메뉴 건너뛰기




Volumn 2, Issue 1, 2014, Pages 123-139

Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions

Author keywords

Mitochondria; Redox; S glutathionylation; S nitrosylation; S oxidation

Indexed keywords

CYSTEINE; REACTIVE OXYGEN METABOLITE;

EID: 84892575903     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2013.12.011     Document Type: Review
Times cited : (253)

References (221)
  • 1
    • 84856556021 scopus 로고    scopus 로고
    • There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
    • Brown G.C., Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 2012, 12:1-4.
    • (2012) Mitochondrion , vol.12 , pp. 1-4
    • Brown, G.C.1    Borutaite, V.2
  • 2
    • 2442543417 scopus 로고    scopus 로고
    • Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport
    • Fernie A.R., Carrari F., Sweetlove L.J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7:254-261.
    • (2004) Curr. Opin. Plant Biol. , vol.7 , pp. 254-261
    • Fernie, A.R.1    Carrari, F.2    Sweetlove, L.J.3
  • 4
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012, 287:27255-27264.
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 6
    • 33750814320 scopus 로고    scopus 로고
    • Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool
    • Zhang J., Frerman F.E., Kim J.J. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc. Natl. Acad. Sci. USA 2006, 103:16212-16217.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 16212-16217
    • Zhang, J.1    Frerman, F.E.2    Kim, J.J.3
  • 7
    • 84871139444 scopus 로고    scopus 로고
    • A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
    • Orr A.L., Quinlan C.L., Perevoshchikova I.V., Brand M.D. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 2012, 287:42921-42935.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42921-42935
    • Orr, A.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Brand, M.D.4
  • 8
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 9
    • 80051783174 scopus 로고    scopus 로고
    • Uncoupling proteins and the control of mitochondrial reactive oxygen species production
    • Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 2011, 51:1106-1115.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 1106-1115
    • Mailloux, R.J.1    Harper, M.E.2
  • 10
    • 84888133598 scopus 로고    scopus 로고
    • Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
    • Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013, 38:592-632.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 592-632
    • Mailloux, R.J.1    McBride, S.L.2    Harper, M.E.3
  • 12
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan C.L., Perevoshchikova I.V., Hey-Mogensen M., Orr A.L., Brand M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1:304-312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 17
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35:505-513.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 21
    • 79960209663 scopus 로고    scopus 로고
    • The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'
    • Schwarzlander M., Logan D.C., Fricker M.D., Sweetlove L.J. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'. Biochem. J. 2011, 437:381-387.
    • (2011) Biochem. J. , vol.437 , pp. 381-387
    • Schwarzlander, M.1    Logan, D.C.2    Fricker, M.D.3    Sweetlove, L.J.4
  • 23
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
    • Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 2012, 16:476-495.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 476-495
    • Murphy, M.P.1
  • 24
    • 80051794514 scopus 로고    scopus 로고
    • Hepatic response to aluminum toxicity: dyslipidemia and liver diseases
    • Mailloux R.J., Lemire J., Appanna V.D. Hepatic response to aluminum toxicity: dyslipidemia and liver diseases. Exp. Cell Res. 2011, 317:2231-2238.
    • (2011) Exp. Cell Res. , vol.317 , pp. 2231-2238
    • Mailloux, R.J.1    Lemire, J.2    Appanna, V.D.3
  • 25
    • 19544392527 scopus 로고    scopus 로고
    • Nitrosative stress and pharmacological modulation of heart failure
    • Pacher P., Schulz R., Liaudet L., Szabo C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol. Sci. 2005, 26:302-310.
    • (2005) Trends Pharmacol. Sci. , vol.26 , pp. 302-310
    • Pacher, P.1    Schulz, R.2    Liaudet, L.3    Szabo, C.4
  • 26
    • 80054103378 scopus 로고    scopus 로고
    • Evolution. The costs of breathing
    • Lane N. Evolution. The costs of breathing. Science 2011, 334:184-185.
    • (2011) Science , vol.334 , pp. 184-185
    • Lane, N.1
  • 27
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416:15-18.
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 28
    • 79959716502 scopus 로고    scopus 로고
    • Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
    • Mailloux R.J., Dumouchel T., Aguer C., Dekemp R., Beanlands R., Harper M.E. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
    • (2011) Biochem. J. , vol.437 , pp. 301-311
    • Mailloux, R.J.1    Dumouchel, T.2    Aguer, C.3    Dekemp, R.4    Beanlands, R.5    Harper, M.E.6
  • 29
    • 0036139856 scopus 로고    scopus 로고
    • The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology
    • Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 2001, 52:159-164.
    • (2001) IUBMB Life , vol.52 , pp. 159-164
    • Lenaz, G.1
  • 30
    • 77958542380 scopus 로고    scopus 로고
    • Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently
    • Pouvreau S. Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 2010, 5:e13035.
    • (2010) PLoS One , vol.5
    • Pouvreau, S.1
  • 31
    • 2442714587 scopus 로고    scopus 로고
    • Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase
    • Lee I., Bender E., Kadenbach B. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol. Cell. Biochem. 2002, 234-235:63-70.
    • (2002) Mol. Cell. Biochem. , pp. 63-70
    • Lee, I.1    Bender, E.2    Kadenbach, B.3
  • 33
    • 78650890352 scopus 로고    scopus 로고
    • Regulation of autophagy by ROS: physiology and pathology
    • Scherz-Shouval R., Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 2011, 36:30-38.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 30-38
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 35
    • 84886246212 scopus 로고    scopus 로고
    • Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from Complex I
    • Maranzana E., Barbero G., Falasca A.I., Lenaz G., Genova M.L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from Complex I. Antioxid. Redox Signal. 2013, 19:1469-1480.
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 1469-1480
    • Maranzana, E.1    Barbero, G.2    Falasca, A.I.3    Lenaz, G.4    Genova, M.L.5
  • 37
    • 84860481279 scopus 로고    scopus 로고
    • Regulation of mitochondrial processes by protein S-nitrosylation
    • Piantadosi C.A. Regulation of mitochondrial processes by protein S-nitrosylation. Biochim. Biophys. Acta 2012, 1820:712-721.
