-
1
-
-
84924975551
-
Mitochondria in the regulation of innate and adaptive immunity
-
S.E. Weinberg, L.A. Sena, and N.S. Chandel Mitochondria in the regulation of innate and adaptive immunity Immunity 42 2015 406 417
-
(2015)
Immunity
, vol.42
, pp. 406-417
-
-
Weinberg, S.E.1
Sena, L.A.2
Chandel, N.S.3
-
2
-
-
0037459081
-
Mitochondria: Releasing power for life and unleashing the machineries of death
-
D.D. Newmeyer, and S. Ferguson-Miller Mitochondria: releasing power for life and unleashing the machineries of death Cell 112 2003 481 490
-
(2003)
Cell
, vol.112
, pp. 481-490
-
-
Newmeyer, D.D.1
Ferguson-Miller, S.2
-
3
-
-
54949110895
-
Calcium and apoptosis: ER-mitochondria Ca2 + transfer in the control of apoptosis
-
P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto Calcium and apoptosis: ER-mitochondria Ca2 + transfer in the control of apoptosis Oncogene 27 2008 6407 6418
-
(2008)
Oncogene
, vol.27
, pp. 6407-6418
-
-
Pinton, P.1
Giorgi, C.2
Siviero, R.3
Zecchini, E.4
Rizzuto, R.5
-
4
-
-
84927133194
-
Targeting mitochondria metabolism for cancer therapy
-
S.E. Weinberg, and N.S. Chandel Targeting mitochondria metabolism for cancer therapy Nat. Chem. Biol. 11 2015 9 15
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 9-15
-
-
Weinberg, S.E.1
Chandel, N.S.2
-
5
-
-
84861212393
-
Mitochondria and cell signalling
-
S.W. Tait, and D.R. Green Mitochondria and cell signalling J. Cell Sci. 125 2012 807 815
-
(2012)
J. Cell Sci.
, vol.125
, pp. 807-815
-
-
Tait, S.W.1
Green, D.R.2
-
6
-
-
79959354999
-
Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
-
D.R. Green, L. Galluzzi, and G. Kroemer Mitochondria and the autophagy-inflammation-cell death axis in organismal aging Science 333 2011 1109 1112
-
(2011)
Science
, vol.333
, pp. 1109-1112
-
-
Green, D.R.1
Galluzzi, L.2
Kroemer, G.3
-
7
-
-
84858376953
-
Mitochondria: In sickness and in health
-
J. Nunnari, and A. Suomalainen Mitochondria: in sickness and in health Cell 148 2012 1145 1159
-
(2012)
Cell
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
8
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
G. Ashrafi, and T.L. Schwarz The pathways of mitophagy for quality control and clearance of mitochondria Cell Death Differ. 20 2013 31 42
-
(2013)
Cell Death Differ.
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
10
-
-
84876335261
-
Mitophagy in neurodegeneration and aging
-
K. Palikaras, and N. Tavernarakis Mitophagy in neurodegeneration and aging Front. Genet. 3 2012 297
-
(2012)
Front. Genet.
, vol.3
, pp. 297
-
-
Palikaras, K.1
Tavernarakis, N.2
-
11
-
-
77954091307
-
Mouse and human mitochondrial nucleoid-detailed structure in relation to function
-
J. Prachar Mouse and human mitochondrial nucleoid-detailed structure in relation to function Gen. Physiol. Biophys. 29 2010 160 174
-
(2010)
Gen. Physiol. Biophys.
, vol.29
, pp. 160-174
-
-
Prachar, J.1
-
12
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine
-
D.C. Wallace A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine Annu. Rev. Genet. 39 2005 359 407
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
13
-
-
77956090193
-
Mitochondrial protein import: From proteomics to functional mechanisms
-
O. Schmidt, N. Pfanner, and C. Meisinger Mitochondrial protein import: from proteomics to functional mechanisms Nat. Rev. Mol. Cell Biol. 11 2010 655 667
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 655-667
-
-
Schmidt, O.1
Pfanner, N.2
Meisinger, C.3
-
14
-
-
84858004499
-
Mitochondrial protein import: From transport pathways to an integrated network
-
T. Becker, L. Bottinger, and N. Pfanner Mitochondrial protein import: from transport pathways to an integrated network Trends Biochem. Sci. 37 2012 85 91
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 85-91
-
-
Becker, T.1
Bottinger, L.2
Pfanner, N.3
-
15
-
-
82255183165
-
Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
-
S. Al Rawi, S. Louvet-Vallee, A. Djeddi, M. Sachse, E. Culetto, C. Hajjar, L. Boyd, R. Legouis, and V. Galy Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission Science 334 2011 1144 1147
-
(2011)
Science
, vol.334
, pp. 1144-1147
-
-
Al Rawi, S.1
Louvet-Vallee, S.2
Djeddi, A.3
Sachse, M.4
Culetto, E.5
Hajjar, C.6
Boyd, L.7
Legouis, R.8
Galy, V.9
-
16
-
-
82255192465
-
Degradation of paternal mitochondria by fertilization-triggered autophagy in C elegans embryos
-
M. Sato, and K. Sato Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos Science 334 2011 1141 1144
-
(2011)
Science
, vol.334
, pp. 1141-1144
-
-
Sato, M.1
Sato, K.2
-
17
-
-
84900315972
-
Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila
-
Y. Politi, L. Gal, Y. Kalifa, L. Ravid, Z. Elazar, and E. Arama Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila Dev. Cell 29 2014 305 320
-
(2014)
Dev. Cell
, vol.29
, pp. 305-320
-
-
Politi, Y.1
Gal, L.2
Kalifa, Y.3
Ravid, L.4
Elazar, Z.5
Arama, E.6
-
18
-
-
33745617384
-
Mitochondrial DNA and ageing
-
A. Trifunovic Mitochondrial DNA and ageing Biochim. Biophys. Acta 1757 2006 611 617
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 611-617
-
-
Trifunovic, A.1
-
19
-
-
2642580016
-
Premature ageing in mice expressing defective mitochondrial DNA polymerase
-
A. Trifunovic, A. Wredenberg, M. Falkenberg, J.N. Spelbrink, A.T. Rovio, C.E. Bruder, Y.M. Bohlooly, S. Gidlof, A. Oldfors, R. Wibom, J. Tornell, H.T. Jacobs, and N.G. Larsson Premature ageing in mice expressing defective mitochondrial DNA polymerase Nature 429 2004 417 423
-
(2004)
Nature
, vol.429
, pp. 417-423
-
-
Trifunovic, A.1
Wredenberg, A.2
Falkenberg, M.3
Spelbrink, J.N.4
Rovio, A.T.5
Bruder, C.E.6
Bohlooly, Y.M.7
Gidlof, S.8
Oldfors, A.9
Wibom, R.10
Tornell, J.11
Jacobs, H.T.12
Larsson, N.G.13
-
20
-
-
36949083936
-
Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism
-
P. Mitchell Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism Nature 191 1961 144 148
-
(1961)
Nature
, vol.191
, pp. 144-148
-
-
Mitchell, P.1
-
21
-
-
84857687489
-
Linking mitochondrial bioenergetics to insulin resistance via redox biology
-
K.H. Fisher-Wellman, and P.D. Neufer Linking mitochondrial bioenergetics to insulin resistance via redox biology Trends Endocrinol. Metab. 23 2012 142 153
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 142-153
-
-
Fisher-Wellman, K.H.1
Neufer, P.D.2
-
22
-
-
79957819196
-
Rotation and structure of FoF1-ATP synthase
-
D. Okuno, R. Iino, and H. Noji Rotation and structure of FoF1-ATP synthase J. Biochem. 149 2011 655 664
-
(2011)
J. Biochem.
, vol.149
, pp. 655-664
-
-
Okuno, D.1
Iino, R.2
Noji, H.3
-
23
-
-
0028114231
-
Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria
-
J.P. Abrahams, A.G. Leslie, R. Lutter, and J.E. Walker Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria Nature 370 1994 621 628
-
(1994)
Nature
, vol.370
, pp. 621-628
-
-
Abrahams, J.P.1
Leslie, A.G.2
Lutter, R.3
Walker, J.E.4
-
24
-
-
0027492268
-
The binding change mechanism for ATP synthase-some probabilities and possibilities
-
P.D. Boyer The binding change mechanism for ATP synthase-some probabilities and possibilities Biochim. Biophys. Acta 1140 1993 215 250
-
(1993)
Biochim. Biophys. Acta
, vol.1140
, pp. 215-250
-
-
Boyer, P.D.1
-
25
-
-
0031008228
-
The ATP synthase - A splendid molecular machine
-
P.D. Boyer The ATP synthase-a splendid molecular machine Annu. Rev. Biochem. 66 1997 717 749
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 717-749
-
-
Boyer, P.D.1
-
27
-
-
84892575903
-
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
-
R.J. Mailloux, X. Jin, and W.G. Willmore Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions Ríox Biol. 2 2014 123 139
-
(2014)
Ríox Biol.
, vol.2
, pp. 123-139
-
-
Mailloux, R.J.1
Jin, X.2
Willmore, W.G.3
-
28
-
-
77953631698
-
The secret life of NAD +: An old metabolite controlling new metabolic signaling pathways
-
R.H. Houtkooper, C. Canto, R.J. Wanders, and J. Auwerx The secret life of NAD +: an old metabolite controlling new metabolic signaling pathways Endocr. Rev. 31 2010 194 223
-
(2010)
Endocr. Rev.
