메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 3371-3412

Learning with structured sparsity

Author keywords

Compressive sensing; Feature selection; Graph sparsity; Group sparsity; Sparse learning; Standard sparsity; Structured sparsity; Tree sparsity

Indexed keywords

COMPRESSIVE SENSING; GRAPH SPARSITY; GROUP SPARSITY; SPARSE LEARNING; STRUCTURED SPARSITY; TREE SPARSITY;

EID: 84855392809     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (312)

References (38)
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 6
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transaction on Information Theory, 51:4203-4215, 2005. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 9
    • 77952566605 scopus 로고    scopus 로고
    • Some theoretical results on the grouped variables Lasso
    • C. Chesneau and M. Hebiri. Some theoretical results on the grouped variables Lasso. Mathematical Methods of Statistics, 17:317-326, 2008.
    • (2008) Mathematical Methods of Statistics , vol.17 , pp. 317-326
    • Chesneau, C.1    Hebiri, M.2
  • 14
    • 38649097540 scopus 로고    scopus 로고
    • A note on the representation of positive polynomials with structured sparsity
    • D. Grimm, T. Netzer, and M. Schweighofer. A note on the representation of positive polynomials with structured sparsity. Archiv der Mathematik, 89:399-403, 2007.
    • (2007) Archiv der Mathematik , vol.89 , pp. 399-403
    • Grimm, D.1    Netzer, T.2    Schweighofer, M.3
  • 15
    • 33748575920 scopus 로고    scopus 로고
    • Signal reconstruction from noisy projections
    • J. Haupt and R. Nowak. Signal reconstruction from noisy projections. IEEE Trans. Information Theory, 52:4036-4048, 2006.
    • (2006) IEEE Trans. Information Theory , vol.52 , pp. 4036-4048
    • Haupt, J.1    Nowak, R.2
  • 16
    • 69349089478 scopus 로고    scopus 로고
    • Exploiting structure in wavelet-based bayesian compressive sensing
    • L. He and L. Carin. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Transaction on Signal Processing, 57:3488-3497, 2009a.
    • (2009) IEEE Transaction on Signal Processing , vol.57 , pp. 3488-3497
    • He, L.1    Carin, L.2
  • 17
    • 84855414299 scopus 로고    scopus 로고
    • Exploiting structure in compressive sensing with a jpeg basis
    • L. He and L. Carin. Exploiting structure in compressive sensing with a jpeg basis. In Preprint, 2009b.
    • (2009) Preprint
    • He, L.1    Carin, L.2
  • 18
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics, 38(4):1978-2004, 2010.
    • (2010) Annals of Statistics , vol.38 , Issue.4 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 22
    • 84860650487 scopus 로고    scopus 로고
    • Sparse recovery in large ensembles of kernel machines
    • V. Koltchinskii andM. Yuan. Sparse recovery in large ensembles of kernel machines. In Proceeding of COLT, 2008.
    • (2008) Proceeding of COLT
    • Koltchinskii, V.1    Yuan, M.2
  • 25
    • 80051715867 scopus 로고    scopus 로고
    • Group orthogonal matching pursuit for variable selection and prediction
    • A. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching pursuit for variable selection and prediction. In Proceedings of NIPS, 2009.
    • (2009) Proceedings of NIPS
    • Lozano, A.1    Swirszcz, G.2    Abe, N.3
  • 26
    • 44849115269 scopus 로고    scopus 로고
    • A theory for sampling signals from a union of subspaces
    • DOI 10.1109/TSP.2007.914346
    • Y.M. Lu andM. N. Do. A theory for sampling signals froma union of subspaces. IEEE Transactions on Signal Processing, 56(6):2334-2345, 2008. (Pubitemid 351795887)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2334-2345
    • Lu, Y.M.1    Do, M.N.2
  • 28
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group lasso estimator for linear models
    • Y. Nardi and A. Rinaldo. On the asymptotic properties of the group lasso estimator for linear models. Electronic Journal of Statistics, 2:605-633, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 31
    • 0027798110 scopus 로고
    • Embedded image coding using zerotrees of wavelet coefficients
    • J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41:3445-3462, 1993.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , pp. 3445-3462
    • Shapiro, J.M.1
  • 33
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. Tropp and A. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655-4666, 2007.
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 34
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • DOI 10.1109/TSP.2007.894265
    • D. Wipf and B. Rao. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 55(7):3704-3716, 2007. (Pubitemid 47018850)
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.7 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 36
    • 79959549699 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for learning sparse representations
    • T. Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE Transactions on Information Theory, 57:4689-4708, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , pp. 4689-4708
    • Zhang, T.1
  • 37
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A):3468-3497, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 38
    • 33644870377 scopus 로고    scopus 로고
    • Efficient adaptive density estimation per image pixel for the task of background subtraction
    • DOI 10.1016/j.patrec.2005.11.005, PII S0167865505003521
    • Z. Zivkovic and F. Heijden. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 27(7):773-780, 2006. (Pubitemid 43374860)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.7 , pp. 773-780
    • Zivkovic, Z.1    Van Der Heijden, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.