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 712-721
    • Piantadosi, C.A.1
  • 38
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 39
    • 84865434841 scopus 로고    scopus 로고
    • Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
    • Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 2012, 23:451-458.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 451-458
    • Mailloux, R.J.1    Harper, M.E.2
  • 40
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48:158-167.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 41
    • 67651102789 scopus 로고    scopus 로고
    • Shear flow increases S-nitrosylation of proteins in endothelial cells
    • Huang B., Chen S.C., Wang D.L. Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc. Res. 2009, 83:536-546.
    • (2009) Cardiovasc. Res. , vol.83 , pp. 536-546
    • Huang, B.1    Chen, S.C.2    Wang, D.L.3
  • 42
    • 79957441981 scopus 로고    scopus 로고
    • The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance
    • Lindahl M., Mata-Cabana A., Kieselbach T. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid. Redox Signal. 2011, 14:2581-2642.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 2581-2642
    • Lindahl, M.1    Mata-Cabana, A.2    Kieselbach, T.3
  • 44
    • 79951679054 scopus 로고    scopus 로고
    • Regulation of iron pathways in response to hypoxia
    • Chepelev N.L., Willmore W.G. Regulation of iron pathways in response to hypoxia. Free Radic. Biol. Med. 2011, 50:645-666.
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 645-666
    • Chepelev, N.L.1    Willmore, W.G.2
  • 45
    • 84866391042 scopus 로고    scopus 로고
    • Reactive cysteine in the structural Zn(2+) site of the C1B domain from PKCalpha
    • Stewart M.D., Igumenova T.I. Reactive cysteine in the structural Zn(2+) site of the C1B domain from PKCalpha. Biochemistry 2012, 51:7263-7277.
    • (2012) Biochemistry , vol.51 , pp. 7263-7277
    • Stewart, M.D.1    Igumenova, T.I.2
  • 46
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460:831-838.
    • (2009) Nature , vol.460 , pp. 831-838
    • Lill, R.1
  • 47
    • 0026333511 scopus 로고
    • The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580-Ala mutant
    • Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580-Ala mutant. J. Biol. Chem. 1991, 266:23977-23984.
    • (1991) J. Biol. Chem. , vol.266 , pp. 23977-23984
    • Velan, B.1    Grosfeld, H.2    Kronman, C.3    Leitner, M.4    Gozes, Y.5    Lazar, A.6    Flashner, Y.7    Marcus, D.8    Cohen, S.9    Shafferman, A.10
  • 48
    • 84883674898 scopus 로고    scopus 로고
    • The redox biochemistry of protein sulfenylation and sulfinylation
    • Lo Conte M., Carroll K.S. The redox biochemistry of protein sulfenylation and sulfinylation. J. Biol. Chem. 2013, 288:26480-26488.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26480-26488
    • Lo Conte, M.1    Carroll, K.S.2
  • 49
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • Winterbourn C.C., Hampton M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 2008, 45:549-561.
    • (2008) Free Radic. Biol. Med. , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 50
    • 0018788586 scopus 로고
    • The role of cysteine residues in the catalytic activity of glycerol-3-phosphate dehydrogenase
    • Smith R.E., MacQuarrie R. The role of cysteine residues in the catalytic activity of glycerol-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1979, 567:269-277.
    • (1979) Biochim. Biophys. Acta , vol.567 , pp. 269-277
    • Smith, R.E.1    MacQuarrie, R.2
  • 51
    • 0028886558 scopus 로고
    • Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family
    • Kortemme T., Creighton T.E. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J. Mol. Biol. 1995, 253:799-812.
    • (1995) J. Mol. Biol. , vol.253 , pp. 799-812
    • Kortemme, T.1    Creighton, T.E.2
  • 52
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
    • Gallogly M.M., Starke D.W., Mieyal J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1059-1081
    • Gallogly, M.M.1    Starke, D.W.2    Mieyal, J.J.3
  • 53
    • 84865612521 scopus 로고    scopus 로고
    • The biological roles of glutaredoxins
    • Stroher E., Millar A.H. The biological roles of glutaredoxins. Biochem. J. 2012, 446:333-348.
    • (2012) Biochem. J. , vol.446 , pp. 333-348
    • Stroher, E.1    Millar, A.H.2
  • 54
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • Cox A.G., Winterbourn C.C., Hampton M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 2010, 425:313-325.
    • (2010) Biochem. J. , vol.425 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 55
    • 84883674898 scopus 로고    scopus 로고
    • The redox biochemistry of protein sulfenylation and sulfinylation
    • Lo Conte M., Carroll K.S. The redox biochemistry of protein sulfenylation and sulfinylation. J. Biol. Chem. 2013, 288:26480-26488.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26480-26488
    • Lo Conte, M.1    Carroll, K.S.2
  • 56
    • 84880105471 scopus 로고    scopus 로고
    • Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery
    • Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113:4633-4679.
    • (2013) Chem. Rev. , vol.113 , pp. 4633-4679
    • Paulsen, C.E.1    Carroll, K.S.2
  • 57
    • 49349085256 scopus 로고    scopus 로고
    • Redox compartmentalization in eukaryotic cells
    • Go Y.M., Jones D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 2008, 1780:1273-1290.
    • (2008) Biochim. Biophys. Acta , vol.1780 , pp. 1273-1290
    • Go, Y.M.1    Jones, D.P.2
  • 58
    • 39949085437 scopus 로고    scopus 로고
    • Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology
    • Kemp M., Go Y.M., Jones D.P. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 2008, 44:921-937.
    • (2008) Free Radic. Biol. Med. , vol.44 , pp. 921-937
    • Kemp, M.1    Go, Y.M.2    Jones, D.P.3
  • 59
    • 77749316875 scopus 로고    scopus 로고
    • Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage
    • Requejo R., Hurd T.R., Costa N.J., Murphy M.P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J. 2010, 277:1465-1480.