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
Canto, C.2
Wanders, R.J.3
Auwerx, J.4
-
29
-
-
37549068090
-
NAD +/NADH and NADP +/NADPH in cellular functions and cell death: Regulation and biological consequences
-
W. Ying NAD +/NADH and NADP +/NADPH in cellular functions and cell death: regulation and biological consequences Antioxid. Redox Signal. 10 2008 179 206
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 179-206
-
-
Ying, W.1
-
30
-
-
84865411082
-
The dynamic regulation of NAD metabolism in mitochondria
-
L.R. Stein, and S. Imai The dynamic regulation of NAD metabolism in mitochondria Trends Endocrinol. Metab. 23 2012 420 428
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 420-428
-
-
Stein, L.R.1
Imai, S.2
-
31
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
Y. Liu, G. Fiskum, and D. Schubert Generation of reactive oxygen species by the mitochondrial electron transport chain J. Neurochem. 80 2002 780 787
-
(2002)
J. Neurochem.
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
32
-
-
84922800677
-
Protecting the mitochondrial powerhouse
-
M. Scheibye-Knudsen, E.F. Fang, D.L. Croteau, D.M. Wilson 3rd, and V.A. Bohr Protecting the mitochondrial powerhouse Trends Cell Biol 25 2015 158 170
-
(2015)
Trends Cell Biol
, vol.25
, pp. 158-170
-
-
Scheibye-Knudsen, M.1
Fang, E.F.2
Croteau, D.L.3
Wilson, D.M.4
Bohr, V.A.5
-
33
-
-
32444433202
-
Free radicals, metals and antioxidants in oxidative stress-induced cancer
-
M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur Free radicals, metals and antioxidants in oxidative stress-induced cancer Chem. Biol. Interact. 160 2006 1 40
-
(2006)
Chem. Biol. Interact.
, vol.160
, pp. 1-40
-
-
Valko, M.1
Rhodes, C.J.2
Moncol, J.3
Izakovic, M.4
Mazur, M.5
-
34
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
K.M. Holmstrom, and T. Finkel Cellular mechanisms and physiological consequences of redox-dependent signalling Nat. Rev. Mol. Cell Biol. 15 2014 411 421
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
35
-
-
54549093803
-
Ageing, oxidative stress and cancer: Paradigms in parallax
-
C.C. Benz, and C. Yau Ageing, oxidative stress and cancer: paradigms in parallax Nat. Rev. Cancer 8 2008 875 879
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 875-879
-
-
Benz, C.C.1
Yau, C.2
-
36
-
-
78649755150
-
Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ
-
B.K. Chacko, C. Reily, A. Srivastava, M.S. Johnson, Y. Ye, E. Ulasova, A. Agarwal, K.R. Zinn, M.P. Murphy, B. Kalyanaraman, and V. Darley-Usmar Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ Biochem. J. 432 2010 9 19
-
(2010)
Biochem. J.
, vol.432
, pp. 9-19
-
-
Chacko, B.K.1
Reily, C.2
Srivastava, A.3
Johnson, M.S.4
Ye, Y.5
Ulasova, E.6
Agarwal, A.7
Zinn, K.R.8
Murphy, M.P.9
Kalyanaraman, B.10
Darley-Usmar, V.11
-
37
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling
-
J. Lee, S. Giordano, and J. Zhang Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling Biochem. J. 441 2012 523 540
-
(2012)
Biochem. J.
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
38
-
-
38149079945
-
Leber hereditary optic neuropathy mutations in the ND6 subunit of mitochondrial complex i affect ubiquinone reduction kinetics in a bacterial model of the enzyme
-
J. Patsi, M. Kervinen, M. Finel, and I.E. Hassinen Leber hereditary optic neuropathy mutations in the ND6 subunit of mitochondrial complex I affect ubiquinone reduction kinetics in a bacterial model of the enzyme Biochem. J. 409 2008 129 137
-
(2008)
Biochem. J.
, vol.409
, pp. 129-137
-
-
Patsi, J.1
Kervinen, M.2
Finel, M.3
Hassinen, I.E.4
-
39
-
-
84878797603
-
Epigenetic silencing mediates mitochondria stress-induced longevity
-
E.A. Schroeder, N. Raimundo, and G.S. Shadel Epigenetic silencing mediates mitochondria stress-induced longevity Cell Metab. 17 2013 954 964
-
(2013)
Cell Metab.
, vol.17
, pp. 954-964
-
-
Schroeder, E.A.1
Raimundo, N.2
Shadel, G.S.3
-
40
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
L.A. Sena, and N.S. Chandel Physiological roles of mitochondrial reactive oxygen species Mol. Cell 48 2012 158 167
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
42
-
-
77049308856
-
Aging: A theory based on free radical and radiation chemistry
-
D. Harman Aging: a theory based on free radical and radiation chemistry J. Gerontol. 11 1956 298 300
-
(1956)
J. Gerontol.
, vol.11
, pp. 298-300
-
-
Harman, D.1
-
43
-
-
0015319592
-
The biologic clock: The mitochondria?
-
D. Harman The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20 1972 145 147
-
(1972)
J. Am. Geriatr. Soc.
, vol.20
, pp. 145-147
-
-
Harman, D.1
-
44
-
-
33744478401
-
Free radical theory of aging: An update: Increasing the functional life span
-
D. Harman Free radical theory of aging: an update: increasing the functional life span Ann. N. Y. Acad. Sci. 1067 2006 10 21
-
(2006)
Ann. N. Y. Acad. Sci.
, vol.1067
, pp. 10-21
-
-
Harman, D.1
-
45
-
-
79952659906
-
The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan
-
J.R. Speakman, and C. Selman The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan Bioessays 33 2011 255 259
-
(2011)
Bioessays
, vol.33
, pp. 255-259
-
-
Speakman, J.R.1
Selman, C.2
-
46
-
-
31844439407
-
Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality
-
P.C. Tapia Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality Med. Hypotheses 66 2006 832 843
-
(2006)
Med. Hypotheses
, vol.66
, pp. 832-843
-
-
Tapia, P.C.1
-
47
-
-
84902382985
-
Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS)
-
M. Ristow, and K. Schmeisser Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS) Dose-Response 12 2014 288 341
-
(2014)
Dose-Response
, vol.12
, pp. 288-341
-
-
Ristow, M.1
Schmeisser, K.2
-
48
-
-
79959350253
-
Extending life span by increasing oxidative stress
-
M. Ristow, and S. Schmeisser Extending life span by increasing oxidative stress Free Radic. Biol. Med. 51 2011 327 336
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 327-336
-
-
Ristow, M.1
Schmeisser, S.2
-
49
-
-
84900295547
-
Mitohormesis
-
J. Yun, and T. Finkel Mitohormesis Cell Metab. 19 2014 757 766
-
(2014)
Cell Metab.
, vol.19
, pp. 757-766
-
-
Yun, J.1
Finkel, T.2
-
50
-
-
78650944949
-
The cell-non-autonomous nature of electron transport chain-mediated longevity
-
J. Durieux, S. Wolff, and A. Dillin The cell-non-autonomous nature of electron transport chain-mediated longevity Cell 144 2011 79 91
-
(2011)
Cell
, vol.144
, pp. 79-91
-
-
Durieux, J.1
Wolff, S.2
Dillin, A.3
-
51
-
-
84864744900
-
Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
-
A.M. Nargund, M.W. Pellegrino, C.J. Fiorese, B.M. Baker, and C.M. Haynes Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation Science 337 2012 587 590
-
(2012)
Science
, vol.337
, pp. 587-590
-
-
Nargund, A.M.1
Pellegrino, M.W.2
Fiorese, C.J.3
Baker, B.M.4
Haynes, C.M.5
-
52
-
-
84878138385
-
Mitonuclear protein imbalance as a conserved longevity mechanism
-
R.H. Houtkooper, L. Mouchiroud, D. Ryu, N. Moullan, E. Katsyuba, G. Knott, R.W. Williams, and J. Auwerx Mitonuclear protein imbalance as a conserved longevity mechanism Nature 497 2013 451 457
-
(2013)
Nature
, vol.497
, pp. 451-457
-
-
Houtkooper, R.H.1
Mouchiroud, L.2
Ryu, D.3
Moullan, N.4
Katsyuba, E.5
Knott, G.6
Williams, R.W.7
Auwerx, J.8
-
53
-
-
84886786722
-
Muscle mitohormesis promotes longevity via systemic repression of insulin signaling
-
E. Owusu-Ansah, W. Song, and N. Perrimon Muscle mitohormesis promotes longevity via systemic repression of insulin signaling Cell 155 2013 699 712
-
(2013)
Cell
, vol.155
, pp. 699-712
-
-
Owusu-Ansah, E.1
Song, W.2
Perrimon, N.3
-
54
-
-
80051783174
-
Uncoupling proteins and the control of mitochondrial reactive oxygen species production
-
R.J. Mailloux, and M.E. Harper Uncoupling proteins and the control of mitochondrial reactive oxygen species production Free Radic. Biol. Med. 51 2011 1106 1115
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1106-1115
-
-
Mailloux, R.J.1
Harper, M.E.2
-
55
-
-
0041464712
-
Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma
-
G. Mattiasson, M. Shamloo, G. Gido, K. Mathi, G. Tomasevic, S. Yi, C.H. Warden, R.F. Castilho, T. Melcher, M. Gonzalez-Zulueta, K. Nikolich, and T. Wieloch Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma Nat. Med. 9 2003 1062 1068
-
(2003)
Nat. Med.
, vol.9
, pp. 1062-1068
-
-
Mattiasson, G.1
Shamloo, M.2
Gido, G.3
Mathi, K.4
Tomasevic, G.5
Yi, S.6
Warden, C.H.7
Castilho, R.F.8
Melcher, T.9
Gonzalez-Zulueta, M.10
Nikolich, K.11
Wieloch, T.12
-
56
-
-
84859410604
-
The adipose organ of obesity-prone C57BL/6 J mice is composed of mixed white and brown adipocytes
-
A. Vitali, I. Murano, M.C. Zingaretti, A. Frontini, D. Ricquier, and S. Cinti The adipose organ of obesity-prone C57BL/6 J mice is composed of mixed white and brown adipocytes J. Lipid Res. 53 2012 619 629
-
(2012)
J. Lipid Res.
, vol.53
, pp. 619-629
-
-
Vitali, A.1
Murano, I.2
Zingaretti, M.C.3
Frontini, A.4
Ricquier, D.5
Cinti, S.6
-
57
-
-
84921538870
-
Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat
-
J. Dempersmier, A. Sambeat, O. Gulyaeva, S.M. Paul, C.S. Hudak, H.F. Raposo, H.Y. Kwan, C. Kang, R.H. Wong, and H.S. Sul Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat Mol Cell 57 2015 235 246
-
(2015)
Mol Cell
, vol.57
, pp. 235-246
-
-
Dempersmier, J.1
Sambeat, A.2
Gulyaeva, O.3
Paul, S.M.4
Hudak, C.S.5
Raposo, H.F.6
Kwan, H.Y.7
Kang, C.8
Wong, R.H.9
Sul, H.S.10
-
58
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
C. He, and D.J. Klionsky Regulation mechanisms and signaling pathways of autophagy Annu. Rev. Genet. 43 2009 67 93
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
59
-
-
77955165003
-
The plasma membrane brings autophagosomes to life
-
A.M. Cuervo The plasma membrane brings autophagosomes to life Nat. Cell Biol. 12 2010 735 737
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 735-737
-
-
Cuervo, A.M.1
-
61
-
-
78649704325
-
Autophagy and metabolism
-
J.D. Rabinowitz, and E. White Autophagy and metabolism Science 330 2010 1344 1348
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
62
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
R. Singh, and A.M. Cuervo Autophagy in the cellular energetic balance Cell Metab. 13 2011 495 504
-
(2011)
Cell Metab.
