Q.-H.3
  • 184
    • 80052293466 scopus 로고    scopus 로고
    • Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning
    • Y. He, T. Gan, W. Chen, and H. Wang Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning Signal Processing 92 1 2012 139 149
    • (2012) Signal Processing , vol.92 , Issue.1 , pp. 139-149
    • He, Y.1    Gan, T.2    Chen, W.3    Wang, H.4
  • 185
  • 186
    • 80051470317 scopus 로고    scopus 로고
    • Activelets wavelets for sparse representation of hemodynamic responses
    • I. Khalidov, J. Fadili, F. Lazeyras, D.V.D. Ville, and M. Unser Activelets wavelets for sparse representation of hemodynamic responses Signal Processing 91 12 2011 2810 2821
    • (2011) Signal Processing , vol.91 , Issue.12 , pp. 2810-2821
    • Khalidov, I.1    Fadili, J.2    Lazeyras, F.3    Ville, D.V.D.4    Unser, M.5
  • 187
    • 80051474348 scopus 로고    scopus 로고
    • Augmented lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data
    • J. Aelterman, H.Q. Luong, B. Goossens, A. Pizurica, and W. Philips Augmented lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data Signal Processing 91 12 2011 2731 2742
    • (2011) Signal Processing , vol.91 , Issue.12 , pp. 2731-2742
    • Aelterman, J.1    Luong, H.Q.2    Goossens, B.3    Pizurica, A.4    Philips, W.5
  • 188
    • 77955414367 scopus 로고    scopus 로고
    • Compressed sensing of color images
    • A. Majumdar, and R.K. Ward Compressed sensing of color images Signal Processing 90 12 2010 3122 3127
    • (2010) Signal Processing , vol.90 , Issue.12 , pp. 3122-3127
    • Majumdar, A.1    Ward, R.K.2
  • 189
    • 79551502531 scopus 로고    scopus 로고
    • Image compressed sensing based on wavelet transform in contourlet domain
    • X. Bi, X.-D. Chen, Y. Zhang, and B. Liu Image compressed sensing based on wavelet transform in contourlet domain Signal Processing 91 5 2011 1085 1092
    • (2011) Signal Processing , vol.91 , Issue.5 , pp. 1085-1092
    • Bi, X.1    Chen, X.-D.2    Zhang, Y.3    Liu, B.4
  • 190
    • 84866678028 scopus 로고    scopus 로고
    • Compressive depth map acquisition using a single photon-counting detector-parametric signal processing meets sparsity
    • A. Colaco, A. Kirmani, G. Howland, J. Howell, V. K. Goyal, Compressive depth map acquisition using a single photon-counting detector-parametric signal processing meets sparsity, in: CVPR, 2012.
    • (2012) CVPR
    • Colaco, A.1    Kirmani, A.2    Howland, G.3    Howell, J.4    Goyal, V.K.5
  • 192
    • 84866660023 scopus 로고    scopus 로고
    • Non-negative low rank and sparse graph for semi-supervised learning
    • L. Zhuang, H. Gao, Z. Lin, Y. Ma, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning, in: CVPR, 2012.
    • (2012) CVPR
    • Zhuang, L.1    Gao, H.2    Lin, Z.3    Ma, Y.4    Yu, N.5
  • 193
    • 80052904079 scopus 로고    scopus 로고
    • Are sparse representations really relevant for image classification?
    • R. Rigamonti, M. Brown, V. Lepetit, Are sparse representations really relevant for image classification?, in: CVPR, 2011.
    • (2011) CVPR
    • Rigamonti, R.1    Brown, M.2    Lepetit, V.3
  • 194
    • 80052911858 scopus 로고    scopus 로고
    • Is face recognition really a compressive sensing problem?
    • Q. Shi, A. Eriksson, A. van den Hengel, C. Shen, Is face recognition really a compressive sensing problem?, in: CVPR, 2011.
    • (2011) CVPR
    • Shi, Q.1    Eriksson, A.2    Hengel Den A.Van3    Shen, C.4
  • 195
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • L. Zhang, M. Yang, X. Feng, Sparse representation or collaborative representation: which helps face recognition? in: ICCV, 2011.
    • (2011) ICCV
    • Zhang, L.1    Yang, M.2    Feng, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.