    • (2010) FEBS J. , vol.277 , pp. 1465-1480
    • Requejo, R.1    Hurd, T.R.2    Costa, N.J.3    Murphy, M.P.4
  • 61
    • 79959340042 scopus 로고    scopus 로고
    • Protein sulfenic acid formation: from cellular damage to redox regulation
    • Roos G., Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 2011, 51:314-326.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 314-326
    • Roos, G.1    Messens, J.2
  • 62
    • 34249703509 scopus 로고    scopus 로고
    • The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents
    • Peskin A.V., Low F.M., Paton L.N., Maghzal G.J., Hampton M.B., Winterbourn C.C. The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 2007, 282:11885-11892.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11885-11892
    • Peskin, A.V.1    Low, F.M.2    Paton, L.N.3    Maghzal, G.J.4    Hampton, M.B.5    Winterbourn, C.C.6
  • 63
    • 77956171017 scopus 로고    scopus 로고
    • Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
    • Hall A., Parsonage D., Poole L.B., Karplus P.A. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 2010, 402:194-209.
    • (2010) J. Mol. Biol. , vol.402 , pp. 194-209
    • Hall, A.1    Parsonage, D.2    Poole, L.B.3    Karplus, P.A.4
  • 64
    • 67650292926 scopus 로고    scopus 로고
    • Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis
    • Enami S., Hoffmann M.R., Colussi A.J. Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis. J. Phys. Chem. B 2009, 113:9356-9358.
    • (2009) J. Phys. Chem. B , vol.113 , pp. 9356-9358
    • Enami, S.1    Hoffmann, M.R.2    Colussi, A.J.3
  • 66
    • 70350050576 scopus 로고    scopus 로고
    • Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics
    • Hugo M., Turell L., Manta B., Botti H., Monteiro G., Netto L.E., Alvarez B., Radi R., Trujillo M. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 2009, 48:9416-9426.
    • (2009) Biochemistry , vol.48 , pp. 9416-9426
    • Hugo, M.1    Turell, L.2    Manta, B.3    Botti, H.4    Monteiro, G.5    Netto, L.E.6    Alvarez, B.7    Radi, R.8    Trujillo, M.9
  • 68
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
    • Applegate M.A., Humphries K.M., Szweda L.I. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
    • (2008) Biochemistry , vol.47 , pp. 473-478
    • Applegate, M.A.1    Humphries, K.M.2    Szweda, L.I.3
  • 69
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • Hurd T.R., Requejo R., Filipovska A., Brown S., Prime T.A., Robinson A.J., Fearnley I.M., Murphy M.P. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1    Requejo, R.2    Filipovska, A.3    Brown, S.4    Prime, T.A.5    Robinson, A.J.6    Fearnley, I.M.7    Murphy, M.P.8
  • 70
    • 0037109064 scopus 로고    scopus 로고
    • Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore
    • McStay G.P., Clarke S.J., Halestrap A.P. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem. J. 2002, 367:541-548.
    • (2002) Biochem. J. , vol.367 , pp. 541-548
    • McStay, G.P.1    Clarke, S.J.2    Halestrap, A.P.3
  • 72
    • 59249100362 scopus 로고    scopus 로고
    • Redox regulation and trapping sulfenic acid in the peroxide-sensitive human mitochondrial branched chain aminotransferase
    • Hutson S.M., Poole L.B., Coles S., Conway M.E. Redox regulation and trapping sulfenic acid in the peroxide-sensitive human mitochondrial branched chain aminotransferase. Methods Mol. Biol. 2008, 476:139-152.
    • (2008) Methods Mol. Biol. , vol.476 , pp. 139-152
    • Hutson, S.M.1    Poole, L.B.2    Coles, S.3    Conway, M.E.4
  • 75
    • 46449110295 scopus 로고    scopus 로고
    • Thiol chemistry in peroxidase catalysis and redox signaling
    • Bindoli A., Fukuto J.M., Forman H.J. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid. Redox Signal. 2008, 10:1549-1564.
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 1549-1564
    • Bindoli, A.1    Fukuto, J.M.2    Forman, H.J.3
  • 77
    • 79251550085 scopus 로고    scopus 로고
    • Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin
    • Lowther W.T., Haynes A.C. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid. Redox Signal. 2011, 15:99-109.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 99-109
    • Lowther, W.T.1    Haynes, A.C.2
  • 78
    • 0036363570 scopus 로고    scopus 로고
    • Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins
    • Hamann M., Zhang T., Hendrich S., Thomas J.A. Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins. Methods Enzymol. 2002, 348:146-156.
    • (2002) Methods Enzymol. , vol.348 , pp. 146-156
    • Hamann, M.1    Zhang, T.2    Hendrich, S.3    Thomas, J.A.4
  • 79
    • 0141510042 scopus 로고    scopus 로고
    • Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress
    • Chevallet M., Wagner E., Luche S., van Dorsselaer A., Leize-Wagner E., Rabilloud T. Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. J. Biol. Chem. 2003, 278:37146-37153.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37146-37153
    • Chevallet, M.1    Wagner, E.2    Luche, S.3    van Dorsselaer, A.4    Leize-Wagner, E.5    Rabilloud, T.6
  • 81
    • 76749102420 scopus 로고    scopus 로고
    • Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling
    • Woo H.A., Yim S.H., Shin D.H., Kang D., Yu D.Y., Rhee S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 2010, 140:517-528.
    • (2010) Cell , vol.140 , pp. 517-528
    • Woo, H.A.1    Yim, S.H.2    Shin, D.H.3    Kang, D.4    Yu, D.Y.5    Rhee, S.G.6
  • 82
    • 67649279837 scopus 로고    scopus 로고
    • Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
    • Noh Y.H., Baek J.Y., Jeong W., Rhee S.G., Chang T.S. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 2009, 284:8470-8477.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8470-8477
    • Noh, Y.H.1    Baek, J.Y.2    Jeong, W.3    Rhee, S.G.4    Chang, T.S.5
  • 83
    • 84877886960 scopus 로고    scopus 로고
    • Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
    • Peskin A.V., Dickerhof N., Poynton R.A., Paton L.N., Pace P.E., Hampton M.B., Winterbourn C.C. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 2013, 288:14170-14177.