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
63
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
D.W. Hailey, A.S. Rambold, P. Satpute-Krishnan, K. Mitra, R. Sougrat, P.K. Kim, and J. Lippincott-Schwartz Mitochondria supply membranes for autophagosome biogenesis during starvation Cell 141 2010 656 667
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
64
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
O.M. de Brito, and L. Scorrano Mitofusin 2 tethers endoplasmic reticulum to mitochondria Nature 456 2008 605 610
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
De Brito, O.M.1
Scorrano, L.2
-
65
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
J.J. Lemasters Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging Rejuvenation Res. 8 2005 3 5
-
(2005)
Rejuvenation Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
67
-
-
34248581851
-
ER-phagy: Selective autophagy of the endoplasmic reticulum
-
S. Bernales, S. Schuck, and P. Walter ER-phagy: selective autophagy of the endoplasmic reticulum Autophagy 3 2007 285 287
-
(2007)
Autophagy
, vol.3
, pp. 285-287
-
-
Bernales, S.1
Schuck, S.2
Walter, P.3
-
68
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
R. Singh, S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A.M. Cuervo, and M.J. Czaja Autophagy regulates lipid metabolism Nature 458 2009 1131 1135
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
69
-
-
78649253110
-
Role of selective autophagy in cellular remodeling: "Self-eating" into shape
-
P. Kadandale, and A.A. Kiger Role of selective autophagy in cellular remodeling: "self-eating" into shape Autophagy 6 2010 1194 1195
-
(2010)
Autophagy
, vol.6
, pp. 1194-1195
-
-
Kadandale, P.1
Kiger, A.A.2
-
70
-
-
77956410115
-
Selective autophagy: Ubiquitin-mediated recognition and beyond
-
C. Kraft, M. Peter, and K. Hofmann Selective autophagy: ubiquitin-mediated recognition and beyond Nat. Cell Biol. 12 2010 836 841
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 836-841
-
-
Kraft, C.1
Peter, M.2
Hofmann, K.3
-
71
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
A. Stolz, A. Ernst, and I. Dikic Cargo recognition and trafficking in selective autophagy Nat. Cell Biol. 16 2014 495 501
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
73
-
-
84885176082
-
Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
-
C.T. Chu, J. Ji, R.K. Dagda, J.F. Jiang, Y.Y. Tyurina, A.A. Kapralov, V.A. Tyurin, N. Yanamala, I.H. Shrivastava, D. Mohammadyani, K.Z. Qiang Wang, J. Zhu, J. Klein-Seetharaman, K. Balasubramanian, A.A. Amoscato, G. Borisenko, Z. Huang, A.M. Gusdon, A. Cheikhi, E.K. Steer, R. Wang, C. Baty, S. Watkins, I. Bahar, H. Bayir, and V.E. Kagan Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells Nat. Cell Biol. 15 2013 1197 1205
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1197-1205
-
-
Chu, C.T.1
Ji, J.2
Dagda, R.K.3
Jiang, J.F.4
Tyurina, Y.Y.5
Kapralov, A.A.6
Tyurin, V.A.7
Yanamala, N.8
Shrivastava, I.H.9
Mohammadyani, D.10
Qiang Wang, K.Z.11
Zhu, J.12
Klein-Seetharaman, J.13
Balasubramanian, K.14
Amoscato, A.A.15
Borisenko, G.16
Huang, Z.17
Gusdon, A.M.18
Cheikhi, A.19
Steer, E.K.20
Wang, R.21
Baty, C.22
Watkins, S.23
Bahar, I.24
Bayir, H.25
Kagan, V.E.26
more..
-
74
-
-
76449083770
-
The molecular mechanism of mitochondria autophagy in yeast
-
T. Kanki, and D.J. Klionsky The molecular mechanism of mitochondria autophagy in yeast Mol. Microbiol. 75 2010 795 800
-
(2010)
Mol. Microbiol.
, vol.75
, pp. 795-800
-
-
Kanki, T.1
Klionsky, D.J.2
-
75
-
-
84920531897
-
Keeping the immune system in check: A role for mitophagy
-
M. Lazarou Keeping the immune system in check: a role for mitophagy Immunol. Cell Biol. 93 2015 3 10
-
(2015)
Immunol. Cell Biol.
, vol.93
, pp. 3-10
-
-
Lazarou, M.1
-
76
-
-
60749108379
-
Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment
-
M.B. Azad, Y. Chen, and S.B. Gibson Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment Antioxid. Redox Signal. 11 2009 777 790
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 777-790
-
-
Azad, M.B.1
Chen, Y.2
Gibson, S.B.3
-
77
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Y. Chen, M.B. Azad, and S.B. Gibson Superoxide is the major reactive oxygen species regulating autophagy Cell Death Differ. 16 2009 1040 1052
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
78
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
L. Li, Y. Chen, and S.B. Gibson Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation Cell. Signal. 25 2013 50 65
-
(2013)
Cell. Signal.
, vol.25
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
80
-
-
70350575440
-
Modulation of intracellular ROS levels by TIGAR controls autophagy
-
K. Bensaad, E.C. Cheung, and K.H. Vousden Modulation of intracellular ROS levels by TIGAR controls autophagy EMBO J. 28 2009 3015 3026
-
(2009)
EMBO J.
, vol.28
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
81
-
-
44649141966
-
Regulation of autophagy by cytoplasmic p53
-
E. Tasdemir, M.C. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-Mergny, M. D'Amelio, A. Criollo, E. Morselli, C. Zhu, F. Harper, U. Nannmark, C. Samara, P. Pinton, J.M. Vicencio, R. Carnuccio, U.M. Moll, F. Madeo, P. Paterlini-Brechot, R. Rizzuto, G. Szabadkai, G. Pierron, K. Blomgren, N. Tavernarakis, P. Codogno, F. Cecconi, and G. Kroemer Regulation of autophagy by cytoplasmic p53 Nat. Cell Biol. 10 2008 676 687
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 676-687
-
-
Tasdemir, E.1
Maiuri, M.C.2
Galluzzi, L.3
Vitale, I.4
Djavaheri-Mergny, M.5
D'Amelio, M.6
Criollo, A.7
Morselli, E.8
Zhu, C.9
Harper, F.10
Nannmark, U.11
Samara, C.12
Pinton, P.13
Vicencio, J.M.14
Carnuccio, R.15
Moll, U.M.16
Madeo, F.17
Paterlini-Brechot, P.18
Rizzuto, R.19
Szabadkai, G.20
Pierron, G.21
Blomgren, K.22
Tavernarakis, N.23
Codogno, P.24
Cecconi, F.25
Kroemer, G.26
more..
-
82
-
-
65949083750
-
Cytoplasmic functions of the tumour suppressor p53
-
D.R. Green, and G. Kroemer Cytoplasmic functions of the tumour suppressor p53 Nature 458 2009 1127 1130
-
(2009)
Nature
, vol.458
, pp. 1127-1130
-
-
Green, D.R.1
Kroemer, G.2
-
83
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 EMBO J. 26 2007 1749 1760
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
84
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
J. Zhang, J. Kim, A. Alexander, S. Cai, D.N. Tripathi, R. Dere, A.R. Tee, J. Tait-Mulder, A. Di Nardo, J.M. Han, E. Kwiatkowski, E.A. Dunlop, K.M. Dodd, R.D. Folkerth, P.L. Faust, M.B. Kastan, M. Sahin, and C.L. Walker A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS Nat. Cell Biol. 15 2013 1186 1196
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
Cai, S.4
Tripathi, D.N.5
Dere, R.6
Tee, A.R.7
Tait-Mulder, J.8
Di Nardo, A.9
Han, J.M.10
Kwiatkowski, E.11
Dunlop, E.A.12
Dodd, K.M.13
Folkerth, R.D.14
Faust, P.L.15
Kastan, M.B.16
Sahin, M.17
Walker, C.L.18
-
85
-
-
78650890352
-
Regulation of autophagy by ROS: Physiology and pathology
-
R. Scherz-Shouval, and Z. Elazar Regulation of autophagy by ROS: physiology and pathology Trends Biochem. Sci. 36 2011 30 38
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
86
-
-
84922489435
-
Oxidative stress and autophagy: The clash between damage and metabolic needs
-
G. Filomeni, D. De Zio, and F. Cecconi Oxidative stress and autophagy: the clash between damage and metabolic needs Cell Death Differ. 22 2015 377 388
-
(2015)
Cell Death Differ.
