메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; FUNCTIONS; LEAST SQUARES APPROXIMATIONS; MATRIX ALGEBRA; OPTIMIZATION; SET THEORY; WORLD WIDE WEB;

EID: 27844550205     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (198)

References (50)
  • 1
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T .G Dietterich. Learning boolean concepts in the presence of many irrelevant features. AI, 69(1-2):279-305, 1991.
    • (1991) AI , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley. Selection of relevant features and examples in machine learning. A1, 97 (1-2):245-271, 1997.
    • (1997) A1 , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 4
    • 84899006163 scopus 로고    scopus 로고
    • On the complexity of learning the kernel matrix
    • O. Bousquet and D. J. L. Herrmann. On the complexity of learning the kernel matrix. In NIPS, 2003.
    • (2003) NIPS
    • Bousquet, O.1    Herrmann, D.J.L.2
  • 5
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In ICML, 1998.
    • (1998) ICML
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 7
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3):131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 9
    • 51249182622 scopus 로고
    • The eigenvalues of random symmetric matrices
    • Z. Furedi and J. Komlos. The eigenvalues of random symmetric matrices. Combinatorica, 1(3): 233-241, 1981.
    • (1981) Combinatorica , vol.1 , Issue.3 , pp. 233-241
    • Furedi, Z.1    Komlos, J.2
  • 10
  • 11
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, MD
    • G. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.1    Loan, C.F.V.2
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 0014869120 scopus 로고
    • An r-dimensional quadratic placement algorithm
    • K. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219-229, 1970.
    • (1970) Management Science , vol.17 , Issue.3 , pp. 219-229
    • Hall, K.1
  • 16
    • 0034568109 scopus 로고    scopus 로고
    • 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns
    • K. Hall, 'gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biology, 1(2):1-21, 2000.
    • (2000) Genome Biology , vol.1 , Issue.2 , pp. 1-21
    • Hall, K.1
  • 17
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 19
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Journal of Information and Computation, 132(1):1-63, 1997.
    • (1997) Journal of Information and Computation , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • D. D. Lewis. Feature selection and feature extraction for text categorization. In Speech and Natural Language Workshop, 1992.
    • (1992) Speech and Natural Language Workshop
    • Lewis, D.D.1
  • 24
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • ISSN 0018-9162. doi
    • R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105-117, 1988. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.36.
    • (1988) Computer , vol.21 , Issue.3 , pp. 105-117
    • Linsker, R.1
  • 25
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • P. M. Long and V. B. Vega. Boosting and microarray data. Machine Learning, 52:31-44, 2003.
    • (2003) Machine Learning , vol.52 , pp. 31-44
    • Long, P.M.1    Vega, V.B.2
  • 27
    • 0001216057 scopus 로고
    • The laplacian spectrum of graphs
    • Y. Alavi et al., editor. Wiley, New York
    • B. Mohar. The laplacian spectrum of graphs. In Y. Alavi et al., editor, Graph Theory, Combinatorics and Applications. Wiley, New York, 1991.
    • (1991) Graph Theory, Combinatorics and Applications
    • Mohar, B.1
  • 28
    • 0000230999 scopus 로고
    • Maxima for graphs and a new proof of a theorem by turan
    • T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem by turan. Canadian Journal of Math., 17:533-540, 1965.
    • (1965) Canadian Journal of Math. , vol.17 , pp. 533-540
    • Motzkin, T.S.1    Straus, E.G.2
  • 29
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 30
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(13):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.13 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 34
    • 27844497781 scopus 로고    scopus 로고
    • Personal communication
    • S. Ramaswamy. Personal communication.
    • Ramaswamy, S.1
  • 36
    • 0032121920 scopus 로고    scopus 로고
    • Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors
    • S. Sarkar and K. L. Boyer. Quantitative measures of change based on feature organization: eigenvalues and eigenvectors. CVIU, 71(1): 110-136, 1998.
    • (1998) CVIU , vol.71 , Issue.1 , pp. 110-136
    • Sarkar, S.1    Boyer, K.L.2
  • 38
    • 35048812218 scopus 로고    scopus 로고
    • Kernel feature selection with side data using a spectral approach
    • T. Pajdla and J. Matas, editors, ECCV (3). Springer. ISBN 3-540-21982-X
    • A. Shashua and L. Wolf. Kernel feature selection with side data using a spectral approach. In T. Pajdla and J. Matas, editors, ECCV (3), volume 3023 of Lecture Notes in Computer Science, pages 39-53. Springer, 2004. ISBN 3-540-21982-X.
    • (2004) Lecture Notes in Computer Science , vol.3023 , pp. 39-53
    • Shashua, A.1    Wolf, L.2
  • 39
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888-905, 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 44
    • 17644439883 scopus 로고    scopus 로고
    • Feature selection by maximum marginal diversity: Optimality and implications for visual recognition
    • IEEE Computer Society. ISBN 0-7695-1900-8
    • N. Vasconcelos. Feature selection by maximum marginal diversity: optimality and implications for visual recognition. In CVPR (1), pages 762-772. IEEE Computer Society, 2003. ISBN 0-7695-1900-8.
    • (2003) CVPR (1) , pp. 762-772
    • Vasconcelos, N.1
  • 45
    • 0004308492 scopus 로고    scopus 로고
    • Robust real-time object detection
    • Compaq Cambridge Research Lab
    • P. Viola and M. Jones. Robust real-time object detection. Technical Report CRL-2001-1, Compaq Cambridge Research Lab, 2001.
    • (2001) Technical Report , vol.CRL-2001-1
    • Viola, P.1    Jones, M.2
  • 46
    • 0033285447 scopus 로고    scopus 로고
    • Segmentation using eigenvectors: A unifying view
    • Y. Weiss. Segmentation using eigenvectors: A unifying view. In ICCV, 1999.
    • (1999) ICCV
    • Weiss, Y.1
  • 48
    • 0001560594 scopus 로고
    • On the distribution of the roots of certain symmetric matrices
    • E. P. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math.(2), 67:325-327, 1958.
    • (1958) Ann. of Math.(2) , vol.67 , pp. 325-327
    • Wigner, E.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.