    • (2013) J. Biol. Chem. , vol.288 , pp. 14170-14177
    • Peskin, A.V.1    Dickerhof, N.2    Poynton, R.A.3    Paton, L.N.4    Pace, P.E.5    Hampton, M.B.6    Winterbourn, C.C.7
  • 84
    • 84862692522 scopus 로고    scopus 로고
    • Chemoselective ligation of sulfinic acids with aryl-nitroso compounds
    • Lo Conte M., Carroll K.S. Chemoselective ligation of sulfinic acids with aryl-nitroso compounds. Angew. Chem. Int. Ed. Engl. 2012, 51:6502-6505.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 6502-6505
    • Lo Conte, M.1    Carroll, K.S.2
  • 85
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
    • Beer S.M., Taylor E.R., Brown S.E., Dahm C.C., Costa N.J., Runswick M.J., Murphy M.P. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47939-47951
    • Beer, S.M.1    Taylor, E.R.2    Brown, S.E.3    Dahm, C.C.4    Costa, N.J.5    Runswick, M.J.6    Murphy, M.P.7
  • 86
    • 84875439431 scopus 로고    scopus 로고
    • Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
    • Mailloux R.J., Xuan J.Y., Beauchamp B., Jui L., Lou M., Harper M.E. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J. Biol. Chem. 2013, 288:8365-8379.
    • (2013) J. Biol. Chem. , vol.288 , pp. 8365-8379
    • Mailloux, R.J.1    Xuan, J.Y.2    Beauchamp, B.3    Jui, L.4    Lou, M.5    Harper, M.E.6
  • 90
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7:381-391.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 92
    • 0021891877 scopus 로고
    • Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation
    • Ziegler D.M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu. Rev. Biochem. 1985, 54:305-329.
    • (1985) Annu. Rev. Biochem. , vol.54 , pp. 305-329
    • Ziegler, D.M.1
  • 93
    • 84855387138 scopus 로고    scopus 로고
    • Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics
    • Mailloux R.J., Adjeitey C.N., Xuan J.Y., Harper M.E. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. Faseb J. 2012, 26:363-375.
    • (2012) Faseb J. , vol.26 , pp. 363-375
    • Mailloux, R.J.1    Adjeitey, C.N.2    Xuan, J.Y.3    Harper, M.E.4
  • 94
    • 84875737737 scopus 로고    scopus 로고
    • Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes
    • Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830:3217-3266.
    • (2013) Biochim. Biophys. Acta , vol.1830 , pp. 3217-3266
    • Deponte, M.1
  • 97
    • 66149108787 scopus 로고    scopus 로고
    • Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria
    • Mitra S., Elliott S.J. Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria. Biochemistry 2009, 48:3813-3815.
    • (2009) Biochemistry , vol.48 , pp. 3813-3815
    • Mitra, S.1    Elliott, S.J.2
  • 98
    • 79954430645 scopus 로고    scopus 로고
    • Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
    • Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. (Camb) 2011, 47:4989-4991.
    • (2011) Chem. Commun. (Camb) , vol.47 , pp. 4989-4991
    • Qi, W.1    Cowan, J.A.2
  • 100
    • 80255127115 scopus 로고    scopus 로고
    • Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease
    • Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J. 2011, 278:4243-4251.
    • (2011) FEBS J. , vol.278 , pp. 4243-4251
    • Raza, H.1
  • 101
    • 0026736731 scopus 로고
    • Nitric oxide as a signal in blood vessels
    • Knowles R.G., Moncada S. Nitric oxide as a signal in blood vessels. Trends Biochem. Sci. 1992, 17:399-402.
    • (1992) Trends Biochem. Sci. , vol.17 , pp. 399-402
    • Knowles, R.G.1    Moncada, S.2
  • 102
    • 32244434531 scopus 로고    scopus 로고
    • *: the structure of the SNO moiety in "S-Nitrosohemoglobin", a possible NO reservoir and transporter
    • *: the structure of the SNO moiety in "S-Nitrosohemoglobin", a possible NO reservoir and transporter. J. Am. Chem. Soc. 2006, 128:1422-1423.
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 1422-1423
    • Zhao, Y.L.1    Houk, K.N.2
  • 103
    • 0037096198 scopus 로고    scopus 로고
    • Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH
    • Ford E., Hughes M.N., Wardman P. Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic. Biol. Med. 2002, 32:1314-1323.
    • (2002) Free Radic. Biol. Med. , vol.32 , pp. 1314-1323
    • Ford, E.1    Hughes, M.N.2    Wardman, P.3
  • 104
    • 33750905662 scopus 로고    scopus 로고
    • S-nitrosylation: NO-related redox signaling to protect against oxidative stress
    • Sun J., Steenbergen C., Murphy E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid. Redox Signal. 2006, 8:1693-1705.
    • (2006) Antioxid. Redox Signal. , vol.8 , pp. 1693-1705
    • Sun, J.1    Steenbergen, C.2    Murphy, E.3
  • 105
    • 0029086659 scopus 로고
    • Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver
    • Bates T.E., Loesch A., Burnstock G., Clark J.B. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem. Biophys. Res. Commun. 1995, 213:896-900.
    • (1995) Biochem. Biophys. Res. Commun. , vol.213 , pp. 896-900
    • Bates, T.E.1    Loesch, A.2    Burnstock, G.3    Clark, J.B.4
  • 106
    • 34250700076 scopus 로고    scopus 로고
    • Nitric oxide and mitochondrial respiration in the heart
    • Brown G.C., Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc. Res. 2007, 75:283-290.