, vol.22
, pp. 377-388
-
-
Filomeni, G.1
De Zio, D.2
Cecconi, F.3
-
87
-
-
77951096150
-
Mitochondrial dynamics - Fusion, fission, movement, and mitophagy - In neurodegenerative diseases
-
H. Chen, and D.C. Chan Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases Hum. Mol. Genet. 18 2009 R169 R176
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. R169-R176
-
-
Chen, H.1
Chan, D.C.2
-
88
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
L.C. Gomes, G. Di Benedetto, and L. Scorrano During autophagy mitochondria elongate, are spared from degradation and sustain cell viability Nat. Cell Biol. 13 2011 589 598
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
89
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
G. Twig, A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer, L. Stiles, S.E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B.F. Py, J. Yuan, J.T. Deeney, B.E. Corkey, and O.S. Shirihai Fission and selective fusion govern mitochondrial segregation and elimination by autophagy EMBO J. 27 2008 433 446
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
Alroy, J.11
Wu, M.12
Py, B.F.13
Yuan, J.14
Deeney, J.T.15
Corkey, B.E.16
Shirihai, O.S.17
-
90
-
-
79954571354
-
The interplay between mitochondrial dynamics and mitophagy
-
G. Twig, and O.S. Shirihai The interplay between mitochondrial dynamics and mitophagy Antioxid. Redox Signal. 14 2011 1939 1951
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 1939-1951
-
-
Twig, G.1
Shirihai, O.S.2
-
91
-
-
84940430015
-
Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan
-
D. Bernhardt, M. Muller, A.S. Reichert, and H.D. Osiewacz Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan Sci. Rep. 5 2015 7885
-
(2015)
Sci. Rep.
, vol.5
, pp. 7885
-
-
Bernhardt, D.1
Muller, M.2
Reichert, A.S.3
Osiewacz, H.D.4
-
92
-
-
84900344357
-
Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction
-
E.F. Fang, M. Scheibye-Knudsen, L.E. Brace, H. Kassahun, T. SenGupta, H. Nilsen, J.R. Mitchell, D.L. Croteau, and V.A. Bohr Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction Cell 157 2014 882 896
-
(2014)
Cell
, vol.157
, pp. 882-896
-
-
Fang, E.F.1
Scheibye-Knudsen, M.2
Brace, L.E.3
Kassahun, H.4
SenGupta, T.5
Nilsen, H.6
Mitchell, J.R.7
Croteau, D.L.8
Bohr, V.A.9
-
93
-
-
84874996381
-
Quality control of mitochondria during aging: Is there a good and a bad side of mitochondrial dynamics?
-
M.T. Figge, H.D. Osiewacz, and A.S. Reichert Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics? Bioessays 35 2013 314 322
-
(2013)
Bioessays
, vol.35
, pp. 314-322
-
-
Figge, M.T.1
Osiewacz, H.D.2
Reichert, A.S.3
-
94
-
-
84901855878
-
The interplay between mitochondria and autophagy and its role in the aging process
-
A. Schiavi, and N. Ventura The interplay between mitochondria and autophagy and its role in the aging process Exp. Gerontol. 56 2014 147 153
-
(2014)
Exp. Gerontol.
, vol.56
, pp. 147-153
-
-
Schiavi, A.1
Ventura, N.2
-
96
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
V.K. Chaugule, L. Burchell, K.R. Barber, A. Sidhu, S.J. Leslie, G.S. Shaw, and H. Walden Autoregulation of Parkin activity through its ubiquitin-like domain EMBO J. 30 2011 2853 2867
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
Shaw, G.S.6
Walden, H.7
-
97
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
J.F. Trempe, V. Sauve, K. Grenier, M. Seirafi, M.Y. Tang, M. Menade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, B. Nagar, E.A. Fon, and K. Gehring Structure of parkin reveals mechanisms for ubiquitin ligase activation Science 340 2013 1451 1455
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauve, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
Menade, M.6
Al-Abdul-Wahid, S.7
Krett, J.8
Wong, K.9
Kozlov, G.10
Nagar, B.11
Fon, E.A.12
Gehring, K.13
-
98
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
N. Matsuda, S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, M. Kimura, M. Komatsu, N. Hattori, and K. Tanaka PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy J. Cell Biol. 189 2010 211 221
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
Kimura, M.11
Komatsu, M.12
Hattori, N.13
Tanaka, K.14
-
99
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
D.P. Narendra, S.M. Jin, A. Tanaka, D.F. Suen, C.A. Gautier, J. Shen, M.R. Cookson, and R.J. Youle PINK1 is selectively stabilized on impaired mitochondria to activate Parkin PLoS Biol. 8 2010 e1000298
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
100
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
C. Vives-Bauza, C. Zhou, Y. Huang, M. Cui, R.L. de Vries, J. Kim, J. May, M.A. Tocilescu, W. Liu, H.S. Ko, J. Magrane, D.J. Moore, V.L. Dawson, R. Grailhe, T.M. Dawson, C. Li, K. Tieu, and S. Przedborski PINK1-dependent recruitment of Parkin to mitochondria in mitophagy Proc. Natl. Acad. Sci. U. S. A. 107 2010 378 383
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
Cui, M.4
De Vries, R.L.5
Kim, J.6
May, J.7
Tocilescu, M.A.8
Liu, W.9
Ko, H.S.10
Magrane, J.11
Moore, D.J.12
Dawson, V.L.13
Grailhe, R.14
Dawson, T.M.15
Li, C.16
Tieu, K.17
Przedborski, S.18
-
101
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
E. Ziviani, R.N. Tao, and A.J. Whitworth Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin Proc. Natl. Acad. Sci. U. S. A. 107 2010 5018 5023
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
102
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
A.W. Greene, K. Grenier, M.A. Aguileta, S. Muise, R. Farazifard, M.E. Haque, H.M. McBride, D.S. Park, and E.A. Fon Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment EMBO Rep. 13 2012 378 385
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
McBride, H.M.7
Park, D.S.8
Fon, E.A.9
-
103
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
S.M. Jin, M. Lazarou, C. Wang, L.A. Kane, D.P. Narendra, and R.J. Youle Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL J. Cell Biol. 191 2010 933 942
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
104
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
E. Deas, H. Plun-Favreau, S. Gandhi, H. Desmond, S. Kjaer, S.H. Loh, A.E. Renton, R.J. Harvey, A.J. Whitworth, L.M. Martins, A.Y. Abramov, and N.W. Wood PINK1 cleavage at position A103 by the mitochondrial protease PARL Hum. Mol. Genet. 20 2011 867 879
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
Desmond, H.4
Kjaer, S.5
Loh, S.H.6
Renton, A.E.7
Harvey, R.J.8
Whitworth, A.J.9
Martins, L.M.10
Abramov, A.Y.11
Wood, N.W.12
-
105
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
M. Lazarou, S.M. Jin, L.A. Kane, and R.J. Youle Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin Dev. Cell 22 2012 320 333
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
106
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
S.M. Jin, and R.J. Youle The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria Autophagy 9 2013 1750 1757
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
107
-
-
84901056259
-
Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1
-
L.F. Burbulla, J.C. Fitzgerald, K. Stegen, J. Westermeier, A.K. Thost, H. Kato, D. Mokranjac, J. Sauerwald, L.M. Martins, D. Woitalla, D. Rapaport, O. Riess, T. Proikas-Cezanne, T.M. Rasse, and R. Kruger Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1 Cell Death Dis. 5 2014 e1180
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1180
-
-
Burbulla, L.F.1
Fitzgerald, J.C.2
Stegen, K.3
Westermeier, J.4
Thost, A.K.5
Kato, H.6
Mokranjac, D.7
Sauerwald, J.8
Martins, L.M.9
Woitalla, D.10
Rapaport, D.11
Riess, O.12
Proikas-Cezanne, T.13
Rasse, T.M.14
Kruger, R.15
-
108
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
C. Kondapalli, A. Kazlauskaite, N. Zhang, H.I. Woodroof, D.G. Campbell, R. Gourlay, L. Burchell, H. Walden, T.J. Macartney, M. Deak, A. Knebel, D.R. Alessi, and M.M. Muqit PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 Open Biol. 2 2012 120080
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
MacArtney, T.J.9
Deak, M.10
Knebel, A.11
Alessi, D.R.12
Muqit, M.M.13
-
109
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
K. Okatsu, T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F. Koyano, M. Funayama, K. Shiba-Fukushima, S. Sato, H. Shimizu, Y. Fukunaga, H. Taniguchi, M. Komatsu, N. Hattori, K. Mihara, K. Tanaka, and N. Matsuda PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria Nat. Commun. 3 2012 1016
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
Shiba-Fukushima, K.11
Sato, S.12
Shimizu, H.13
Fukunaga, Y.14
Taniguchi, H.15
Komatsu, M.16
Hattori, N.17
Mihara, K.18
Tanaka, K.19
Matsuda, N.20
more..
