메뉴 건너뛰기




Volumn , Issue , 2013, Pages 803-811

Feature selection by joint graph sparse coding

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; GRAPH THEORY; CODES (SYMBOLS);

EID: 84903907116     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972832.89     Document Type: Conference Paper
Times cited : (27)

References (18)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 84901242471 scopus 로고    scopus 로고
    • Feature selection for machine learning classification problems: A recent overview
    • Sotiris Kotsiantis. Feature selection for machine learning classification problems: a recent overview. Artificial Intelligence Review, pages 1-20, 2011.
    • (2011) Artificial Intelligence Review , pp. 1-20
    • Kotsiantis, S.1
  • 9
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Sebastián Maldonado and Richard Weber. A wrapper method for feature selection using support vector machines. Information Science Journal, 179:2208-2217, 2009.
    • (2009) Information Science Journal , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 10
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2,1-norms minimization
    • Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust feature selection via joint l2,1-norms minimization. In Neural Information Processing Systems, pages 1813-1821, 2010.
    • (2010) Neural Information Processing Systems , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 12
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • Zenglin Xu, Rong Jin, Jieping Ye, and Michael R. Lyu. Discriminative semi-supervised feature selection via manifold regularization. IEEE Transactions on Neural Networks, 21(7):1033-1047, 2010.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    Jin, R.2    Ye, J.3    Lyu, M.R.4
  • 14
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68:49-67, 2006.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 17
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • Xiaofeng Zhu, Zi Huang, Heng Tao Shen, Jian Cheng, and Changsheng Xu. Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition, 45(8):3003-3016, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1    Huang, Z.2    Tao Shen, H.3    Cheng, J.4    Xu, C.5
  • 18
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • Xiaofeng Zhu, Zi Huang, Yang Yang, Heng Tao Shen, Changsheng Xu, and Jiebo Luo. Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognition, 46(1):215-229, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Tao Shen, H.4    Xu, C.5    Luo, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.