    • (2007) Cardiovasc. Res. , vol.75 , pp. 283-290
    • Brown, G.C.1    Borutaite, V.2
  • 109
    • 84872577684 scopus 로고    scopus 로고
    • Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
    • Doulias P.T., Tenopoulou M., Greene J.L., Raju K., Ischiropoulos H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 2013, 6:rs1.
    • (2013) Sci. Signal. , vol.6
    • Doulias, P.T.1    Tenopoulou, M.2    Greene, J.L.3    Raju, K.4    Ischiropoulos, H.5
  • 110
    • 81155123702 scopus 로고    scopus 로고
    • Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
    • Nguyen T.T., Stevens M.V., Kohr M., Steenbergen C., Sack M.N., Murphy E. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J. Biol. Chem. 2011, 286:40184-40192.
    • (2011) J. Biol. Chem. , vol.286 , pp. 40184-40192
    • Nguyen, T.T.1    Stevens, M.V.2    Kohr, M.3    Steenbergen, C.4    Sack, M.N.5    Murphy, E.6
  • 112
    • 78650126962 scopus 로고    scopus 로고
    • Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease
    • Chinta S.J., Andersen J.K. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radic. Res. 2011, 45:53-58.
    • (2011) Free Radic. Res. , vol.45 , pp. 53-58
    • Chinta, S.J.1    Andersen, J.K.2
  • 113
    • 0031853099 scopus 로고    scopus 로고
    • Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria
    • Kwong L.K., Sohal R.S. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch. Biochem. Biophys. 1998, 350:118-126.
    • (1998) Arch. Biochem. Biophys. , vol.350 , pp. 118-126
    • Kwong, L.K.1    Sohal, R.S.2
  • 114
    • 0036903625 scopus 로고    scopus 로고
    • Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state
    • Kushnareva Y., Murphy A.N., Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 2002, 368:545-553.
    • (2002) Biochem. J. , vol.368 , pp. 545-553
    • Kushnareva, Y.1    Murphy, A.N.2    Andreyev, A.3
  • 115
    • 34547578624 scopus 로고    scopus 로고
    • Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status
    • Aon M.A., Cortassa S., Maack C., O'Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J. Biol. Chem. 2007, 282:21889-21900.
    • (2007) J. Biol. Chem. , vol.282 , pp. 21889-21900
    • Aon, M.A.1    Cortassa, S.2    Maack, C.3    O'Rourke, B.4
  • 117
    • 17844393112 scopus 로고    scopus 로고
    • Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion
    • Bulteau A.L., Lundberg K.C., Ikeda-Saito M., Isaya G., Szweda L.I. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc. Natl. Acad. Sci. USA 2005, 102:5987-5991.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5987-5991
    • Bulteau, A.L.1    Lundberg, K.C.2    Ikeda-Saito, M.3    Isaya, G.4    Szweda, L.I.5
  • 118
    • 33748666843 scopus 로고    scopus 로고
    • Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes
    • Mailloux R.J., Hamel R., Appanna V.D. Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes. J. Biochem. Mol. Toxicol. 2006, 20:198-208.
    • (2006) J. Biochem. Mol. Toxicol. , vol.20 , pp. 198-208
    • Mailloux, R.J.1    Hamel, R.2    Appanna, V.D.3
  • 119
    • 15444367716 scopus 로고    scopus 로고
    • Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation
    • Kil I.S., Park J.W. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J. Biol. Chem. 2005, 280:10846-10854.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10846-10854
    • Kil, I.S.1    Park, J.W.2
  • 120
    • 84877035408 scopus 로고    scopus 로고
    • Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification
    • McLain A.L., Cormier P.J., Kinter M., Szweda L.I. Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic. Biol. Med. 2013, 61C:161-169.
    • (2013) Free Radic. Biol. Med. , vol.61 C , pp. 161-169
    • McLain, A.L.1    Cormier, P.J.2    Kinter, M.3    Szweda, L.I.4
  • 121
    • 78650103059 scopus 로고    scopus 로고
    • Alpha-Ketoglutarate dehydrogenase: a mitochondrial redox sensor
    • McLain A.L., Szweda P.A., Szweda L.I. alpha-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic. Res. 2011, 45:29-36.
    • (2011) Free Radic. Res. , vol.45 , pp. 29-36
    • McLain, A.L.1    Szweda, P.A.2    Szweda, L.I.3
  • 122
    • 84879303466 scopus 로고    scopus 로고
    • Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide
    • Yan L.J., Sumien N., Thangthaeng N., Forster M.J. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Free Radic. Res. 2013, 47:123-133.
    • (2013) Free Radic. Res. , vol.47 , pp. 123-133
    • Yan, L.J.1    Sumien, N.2    Thangthaeng, N.3    Forster, M.J.4
  • 123
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
    • Chen Y.R., Chen C.L., Pfeiffer D.R., Zweier J.L. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32640-32654
    • Chen, Y.R.1    Chen, C.L.2    Pfeiffer, D.R.3    Zweier, J.L.4
  • 124
    • 84883146515 scopus 로고    scopus 로고
    • Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation
    • Giangregorio N., Palmieri F., Indiveri C. Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim. Biophys. Acta 2013, 1830:5299-5304.
    • (2013) Biochim. Biophys. Acta , vol.1830 , pp. 5299-5304
    • Giangregorio, N.1    Palmieri, F.2    Indiveri, C.3
  • 125
    • 80255140367 scopus 로고    scopus 로고
    • Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells
    • Wu H., Lin L., Giblin F., Ho Y.S., Lou M.F. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Radic. Biol. Med. 2011, 51:2108-2117.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 2108-2117
    • Wu, H.1    Lin, L.2    Giblin, F.3    Ho, Y.S.4    Lou, M.F.5
  • 126
    • 73249150574 scopus 로고    scopus 로고
    • Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation
    • Hill B.G., Higdon A.N., Dranka B.P., Darley-Usmar V.M. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. Biochim. Biophys. Acta 2010, 1797:285-295.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 285-295
    • Hill, B.G.1    Higdon, A.N.2    Dranka, B.P.3    Darley-Usmar, V.M.4
  • 127
    • 84868590991 scopus 로고    scopus 로고
    • Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics
    • Pfefferle A., Mailloux R.J., Adjeitey C.N., Harper M.E. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. Biochim. Biophys. Acta 2013, 1833:80-89.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 80-89
    • Pfefferle, A.1    Mailloux, R.J.2    Adjeitey, C.N.3    Harper, M.E.4
  • 128
    • 80051578926 scopus 로고    scopus 로고
    • Mitochondrial recoupling: a novel therapeutic strategy for cancer?