-
110
-
-
77949478474
-
Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling
-
D. Sha, L.S. Chin, and L. Li Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling Hum. Mol. Genet. 19 2010 352 363
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 352-363
-
-
Sha, D.1
Chin, L.S.2
Li, L.3
-
111
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
K. Shiba-Fukushima, Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao, S. Sato, and N. Hattori PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy Sci. Rep. 2 2012 1002
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
112
-
-
84912127688
-
Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin
-
T.R. Caulfield, F.C. Fiesel, E.L. Moussaud-Lamodiere, D.F. Dourado, S.C. Flores, and W. Springer Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin PLoS Comput. Biol. 10 2014 e1003935
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003935
-
-
Caulfield, T.R.1
Fiesel, F.C.2
Moussaud-Lamodiere, E.L.3
Dourado, D.F.4
Flores, S.C.5
Springer, W.6
-
113
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
M. Iguchi, Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation J. Biol. Chem. 288 2013 22019 22032
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
Koyano, F.4
Kosako, H.5
Kimura, M.6
Suzuki, N.7
Uchiyama, S.8
Tanaka, K.9
Matsuda, N.10
-
114
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
M. Lazarou, D.P. Narendra, S.M. Jin, E. Tekle, S. Banerjee, and R.J. Youle PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding J. Cell Biol. 200 2013 163 172
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
Narendra, D.P.2
Jin, S.M.3
Tekle, E.4
Banerjee, S.5
Youle, R.J.6
-
115
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Y. Chen, and G.W. Dorn 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria Science 340 2013 471 475
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
116
-
-
84870013071
-
Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy
-
Y. Sun, A.A. Vashisht, J. Tchieu, J.A. Wohlschlegel, and L. Dreier Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy J. Biol. Chem. 287 2012 40652 40660
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 40652-40660
-
-
Sun, Y.1
Vashisht, A.A.2
Tchieu, J.3
Wohlschlegel, J.A.4
Dreier, L.5
-
117
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
S.R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane J. Biol. Chem. 286 2011 19630 19640
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
118
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
L.A. Kane, M. Lazarou, A.I. Fogel, Y. Li, K. Yamano, S.A. Sarraf, S. Banerjee, and R.J. Youle PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity J. Cell Biol. 205 2014 143 153
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
119
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
F. Koyano, K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, T. Endo, E.A. Fon, J.F. Trempe, Y. Saeki, K. Tanaka, and N. Matsuda Ubiquitin is phosphorylated by PINK1 to activate parkin Nature 510 2014 162 166
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
Endo, T.11
Fon, E.A.12
Trempe, J.F.13
Saeki, Y.14
Tanaka, K.15
Matsuda, N.16
-
120
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes parkin mitochondrial tethering
-
K. Shiba-Fukushima, T. Arano, G. Matsumoto, T. Inoshita, S. Yoshida, Y. Ishihama, K.Y. Ryu, N. Nukina, N. Hattori, and Y. Imai Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes parkin mitochondrial tethering PLoS Genet. 10 2014 e1004861
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004861
-
-
Shiba-Fukushima, K.1
Arano, T.2
Matsumoto, G.3
Inoshita, T.4
Yoshida, S.5
Ishihama, Y.6
Ryu, K.Y.7
Nukina, N.8
Hattori, N.9
Imai, Y.10
-
121
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
A. Kazlauskaite, C. Kondapalli, R. Gourlay, D.G. Campbell, M.S. Ritorto, K. Hofmann, D.R. Alessi, A. Knebel, M. Trost, and M.M. Muqit Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 Biochem. J. 460 2014 127 139
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
122
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
A. Ordureau, S.A. Sarraf, D.M. Duda, J.M. Heo, M.P. Jedrychowski, V.O. Sviderskiy, J.L. Olszewski, J.T. Koerber, T. Xie, S.A. Beausoleil, J.A. Wells, S.P. Gygi, B.A. Schulman, and J.W. Harper Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis Mol. Cell 56 2014 360 375
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
Sarraf, S.A.2
Duda, D.M.3
Heo, J.M.4
Jedrychowski, M.P.5
Sviderskiy, V.O.6
Olszewski, J.L.7
Koerber, J.T.8
Xie, T.9
Beausoleil, S.A.10
Wells, J.A.11
Gygi, S.P.12
Schulman, B.A.13
Harper, J.W.14
-
123
-
-
84922461239
-
PINK1-PARKIN interplay: Down to ubiquitin phosphorylation
-
A. Stolz, and I. Dikic PINK1-PARKIN interplay: down to ubiquitin phosphorylation Mol. Cell 56 2014 341 342
-
(2014)
Mol. Cell
, vol.56
, pp. 341-342
-
-
Stolz, A.1
Dikic, I.2
-
124
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
S. Geisler, K.M. Holmstrom, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 Nat. Cell Biol. 12 2010 119 131
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
125
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
B. Bingol, J.S. Tea, L. Phu, M. Reichelt, C.E. Bakalarski, Q. Song, O. Foreman, D.S. Kirkpatrick, and M. Sheng The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy Nature 510 2014 370 375
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
Song, Q.6
Foreman, O.7
Kirkpatrick, D.S.8
Sheng, M.9
-
126
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
T. Cornelissen, D. Haddad, F. Wauters, C. Van Humbeeck, W. Mandemakers, B. Koentjoro, C. Sue, K. Gevaert, B. De Strooper, P. Verstreken, and W. Vandenberghe The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy Hum. Mol. Genet. 23 2014 5227 5242
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
Haddad, D.2
Wauters, F.3
Van Humbeeck, C.4
Mandemakers, W.5
Koentjoro, B.6
Sue, C.7
Gevaert, K.8
De Strooper, B.9
Verstreken, P.10
Vandenberghe, W.11
-
127
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
-
T.M. Durcan, M.Y. Tang, J.R. Perusse, E.A. Dashti, M.A. Aguileta, G.L. McLelland, P. Gros, T.A. Shaler, D. Faubert, B. Coulombe, and E.A. Fon USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin EMBO J. 33 2014 2473 2491
-
(2014)
EMBO J.
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
Tang, M.Y.2
Perusse, J.R.3
Dashti, E.A.4
Aguileta, M.A.5
McLelland, G.L.6
Gros, P.7
Shaler, T.A.8
Faubert, D.9
Coulombe, B.10
Fon, E.A.11
-
128
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
M.E. Gegg, J.M. Cooper, K.Y. Chau, M. Rojo, A.H. Schapira, and J.W. Taanman Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy Hum. Mol. Genet. 19 2010 4861 4870
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
129
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
-
A.C. Poole, R.E. Thomas, S. Yu, E.S. Vincow, and L. Pallanck The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway PLoS One 5 2010 e10054
-
(2010)
PLoS One
, vol.5
, pp. e10054
-
-
Poole, A.C.1
Thomas, R.E.2
Yu, S.3
Vincow, E.S.4
Pallanck, L.5
-
130
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
A. Tanaka, M.M. Cleland, S. Xu, D.P. Narendra, D.F. Suen, M. Karbowski, and R.J. Youle Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin J. Cell Biol. 191 2010 1367 1380
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
131
-
-
81055129611
-
PINK1 and Parkin flag Miro to direct mitochondrial traffic
-
L.A. Kane, and R.J. Youle PINK1 and Parkin flag Miro to direct mitochondrial traffic Cell 147 2011 721 723
-
(2011)
Cell
, vol.147
, pp. 721-723
-
-
Kane, L.A.1
Youle, R.J.2
-
132
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
X. Wang, D. Winter, G. Ashrafi, J. Schlehe, Y.L. Wong, D. Selkoe, S. Rice, J. Steen, M.J. LaVoie, and T.L. Schwarz PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility Cell 147 2011 893 906
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
Selkoe, D.6
Rice, S.7
Steen, J.8
LaVoie, M.J.9
Schwarz, T.L.10
-
133
-
-
84901407276
-
Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase
-
N. Birsa, R. Norkett, T. Wauer, T.E. Mevissen, H.C. Wu, T. Foltynie, K. Bhatia, W.D. Hirst, D. Komander, H. Plun-Favreau, and J.T. Kittler Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase J. Biol. Chem. 289 2014 14569 14582
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 14569-14582
-
-
Birsa, N.1
Norkett, R.2
Wauer, T.3
Mevissen, T.E.4
Wu, H.C.5
Foltynie, T.6
Bhatia, K.7
Hirst, W.D.8
Komander, D.9
Plun-Favreau, H.10
Kittler, J.T.11
-
134
-
-
84906861963
-
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
-
G. Ashrafi, J.S. Schlehe, M.J. LaVoie, and T.L. Schwarz Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin J. Cell Biol. 206 2014 655 670
-
(2014)
J. Cell Biol.
, vol.206
, pp. 655-670
-
-
Ashrafi, G.1
Schlehe, J.S.2
LaVoie, M.J.3
Schwarz, T.L.4
-
135
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
S. Pankiv, T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J. Biol. Chem. 282 2007 24131 24145
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
136
-
-
77952326081
-
Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
J.Y. Lee, Y. Nagano, J.P. Taylor, K.L. Lim, and T.P. Yao Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy J. Cell Biol. 189 2010 671 679
-
(2010)
J. Cell Biol.
, vol.189
, pp. 671-679
-
-
Lee, J.Y.1
Nagano, Y.2
Taylor, J.P.3
Lim, K.L.4
Yao, T.P.5
-
137
-
-
84887496533
-
Drosophila ref(2)P is required for the parkin-mediated suppression of mitochondrial dysfunction in pink1 mutants
-
I.P. de Castro, A.C. Costa, I. Celardo, R. Tufi, D. Dinsdale, S.H. Loh, and L.M. Martins Drosophila ref(2)P is required for the parkin-mediated suppression of mitochondrial dysfunction in pink1 mutants Cell Death Dis. 4 2013 e873
-
(2013)
Cell Death Dis.
, vol.4
, pp. e873
-
-
De Castro, I.P.1
Costa, A.C.2
Celardo, I.3
Tufi, R.4
Dinsdale, D.5
Loh, S.H.6
Martins, L.M.7
-
138
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
D. Narendra, L.A. Kane, D.N. Hauser, I.M. Fearnley, and R.J. Youle p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both Autophagy 6 2010 1090 1106
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
139
-
-
77954695260
-
P62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
K. Okatsu, K. Saisho, M. Shimanuki, K. Nakada, H. Shitara, Y.S. Sou, M. Kimura, S. Sato, N. Hattori, M. Komatsu, K. Tanaka, and N. Matsuda p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria Genes Cells 15 2010 887 900
-
(2010)
Genes Cells
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
Sou, Y.S.6
Kimura, M.7
Sato, S.8
Hattori, N.9
Komatsu, M.10
Tanaka, K.11
Matsuda, N.12
-
140
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
T. Kanki, K. Wang, M. Baba, C.R. Bartholomew, M.A. Lynch-Day, Z. Du, J. Geng, K. Mao, Z. Yang, W.L. Yen, and D.J. Klionsky A genomic screen for yeast mutants defective in selective mitochondria autophagy Mol. Biol. Cell 20 2009 4730 4738
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.7
Mao, K.8
Yang, Z.9
Yen, W.L.10
Klionsky, D.J.11
-
141
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy Dev. Cell 17 2009 87 97
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
142
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
N. Kondo-Okamoto, N.N. Noda, S.W. Suzuki, H. Nakatogawa, I. Takahashi, M. Matsunami, A. Hashimoto, F. Inagaki, Y. Ohsumi, and K. Okamoto Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy J. Biol. Chem. 287 2012 10631 10638
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
143
-
-
84887472941
-
Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
-
K. Wang, M. Jin, X. Liu, and D.J. Klionsky Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy Autophagy 9 2013 1828 1836
-
(2013)
Autophagy
, vol.9
, pp. 1828-1836
-
-
Wang, K.1
Jin, M.2
Liu, X.3
Klionsky, D.J.4
-
144
-
-
80052197610
-
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
-
Y. Aoki, T. Kanki, Y. Hirota, Y. Kurihara, T. Saigusa, T. Uchiumi, and D. Kang Phosphorylation of Serine 114 on Atg32 mediates mitophagy Mol. Biol. Cell 22 2011 3206 3217
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
145
-
-
84883487916
-
Casein kinase 2 is essential for mitophagy
-
T. Kanki, Y. Kurihara, X. Jin, T. Goda, Y. Ono, M. Aihara, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, and D. Kang Casein kinase 2 is essential for mitophagy EMBO Rep. 14 2013 788 794
-
(2013)
EMBO Rep.