    • Baffy G., Derdak Z., Robson S.C. Mitochondrial recoupling: a novel therapeutic strategy for cancer?. Br. J. Cancer. 2011, 105:469-474.
    • (2011) Br. J. Cancer. , vol.105 , pp. 469-474
    • Baffy, G.1    Derdak, Z.2    Robson, S.C.3
  • 129
    • 58749103645 scopus 로고    scopus 로고
    • Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2
    • Diotte N.M., Xiong Y., Gao J., Chua B.H., Ho Y.S. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim. Biophys. Acta 2009, 1793:427-438.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 427-438
    • Diotte, N.M.1    Xiong, Y.2    Gao, J.3    Chua, B.H.4    Ho, Y.S.5
  • 130
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex I increases mitochondrial superoxide formation
    • Taylor E.R., Hurrell F., Shannon R.J., Lin T.K., Hirst J., Murphy M.P. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278:19603-19610.
    • (2003) J. Biol. Chem. , vol.278 , pp. 19603-19610
    • Taylor, E.R.1    Hurrell, F.2    Shannon, R.J.3    Lin, T.K.4    Hirst, J.5    Murphy, M.P.6
  • 131
    • 0034671429 scopus 로고    scopus 로고
    • Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress
    • Tretter L., Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci.: Off. J. Soc. Neurosci. 2000, 20:8972-8979.
    • (2000) J. Neurosci.: Off. J. Soc. Neurosci. , vol.20 , pp. 8972-8979
    • Tretter, L.1    Adam-Vizi, V.2
  • 134
    • 78650068036 scopus 로고    scopus 로고
    • Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
    • Garcia J., Han D., Sancheti H., Yap L.P., Kaplowitz N., Cadenas E. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J. Biol. Chem. 2010, 285:39646-39654.
    • (2010) J. Biol. Chem. , vol.285 , pp. 39646-39654
    • Garcia, J.1    Han, D.2    Sancheti, H.3    Yap, L.P.4    Kaplowitz, N.5    Cadenas, E.6
  • 135
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
    • (2013) Cell Metab. , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 136
    • 33745274726 scopus 로고    scopus 로고
    • Mitochondria: dynamic organelles in disease, aging, and development
    • Chan D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006, 125:1241-1252.
    • (2006) Cell , vol.125 , pp. 1241-1252
    • Chan, D.C.1
  • 137
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt T., Geoffrion M., Milne R., McBride H.M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13:909-915.
    • (2012) EMBO Rep. , vol.13 , pp. 909-915
    • Shutt, T.1    Geoffrion, M.2    Milne, R.3    McBride, H.M.4
  • 138
    • 84879935081 scopus 로고    scopus 로고
    • Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model
    • Redpath C.J., Bou Khalil M., Drozdzal G., Radisic M., McBride H.M. Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 2013, 8:e69165.
    • (2013) PLoS One , vol.8
    • Redpath, C.J.1    Bou Khalil, M.2    Drozdzal, G.3    Radisic, M.4    McBride, H.M.5
  • 139
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443:787-795.
    • (2006) Nature , vol.443 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 140
    • 0035917814 scopus 로고    scopus 로고
    • Mitochondrial permeability transition and oxidative stress
    • Kowaltowski A.J., Castilho R.F., Vercesi A.E. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001, 495:12-15.
    • (2001) FEBS Lett. , vol.495 , pp. 12-15
    • Kowaltowski, A.J.1    Castilho, R.F.2    Vercesi, A.E.3
  • 141
    • 0041810128 scopus 로고    scopus 로고
    • The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death
    • Halestrap A.P., Brenner C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr. Med. Chem. 2003, 10:1507-1525.
    • (2003) Curr. Med. Chem. , vol.10 , pp. 1507-1525
    • Halestrap, A.P.1    Brenner, C.2
  • 142
    • 0028821028 scopus 로고
    • Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state
    • Kowaltowski A.J., Castilho R.F., Vercesi A.E. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 1995, 269:C141-C147.
    • (1995) Am. J. Physiol. , vol.269
    • Kowaltowski, A.J.1    Castilho, R.F.2    Vercesi, A.E.3
  • 144
    • 0032557424 scopus 로고    scopus 로고
    • The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism
    • Kowaltowski A.J., Netto L.E., Vercesi A.E. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 1998, 273:12766-12769.
    • (1998) J. Biol. Chem. , vol.273 , pp. 12766-12769
    • Kowaltowski, A.J.1    Netto, L.E.2    Vercesi, A.E.3
  • 145
    • 84867725042 scopus 로고    scopus 로고
    • Mitochondrial thiols in the regulation of cell death pathways
    • Yin F., Sancheti H., Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid. Redox Signal. 2012, 17:1714-1727.
    • (2012) Antioxid. Redox Signal. , vol.17 , pp. 1714-1727
    • Yin, F.1    Sancheti, H.2    Cadenas, E.3
  • 146
    • 77955955395 scopus 로고    scopus 로고
    • A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection
    • Halestrap A.P. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem. Soc. Trans. 2010, 38:841-860.
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 841-860
    • Halestrap, A.P.1
  • 147
    • 77952776083 scopus 로고    scopus 로고
    • Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
    • Queiroga C.S., Almeida A.S., Martel C., Brenner C., Alves P.M., Vieira H.L. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J. Biol. Chem. 2010, 285:17077-17088.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17077-17088
    • Queiroga, C.S.1    Almeida, A.S.2    Martel, C.3    Brenner, C.4    Alves, P.M.5    Vieira, H.L.6
  • 148
    • 55549091082 scopus 로고    scopus 로고
    • The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition
    • Leung A.W., Varanyuwatana P., Halestrap A.P. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 2008, 283:26312-26323.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26312-26323
    • Leung, A.W.1    Varanyuwatana, P.2    Halestrap, A.P.3
  • 149
    • 84856526180 scopus 로고    scopus 로고
    • The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore
    • Varanyuwatana P., Halestrap A.P. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 2012, 12:120-125.
    • (2012) Mitochondrion , vol.12 , pp. 120-125
    • Varanyuwatana, P.1    Halestrap, A.P.2
  • 151
    • 79960294991 scopus 로고    scopus 로고
    • Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart
    • Sanchez G., Fernandez C., Montecinos L., Domenech R.J., Donoso P. Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart. Biochem. Biophys. Res. Commun. 2011, 410:916-921.
    • (2011) Biochem. Biophys. Res. Commun. , vol.410 , pp. 916-921
    • Sanchez, G.1    Fernandez, C.2    Montecinos, L.3    Domenech, R.J.4    Donoso, P.5
  • 155
    • 0026319007 scopus 로고
    • The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion
    • Ambrosio G., Zweier J.L., Flaherty J.T. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J. Mol. Cell. Cardiol. 1991, 23:1359-1374.
    • (1991) J. Mol. Cell. Cardiol. , vol.23 , pp. 1359-1374
    • Ambrosio, G.1    Zweier, J.L.2    Flaherty, J.T.3
  • 156
    • 0000098037 scopus 로고
    • Direct measurement of free radical generation following reperfusion of ischemic myocardium
    • Zweier J.L., Flaherty J.T., Weisfeldt M.L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA 1987, 84:1404-1407.
    • (1987) Proc. Natl. Acad. Sci. USA , vol.84 , pp. 1404-1407
    • Zweier, J.L.1    Flaherty, J.T.2    Weisfeldt, M.L.3
  • 157
    • 0032923593 scopus 로고    scopus 로고
    • Molecular and cellular mechanisms of myocardial stunning
    • Bolli R., Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 1999, 79:609-634.
    • (1999) Physiol. Rev. , vol.79 , pp. 609-634
    • Bolli, R.1    Marban, E.2
  • 159
    • 0034960785 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure
    • Lesnefsky E.J., Moghaddas S., Tandler B., Kerner J., Hoppel C.L. Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J. Mol. Cell. Cardiol. 2001, 33:1065-1089.
    • (2001) J. Mol. Cell. Cardiol. , vol.33 , pp. 1065-1089
    • Lesnefsky, E.J.1    Moghaddas, S.2    Tandler, B.3    Kerner, J.4    Hoppel, C.L.5
  • 160
    • 0000168750 scopus 로고
    • Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis
    • Rouslin W. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am. J. Physiol. 1983, 244:H743-H748.
    • (1983) Am. J. Physiol. , vol.244
    • Rouslin, W.1
  • 161
    • 84875974995 scopus 로고    scopus 로고
    • Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
    • Kumar V., Kleffmann T., Hampton M.B., Cannell M.B., Winterbourn C.C. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. Free Radic. Biol. Med. 2013, 58:109-117.
    • (2013) Free Radic. Biol. Med. , vol.58 , pp. 109-117
    • Kumar, V.1    Kleffmann, T.2    Hampton, M.B.3    Cannell, M.B.4    Winterbourn, C.C.5
  • 162
    • 59549106445 scopus 로고    scopus 로고
    • Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target
    • Liu B., Tewari A.K., Zhang L., Green-Church K.B., Zweier J.L., Chen Y.R., He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim. Biophys. Acta 2009, 1794:476-485.
    • (2009) Biochim. Biophys. Acta , vol.1794 , pp. 476-485
    • Liu, B.1    Tewari, A.K.2    Zhang, L.3    Green-Church, K.B.4    Zweier, J.L.5    Chen, Y.R.6    He, G.7
  • 163
    • 33847732229 scopus 로고    scopus 로고
    • Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart
    • Zhao X., Chen Y.R., He G., Zhang A., Druhan L.J., Strauch A.R., Zweier J.L. Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am. J. Physiol. Heart Circ. Physiol. 2007, 292:H1541-H1550.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292
    • Zhao, X.1    Chen, Y.R.2    He, G.3    Zhang, A.4    Druhan, L.J.5    Strauch, A.R.6    Zweier, J.L.7
  • 164
    • 20444494969 scopus 로고    scopus 로고
    • Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport
    • Zhao X., He G., Chen Y.R., Pandian R.P., Kuppusamy P., Zweier J.L. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 2005, 111:2966-2972.
    • (2005) Circulation , vol.111 , pp. 2966-2972
    • Zhao, X.1    He, G.2    Chen, Y.R.3    Pandian, R.P.4    Kuppusamy, P.5    Zweier, J.L.6
  • 165
    • 77949502858 scopus 로고    scopus 로고
    • Peroxynitrite-mediated oxidative modifications of complex II: relevance in myocardial infarction
    • Zhang L., Chen C.L., Kang P.T., Garg V., Hu K., Green-Church K.B., Chen Y.R. Peroxynitrite-mediated oxidative modifications of complex II: relevance in myocardial infarction. Biochemistry 2010, 49:2529-2539.
    • (2010) Biochemistry , vol.49 , pp. 2529-2539
    • Zhang, L.1    Chen, C.L.2    Kang, P.T.3    Garg, V.4    Hu, K.5    Green-Church, K.B.6    Chen, Y.R.7
  • 167
    • 0029986691 scopus 로고    scopus 로고
    • Nitric oxide inhibits electron transfer and increases superoxide radical
    • Poderoso J.J., Carreras M.C., Lisdero C., Riobo N., Schopfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 1996, 328:85-92.