, vol.14
, pp. 788-794
-
-
Kanki, T.1
Kurihara, Y.2
Jin, X.3
Goda, T.4
Ono, Y.5
Aihara, M.6
Hirota, Y.7
Saigusa, T.8
Aoki, Y.9
Uchiumi, T.10
Kang, D.11
-
146
-
-
84903817207
-
Receptor-mediated mitophagy in yeast and mammalian systems
-
L. Liu, K. Sakakibara, Q. Chen, and K. Okamoto Receptor-mediated mitophagy in yeast and mammalian systems Cell Res. 24 2014 787 795
-
(2014)
Cell Res.
, vol.24
, pp. 787-795
-
-
Liu, L.1
Sakakibara, K.2
Chen, Q.3
Okamoto, K.4
-
147
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
J. Zhang, and P.A. Ney Role of BNIP3 and NIX in cell death, autophagy, and mitophagy Cell Death Differ. 16 2009 939 946
-
(2009)
Cell Death Differ.
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
148
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
I. Novak, V. Kirkin, D.G. McEwan, J. Zhang, P. Wild, A. Rozenknop, V. Rogov, F. Lohr, D. Popovic, A. Occhipinti, A.S. Reichert, J. Terzic, V. Dotsch, P.A. Ney, and I. Dikic Nix is a selective autophagy receptor for mitochondrial clearance EMBO Rep. 11 2010 45 51
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
Reichert, A.S.11
Terzic, J.12
Dotsch, V.13
Ney, P.A.14
Dikic, I.15
-
149
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Y. Nishida, S. Arakawa, K. Fujitani, H. Yamaguchi, T. Mizuta, T. Kanaseki, M. Komatsu, K. Otsu, Y. Tsujimoto, and S. Shimizu Discovery of Atg5/Atg7-independent alternative macroautophagy Nature 461 2009 654 658
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
Arakawa, S.2
Fujitani, K.3
Yamaguchi, H.4
Mizuta, T.5
Kanaseki, T.6
Komatsu, M.7
Otsu, K.8
Tsujimoto, Y.9
Shimizu, S.10
-
150
-
-
84902007678
-
Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
-
S. Honda, S. Arakawa, Y. Nishida, H. Yamaguchi, E. Ishii, and S. Shimizu Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes Nat. Commun. 5 2014 4004
-
(2014)
Nat. Commun.
, vol.5
, pp. 4004
-
-
Honda, S.1
Arakawa, S.2
Nishida, Y.3
Yamaguchi, H.4
Ishii, E.5
Shimizu, S.6
-
151
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
R.A. Hanna, M.N. Quinsay, A.M. Orogo, K. Giang, S. Rikka, and A.B. Gustafsson Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy J. Biol. Chem. 287 2012 19094 19104
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
152
-
-
84911988907
-
BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke
-
R.Y. Shi, S.H. Zhu, V. Li, S.B. Gibson, X.S. Xu, and J.M. Kong BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke CNS Neurosci. Ther. 20 2014 1045 1055
-
(2014)
CNS Neurosci. Ther.
, vol.20
, pp. 1045-1055
-
-
Shi, R.Y.1
Zhu, S.H.2
Li, V.3
Gibson, S.B.4
Xu, X.S.5
Kong, J.M.6
-
153
-
-
84929709305
-
The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway
-
F. Gao, D. Chen, J. Si, Q. Hu, Z. Qin, M. Fang, and G. Wang The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway Hum Mol Genet 24 2015 2528 2538
-
(2015)
Hum Mol Genet
, vol.24
, pp. 2528-2538
-
-
Gao, F.1
Chen, D.2
Si, J.3
Hu, Q.4
Qin, Z.5
Fang, M.6
Wang, G.7
-
154
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
L. Liu, D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, L. Huang, P. Xue, B. Li, X. Wang, H. Jin, J. Wang, F. Yang, P. Liu, Y. Zhu, S. Sui, and Q. Chen Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells Nat. Cell Biol. 14 2012 177 185
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
Huang, L.11
Xue, P.12
Li, B.13
Wang, X.14
Jin, H.15
Wang, J.16
Yang, F.17
Liu, P.18
Zhu, Y.19
Sui, S.20
Chen, Q.21
more..
-
155
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
G. Chen, Z. Han, D. Feng, Y. Chen, L. Chen, H. Wu, L. Huang, C. Zhou, X. Cai, C. Fu, L. Duan, X. Wang, L. Liu, X. Liu, Y. Shen, Y. Zhu, and Q. Chen A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy Mol. Cell 54 2014 362 377
-
(2014)
Mol. Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
Huang, L.7
Zhou, C.8
Cai, X.9
Fu, C.10
Duan, L.11
Wang, X.12
Liu, L.13
Liu, X.14
Shen, Y.15
Zhu, Y.16
Chen, Q.17
-
156
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
W. Wu, W. Tian, Z. Hu, G. Chen, L. Huang, W. Li, X. Zhang, P. Xue, C. Zhou, L. Liu, Y. Zhu, X. Zhang, L. Li, L. Zhang, S. Sui, B. Zhao, and D. Feng ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy EMBO Rep. 15 2014 566 575
-
(2014)
EMBO Rep.
, vol.15
, pp. 566-575
-
-
Wu, W.1
Tian, W.2
Hu, Z.3
Chen, G.4
Huang, L.5
Li, W.6
Zhang, X.7
Xue, P.8
Zhou, C.9
Liu, L.10
Zhu, Y.11
Zhang, X.12
Li, L.13
Zhang, L.14
Sui, S.15
Zhao, B.16
Feng, D.17
-
157
-
-
84898619521
-
MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX
-
W. Li, X. Zhang, H. Zhuang, H.G. Chen, Y. Chen, W. Tian, W. Wu, Y. Li, S. Wang, L. Zhang, Y. Chen, L. Li, B. Zhao, S. Sui, Z. Hu, and D. Feng MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX J. Biol. Chem. 289 2014 10691 10701
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 10691-10701
-
-
Li, W.1
Zhang, X.2
Zhuang, H.3
Chen, H.G.4
Chen, Y.5
Tian, W.6
Wu, W.7
Li, Y.8
Wang, S.9
Zhang, L.10
Chen, Y.11
Li, L.12
Zhao, B.13
Sui, S.14
Hu, Z.15
Feng, D.16
-
158
-
-
84919777530
-
Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy
-
S. Park, S.G. Choi, S.M. Yoo, J.H. Son, and Y.K. Jung Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy Autophagy 10 2014
-
(2014)
Autophagy
, vol.10
-
-
Park, S.1
Choi, S.G.2
Yoo, S.M.3
Son, J.H.4
Jung, Y.K.5
-
159
-
-
84858791998
-
Mitochondrial quality control: A matter of life and death for neurons
-
E.I. Rugarli, and T. Langer Mitochondrial quality control: a matter of life and death for neurons EMBO J. 31 2012 1336 1349
-
(2012)
EMBO J.
, vol.31
, pp. 1336-1349
-
-
Rugarli, E.I.1
Langer, T.2
-
160
-
-
84897567836
-
Mitochondrial trafficking and anchoring in neurons: New insight and implications
-
Z.H. Sheng Mitochondrial trafficking and anchoring in neurons: new insight and implications J. Cell Biol. 204 2014 1087 1098
-
(2014)
J. Cell Biol.
, vol.204
, pp. 1087-1098
-
-
Sheng, Z.H.1
-
161
-
-
0013832794
-
Lysomes in the rat sciatic nerve following crush
-
E. Holtzman, and A.B. Novikoff Lysomes in the rat sciatic nerve following crush J. Cell Biol. 27 1965 651 669
-
(1965)
J. Cell Biol.
, vol.27
, pp. 651-669
-
-
Holtzman, E.1
Novikoff, A.B.2
-
162
-
-
77957325618
-
Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons
-
Q. Cai, L. Lu, J.H. Tian, Y.B. Zhu, H. Qiao, and Z.H. Sheng Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons Neuron 68 2010 73 86
-
(2010)
Neuron
, vol.68
, pp. 73-86
-
-
Cai, Q.1
Lu, L.2
Tian, J.H.3
Zhu, Y.B.4
Qiao, H.5
Sheng, Z.H.6
-
163
-
-
79957663035
-
Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy
-
S. Lee, Y. Sato, and R.A. Nixon Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy J. Neurosci. 31 2011 7817 7830
-
(2011)
J. Neurosci.
, vol.31
, pp. 7817-7830
-
-
Lee, S.1
Sato, Y.2
Nixon, R.A.3
-
164
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara, R. Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano, and N. Mizushima Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature 441 2006 885 889
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
165
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata, I. Tanida, T. Ueno, M. Koike, Y. Uchiyama, E. Kominami, and K. Tanaka Loss of autophagy in the central nervous system causes neurodegeneration in mice Nature 441 2006 880 884
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
166
-
-
84879712698
-
Autophagy in axonal and dendritic degeneration
-
Y. Yang, M. Coleman, L. Zhang, X. Zheng, and Z. Yue Autophagy in axonal and dendritic degeneration Trends Neurosci. 36 2013 418 428
-
(2013)
Trends Neurosci.
, vol.36
, pp. 418-428
-
-
Yang, Y.1
Coleman, M.2
Zhang, L.3
Zheng, X.4
Yue, Z.5
-
167
-
-
84869041395
-
Development and characterization of a new Parkinson's disease model resulting from impaired autophagy
-
I. Ahmed, Y. Liang, S. Schools, V.L. Dawson, T.M. Dawson, and J.M. Savitt Development and characterization of a new Parkinson's disease model resulting from impaired autophagy J. Neurosci. 32 2012 16503 16509
-
(2012)
J. Neurosci.
, vol.32
, pp. 16503-16509
-
-
Ahmed, I.1
Liang, Y.2
Schools, S.3
Dawson, V.L.4
Dawson, T.M.5
Savitt, J.M.6
-
168
-
-
84897048042
-
Mitochondrial quality control in neurodegenerative diseases
-
L. Dupuis Mitochondrial quality control in neurodegenerative diseases Biochimie 100 2014 177 183
-
(2014)
Biochimie
, vol.100
, pp. 177-183
-
-
Dupuis, L.1
-
169
-
-
84890803688
-
Autophagy and apoptosis dysfunction in neurodegenerative disorders
-
S. Ghavami, S. Shojaei, B. Yeganeh, S.R. Ande, J.R. Jangamreddy, M. Mehrpour, J. Christoffersson, W. Chaabane, A.R. Moghadam, H.H. Kashani, M. Hashemi, A.A. Owji, and M.J. Los Autophagy and apoptosis dysfunction in neurodegenerative disorders Prog. Neurobiol. 112 2014 24 49
-
(2014)
Prog. Neurobiol.
, vol.112
, pp. 24-49
-
-
Ghavami, S.1
Shojaei, S.2
Yeganeh, B.3
Ande, S.R.4
Jangamreddy, J.R.5
Mehrpour, M.6
Christoffersson, J.7
Chaabane, W.8
Moghadam, A.R.9
Kashani, H.H.10
Hashemi, M.11
Owji, A.A.12
Los, M.J.13
-
170
-
-
84899741813
-
Involvement of autophagy in hypoxic-excitotoxic neuronal death
-
V. Ginet, A. Spiehlmann, C. Rummel, N. Rudinskiy, Y. Grishchuk, R. Luthi-Carter, P.G. Clarke, A.C. Truttmann, and J. Puyal Involvement of autophagy in hypoxic-excitotoxic neuronal death Autophagy 10 2014 846 860
-
(2014)
Autophagy
, vol.10
, pp. 846-860
-
-
Ginet, V.1
Spiehlmann, A.2
Rummel, C.3
Rudinskiy, N.4
Grishchuk, Y.5
Luthi-Carter, R.6
Clarke, P.G.7
Truttmann, A.C.8
Puyal, J.9
-
171
-
-
84858701257
-
Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
-
Q. Cai, H.M. Zakaria, A. Simone, and Z.H. Sheng Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons Curr. Biol. 22 2012 545 552
-
(2012)
Curr. Biol.
, vol.22
, pp. 545-552
-
-
Cai, Q.1
Zakaria, H.M.2
Simone, A.3
Sheng, Z.H.4
-
172
-
-
3242875557
-
Axonal mitochondrial transport and potential are correlated
-
K.E. Miller, and M.P. Sheetz Axonal mitochondrial transport and potential are correlated J. Cell Sci. 117 2004 2791 2804
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2791-2804
-
-
Miller, K.E.1
Sheetz, M.P.2
-
173
-
-
51149106133
-
Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling
-
J. Verburg, and P.J. Hollenbeck Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling J. Neurosci. 28 2008 8306 8315
-
(2008)
J. Neurosci.
, vol.28
, pp. 8306-8315
-
-
Verburg, J.1
Hollenbeck, P.J.2
-
174
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
S.A. Sarraf, M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization Nature 496 2013 372 376
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
175
-
-
84857858536
-
Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
-
S. Maday, K.E. Wallace, and E.L. Holzbaur Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons J. Cell Biol. 196 2012 407 417
-
(2012)
J. Cell Biol.
, vol.196
, pp. 407-417
-
-
Maday, S.1
Wallace, K.E.2
Holzbaur, E.L.3
-
176
-
-
33646768127
-
Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent
-
E.E. Glater, L.J. Megeath, R.S. Stowers, and T.L. Schwarz Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent J. Cell Biol. 173 2006 545 557
-
(2006)
J. Cell Biol.
, vol.173
, pp. 545-557
-
-
Glater, E.E.1
Megeath, L.J.2
Stowers, R.S.3
Schwarz, T.L.4
-
177
-
-
84859237566
-
Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
-
S. Liu, T. Sawada, S. Lee, W. Yu, G. Silverio, P. Alapatt, I. Millan, A. Shen, W. Saxton, T. Kanao, R. Takahashi, N. Hattori, Y. Imai, and B. Lu Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria PLoS Genet. 8 2012 e1002537
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002537
-
-
Liu, S.1
Sawada, T.2
Lee, S.3
Yu, W.4
Silverio, G.5
Alapatt, P.6
Millan, I.7
Shen, A.8
Saxton, W.9
Kanao, T.10
Takahashi, R.11
Hattori, N.12
Imai, Y.13
Lu, B.14
-
178
-
-
64549112144
-
Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking
-
A. Weihofen, K.J. Thomas, B.L. Ostaszewski, M.R. Cookson, and D.J. Selkoe Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking Biochemistry 48 2009 2045 2052
-
(2009)
Biochemistry
, vol.48
, pp. 2045-2052
-
-
Weihofen, A.1
Thomas, K.J.2
Ostaszewski, B.L.3
Cookson, M.R.4
Selkoe, D.J.5
-
179
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
N.C. Chan, A.M. Salazar, A.H. Pham, M.J. Sweredoski, N.J. Kolawa, R.L. Graham, S. Hess, and D.C. Chan Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy Hum. Mol. Genet. 20 2011 1726 1737
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
180
-
-
33748154216
-
Induction of autophagy in axonal dystrophy and degeneration
-
Q.J. Wang, Y. Ding, D.S. Kohtz, N. Mizushima, I.M. Cristea, M.P. Rout, B.T. Chait, Y. Zhong, N. Heintz, and Z. Yue Induction of autophagy in axonal dystrophy and degeneration J. Neurosci. 26 2006 8057 8068
-
(2006)
J. Neurosci.
, vol.26
, pp. 8057-8068
-
-
Wang, Q.J.1
Ding, Y.2
Kohtz, D.S.3
Mizushima, N.4
Cristea, I.M.5
Rout, M.P.6
Chait, B.T.7
Zhong, Y.8
Heintz, N.9
Yue, Z.10
-
181
-
-
84903694914
-
Transcellular degradation of axonal mitochondria
-
C.H. Davis, K.Y. Kim, E.A. Bushong, E.A. Mills, D. Boassa, T. Shih, M. Kinebuchi, S. Phan, Y. Zhou, N.A. Bihlmeyer, J.V. Nguyen, Y. Jin, M.H. Ellisman, and N. Marsh-Armstrong Transcellular degradation of axonal mitochondria Proc. Natl. Acad. Sci. U. S. A. 111 2014 9633 9638
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 9633-9638
-
-
Davis, C.H.1
Kim, K.Y.2
Bushong, E.A.3
Mills, E.A.4
Boassa, D.5
Shih, T.6
Kinebuchi, M.7
Phan, S.8
Zhou, Y.9
Bihlmeyer, N.A.10
Nguyen, J.V.11
Jin, Y.12
Ellisman, M.H.13
Marsh-Armstrong, N.14
-
183
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
M. Martinez-Vicente, Z. Talloczy, E. Wong, G. Tang, H. Koga, S. Kaushik, R. de Vries, E. Arias, S. Harris, D. Sulzer, and A.M. Cuervo Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease Nat. Neurosci. 13 2010 567 576
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
Talloczy, Z.2
Wong, E.3
Tang, G.4
Koga, H.5
Kaushik, S.6
De Vries, R.7
Arias, E.8
Harris, S.9
Sulzer, D.10
Cuervo, A.M.11
-
184
-
-
84921369563
-
The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease
-
A.M. Pickrell, and R.J. Youle The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease Neuron 85 2015 257 273
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
185
-
-
33646375711
-
High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
-
A. Bender, K.J. Krishnan, C.M. Morris, G.A. Taylor, A.K. Reeve, R.H. Perry, E. Jaros, J.S. Hersheson, J. Betts, T. Klopstock, R.W. Taylor, and D.M. Turnbull High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease Nat. Genet. 38 2006 515 517
-
(2006)
Nat. Genet.
, vol.38
, pp. 515-517
-
-
Bender, A.1
Krishnan, K.J.2
Morris, C.M.3
Taylor, G.A.4
Reeve, A.K.5
Perry, R.H.6
Jaros, E.7
Hersheson, J.S.8
Betts, J.9
Klopstock, T.10
Taylor, R.W.11
Turnbull, D.M.12
-
186
-
-
33646351299
-
Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
-
Y. Kraytsberg, E. Kudryavtseva, A.C. McKee, C. Geula, N.W. Kowall, and K. Khrapko Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons Nat. Genet. 38 2006 518 520
-
(2006)
Nat. Genet.
, vol.38
, pp. 518-520
-
-
Kraytsberg, Y.1
Kudryavtseva, E.2
McKee, A.C.3
Geula, C.4
Kowall, N.W.5
Khrapko, K.6
-
187
-
-
58849164675
-
Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family
-
D.W. Ethell, and Q. Fei Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family Antioxid. Redox Signal. 11 2009 529 540
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 529-540
-
-
Ethell, D.W.1
Fei, Q.2
-
188
-
-
79551603345
-
Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization
-
V.S. Van Laar, B. Arnold, S.J. Cassady, C.T. Chu, E.A. Burton, and S.B. Berman Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization Hum. Mol. Genet. 20 2011 927 940
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 927-940
-
-
Van Laar, V.S.1
Arnold, B.2
Cassady, S.J.3
Chu, C.T.4
Burton, E.A.5
Berman, S.B.6
-
189
-
-
79961239061
-
Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
-
F.H. Sterky, S. Lee, R. Wibom, L. Olson, and N.G. Larsson Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo Proc. Natl. Acad. Sci. U. S. A. 108 2011 12937 12942
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 12937-12942
-
-
Sterky, F.H.1
Lee, S.2
Wibom, R.3
Olson, L.4
Larsson, N.G.5
-
190
-
-
84868087279
-
ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons
-
A.P. Joselin, S.J. Hewitt, S.M. Callaghan, R.H. Kim, Y.H. Chung, T.W. Mak, J. Shen, R.S. Slack, and D.S. Park ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons Hum. Mol. Genet. 21 2012 4888 4903
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 4888-4903
-
-
Joselin, A.P.1
Hewitt, S.J.2
Callaghan, S.M.3
Kim, R.H.4
Chung, Y.H.5
Mak, T.W.6
Shen, J.7
Slack, R.S.8
Park, D.S.9
-
191
-
-
38549164060
-
Glial dysfunction in parkin null mice: Effects of aging
-
R.M. Solano, M.J. Casarejos, J. Menendez-Cuervo, J.A. Rodriguez-Navarro, J. Garcia de Yebenes, and M.A. Mena Glial dysfunction in parkin null mice: effects of aging J. Neurosci. 28 2008 598 611
-
(2008)
J. Neurosci.
, vol.28
, pp. 598-611
-
-
Solano, R.M.1
Casarejos, M.J.2
Menendez-Cuervo, J.3
Rodriguez-Navarro, J.A.4
Garcia De Yebenes, J.5
Mena, M.A.6
-
192
-
-
77956199031
-
A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease
-
R.X. Santos, S.C. Correia, X. Wang, G. Perry, M.A. Smith, P.I. Moreira, and X. Zhu A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease J. Alzheimers Dis. 20 Suppl. 2 2010 S401 S412
-
(2010)
J. Alzheimers Dis.
, vol.20
, pp. S401-S412
-
-
Santos, R.X.1
Correia, S.C.2
Wang, X.3
Perry, G.4
Smith, M.A.5
Moreira, P.I.6
Zhu, X.7
-
193
-
-
84939981400
-
Targeting the prodromal stage of Alzheimer's disease: Bioenergetic and mitochondrial opportunities
-
C.C. Caldwell, J. Yao, and R.D. Briton Targeting the prodromal stage of Alzheimer's disease: bioenergetic and mitochondrial opportunities Neurotherapeutics 12 2015 66 80
-
(2015)
Neurotherapeutics
, vol.12
, pp. 66-80
-
-
Caldwell, C.C.1
Yao, J.2
Briton, R.D.3
-
194
-
-
49049096562
-
Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
-
B. Boland, A. Kumar, S. Lee, F.M. Platt, J. Wegiel, W.H. Yu, and R.A. Nixon Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease J. Neurosci. 28 2008 6926 6937
-
(2008)
J. Neurosci.
, vol.28
, pp. 6926-6937
-
-
Boland, B.1
Kumar, A.2
Lee, S.3
Platt, F.M.4
Wegiel, J.5
Yu, W.H.6
Nixon, R.A.7
-
195
-
-
84859904873
-
Shaping the role of mitochondria in the pathogenesis of Huntington's disease
-
V. Costa, and L. Scorrano Shaping the role of mitochondria in the pathogenesis of Huntington's disease EMBO J. 31 2012 1853 1864
-
(2012)
EMBO J.
, vol.31
, pp. 1853-1864
-
-
Costa, V.1
Scorrano, L.2
-
197
-
-
0029875381
-
Mitochondrial defect in Huntington's disease caudate nucleus
-
M. Gu, M.T. Gash, V.M. Mann, F. Javoy-Agid, J.M. Cooper, and A.H. Schapira Mitochondrial defect in Huntington's disease caudate nucleus Ann. Neurol. 39 1996 385 389
-
(1996)
Ann. Neurol.
, vol.39
, pp. 385-389
-
-
Gu, M.1
Gash, M.T.2
Mann, V.M.3
Javoy-Agid, F.4
Cooper, J.M.5
Schapira, A.H.6
-
198
-
-
0036327065
-
Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines
-
A.V. Panov, C.A. Gutekunst, B.R. Leavitt, M.R. Hayden, J.R. Burke, W.J. Strittmatter, and J.T. Greenamyre Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines Nat. Neurosci. 5 2002 731 736
-
(2002)
Nat. Neurosci.
, vol.5
, pp. 731-736
-
-
Panov, A.V.1
Gutekunst, C.A.2
Leavitt, B.R.3
Hayden, M.R.4
Burke, J.R.5
Strittmatter, W.J.6
Greenamyre, J.T.7
-
199
-
-
33749042331
-
Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
L. Cui, H. Jeong, F. Borovecki, C.N. Parkhurst, N. Tanese, and D. Krainc Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration Cell 127 2006 59 69
-
(2006)
Cell
, vol.127
, pp. 59-69
-
-
Cui, L.1
Jeong, H.2
Borovecki, F.3
Parkhurst, C.N.4
Tanese, N.5
Krainc, D.6
-
200
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration
-
P. Weydt, V.V. Pineda, A.E. Torrence, R.T. Libby, T.F. Satterfield, E.R. Lazarowski, M.L. Gilbert, G.J. Morton, T.K. Bammler, A.D. Strand, L. Cui, R.P. Beyer, C.N. Easley, A.C. Smith, D. Krainc, S. Luquet, I.R. Sweet, M.W. Schwartz, and A.R. La Spada Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration Cell Metab. 4 2006 349 362
-
(2006)
Cell Metab.
, vol.4
, pp. 349-362
-
-
Weydt, P.1
Pineda, V.V.2
Torrence, A.E.3
Libby, R.T.4
Satterfield, T.F.5
Lazarowski, E.R.6
Gilbert, M.L.7
Morton, G.J.8
Bammler, T.K.9
Strand, A.D.10
Cui, L.11
Beyer, R.P.12
Easley, C.N.13
Smith, A.C.14
Krainc, D.15
Luquet, S.16
Sweet, I.R.17
Schwartz, M.W.18
La Spada, A.R.19
-
201
-
-
84863923855
-
PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
T. Tsunemi, T.D. Ashe, B.E. Morrison, K.R. Soriano, J. Au, R.A. Roque, E.R. Lazarowski, V.A. Damian, E. Masliah, and A.R. La Spada PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function Sci. Transl. Med. 4 2012 142ra197
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 142ra197
-
-
Tsunemi, T.1
Ashe, T.D.2
Morrison, B.E.3
Soriano, K.R.4
Au, J.5
Roque, R.A.6
Lazarowski, E.R.7
Damian, V.A.8
Masliah, E.9
La Spada, A.R.10
-
202
-
-
79959340106
-
Cell biology. Autophagy's top chef
-
A.M. Cuervo Cell biology. Autophagy's top chef Science 332 2011 1392 1393
-
(2011)
Science
, vol.332
, pp. 1392-1393
-
-
Cuervo, A.M.1
-
203
-
-
84927626719
-
PINK1-induced mitophagy promotes neuroprotection in Huntington's disease
-
B. Khalil, N. El Fissi, A. Aouane, M.J. Cabirol-Pol, T. Rival, and J.C. Lievens PINK1-induced mitophagy promotes neuroprotection in Huntington's disease Cell Death Dis. 6 2015 e1617
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1617
-
-
Khalil, B.1
El Fissi, N.2
Aouane, A.3
Cabirol-Pol, M.J.4
Rival, T.5
Lievens, J.C.6
-
204
-
-
84922666062
-
Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa
-
N.V. Kirienko, F.M. Ausubel, and G. Ruvkun Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa Proc. Natl. Acad. Sci. U. S. A. 112 2015 1821 1826
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 1821-1826
-
-
Kirienko, N.V.1
Ausubel, F.M.2
Ruvkun, G.3
-
205
-
-
84876213313
-
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
-
E.S. Vincow, G. Merrihew, R.E. Thomas, N.J. Shulman, R.P. Beyer, M.J. MacCoss, and L.J. Pallanck The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo Proc. Natl. Acad. Sci. U. S. A. 110 2013 6400 6405
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 6400-6405
-
-
Vincow, E.S.1
Merrihew, G.2
Thomas, R.E.3
Shulman, N.J.4
Beyer, R.P.5
MacCoss, M.J.6
Pallanck, L.J.7
-
206
-
-
43949092111
-
The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates
-
K. Lindmo, A. Brech, K.D. Finley, S. Gaumer, D. Contamine, T.E. Rusten, and H. Stenmark The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates Autophagy 4 2008 500 506
-
(2008)
Autophagy
, vol.4
, pp. 500-506
-
-
Lindmo, K.1
Brech, A.2
Finley, K.D.3
Gaumer, S.4
Contamine, D.5
Rusten, T.E.6
Stenmark, H.7
-
207
-
-
84923340794
-
Guidelines for monitoring autophagy in Caenorhabditis elegans
-
H. Zhang, J.T. Chang, B. Guo, M. Hansen, K. Jia, A.L. Kovacs, C. Kumsta, L.R. Lapierre, R. Legouis, L. Lin, Q. Lu, A. Melendez, E.J. O'Rourke, K. Sato, M. Sato, X. Wang, and F. Wu Guidelines for monitoring autophagy in Caenorhabditis elegans Autophagy 11 2015 9 27
-
(2015)
Autophagy
, vol.11
, pp. 9-27
-
-
Zhang, H.1
Chang, J.T.2
Guo, B.3
Hansen, M.4
Jia, K.5
Kovacs, A.L.6
Kumsta, C.7
Lapierre, L.R.8
Legouis, R.9
Lin, L.10
Lu, Q.11
Melendez, A.12
O'Rourke, E.J.13
Sato, K.14
Sato, M.15
Wang, X.16
Wu, F.17
-
208
-
-
21444442598
-
Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae
-
A. Neutzner, and R.J. Youle Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae J. Biol. Chem. 280 2005 18598 18603
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18598-18603
-
-
Neutzner, A.1
Youle, R.J.2
-
209
-
-
69449104405
-
The BCL-2-like protein CED-9 of C elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion
-
S.G. Rolland, Y. Lu, C.N. David, and B. Conradt The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion J. Cell Biol. 186 2009 525 540
-
(2009)
J. Cell Biol.
, vol.186
, pp. 525-540
-
-
Rolland, S.G.1
Lu, Y.2
David, C.N.3
Conradt, B.4
|