    • (1996) Arch. Biochem. Biophys. , vol.328 , pp. 85-92
    • Poderoso, J.J.1    Carreras, M.C.2    Lisdero, C.3    Riobo, N.4    Schopfer, F.5    Boveris, A.6
  • 168
    • 0037082357 scopus 로고    scopus 로고
    • *) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase
    • *) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic. Biol. Med. 2002, 32:370-374.
    • (2002) Free Radic. Biol. Med. , vol.32 , pp. 370-374
    • Brookes, P.1    Darley-Usmar, V.M.2
  • 169
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: central role of complex III
    • Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 2003, 278:36027-36031.
    • (2003) J. Biol. Chem. , vol.278 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 170
    • 80053030508 scopus 로고    scopus 로고
    • Cardiac resynchronization therapy and reverse molecular remodeling: importance of mitochondrial redox signaling
    • Zweier J.L., Chen C.A., Talukder M.A. Cardiac resynchronization therapy and reverse molecular remodeling: importance of mitochondrial redox signaling. Circ. Res. 2011, 109:716-719.
    • (2011) Circ. Res. , vol.109 , pp. 716-719
    • Zweier, J.L.1    Chen, C.A.2    Talukder, M.A.3
  • 172
    • 33645765312 scopus 로고    scopus 로고
    • Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress
    • Rolo A.P., Palmeira C.M. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006, 212:167-178.
    • (2006) Toxicol. Appl. Pharmacol. , vol.212 , pp. 167-178
    • Rolo, A.P.1    Palmeira, C.M.2
  • 175
    • 84888084094 scopus 로고    scopus 로고
    • S-glutathionylation: relevance in diabetes and potential role as a biomarker
    • Sanchez-Gomez F.J., Espinosa-Diez C., Dubey M., Dikshit M., Lamas S. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol. Chem. 2013, 394:1263-1280.
    • (2013) Biol. Chem. , vol.394 , pp. 1263-1280
    • Sanchez-Gomez, F.J.1    Espinosa-Diez, C.2    Dubey, M.3    Dikshit, M.4    Lamas, S.5
  • 177
    • 84876216637 scopus 로고    scopus 로고
    • S-Glutathionylation of hepatic and visceral adipose proteins decreases in obese rats
    • Picklo M.J., Idso J.P., Jackson M.I. S-Glutathionylation of hepatic and visceral adipose proteins decreases in obese rats. Obesity (Silver Spring) 2013, 21:297-305.
    • (2013) Obesity (Silver Spring) , vol.21 , pp. 297-305
    • Picklo, M.J.1    Idso, J.P.2    Jackson, M.I.3
  • 178
    • 50949125411 scopus 로고    scopus 로고
    • The efficiency of cellular energy transduction and its implications for obesity
    • Harper M.E., Green K., Brand M.D. The efficiency of cellular energy transduction and its implications for obesity. Annu. Rev. Nutr. 2008, 28:13-33.
    • (2008) Annu. Rev. Nutr. , vol.28 , pp. 13-33
    • Harper, M.E.1    Green, K.2    Brand, M.D.3
  • 180
    • 42549083245 scopus 로고    scopus 로고
    • Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes
    • Blatnik M., Thorpe S.R., Baynes J.W. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Ann. N. Y. Acad. Sci. 2008, 1126:272-275.
    • (2008) Ann. N. Y. Acad. Sci. , vol.1126 , pp. 272-275
    • Blatnik, M.1    Thorpe, S.R.2    Baynes, J.W.3
  • 183
    • 84863192640 scopus 로고    scopus 로고
    • Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity
    • Frizzell N., Thomas S.A., Carson J.A., Baynes J.W. Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity. Biochem. J. 2012, 445:247-254.
    • (2012) Biochem. J. , vol.445 , pp. 247-254
    • Frizzell, N.1    Thomas, S.A.2    Carson, J.A.3    Baynes, J.W.4
  • 185
    • 84856745322 scopus 로고    scopus 로고
    • Mechanisms of altered redox regulation in neurodegenerative diseases-focus on S-glutathionylation
    • Sabens Liedhegner E.A., Gao X.H., Mieyal J.J. Mechanisms of altered redox regulation in neurodegenerative diseases-focus on S-glutathionylation. Antioxid. Redox Signal. 2012, 16:543-566.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 543-566
    • Sabens Liedhegner, E.A.1    Gao, X.H.2    Mieyal, J.J.3
  • 186
    • 75949121583 scopus 로고    scopus 로고
    • Oxidative stress in the progression of Alzheimer disease in the frontal cortex
    • Ansari M.A., Scheff S.W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 2010, 69:155-167.
    • (2010) J. Neuropathol. Exp. Neurol. , vol.69 , pp. 155-167
    • Ansari, M.A.1    Scheff, S.W.2
  • 187
    • 0026635461 scopus 로고
    • Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease Research Group
    • Jenner P., Dexter D.T., Sian J., Schapira A.H., Marsden C.D. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease Research Group. Ann. Neurol. 1992, 32(Suppl:):S82-S87.
    • (1992) Ann. Neurol. , vol.32
    • Jenner, P.1    Dexter, D.T.2    Sian, J.3    Schapira, A.H.4    Marsden, C.D.5
  • 188
    • 0028075410 scopus 로고
    • Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia
    • Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoy-Agid F., Jenner P., Marsden C.D. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 1994, 36:348-355.
    • (1994) Ann. Neurol. , vol.36 , pp. 348-355
    • Sian, J.1    Dexter, D.T.2    Lees, A.J.3    Daniel, S.4    Agid, Y.5    Javoy-Agid, F.6    Jenner, P.7    Marsden, C.D.8
  • 190
    • 68949203453 scopus 로고    scopus 로고
    • A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease
    • Lee D.W., Kaur D., Chinta S.J., Rajagopalan S., Andersen J.K. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease. Antioxid. Redox Signal. 2009, 11:2083-2094.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 2083-2094
    • Lee, D.W.1    Kaur, D.2    Chinta, S.J.3    Rajagopalan, S.4    Andersen, J.K.5
  • 191
    • 0041378078 scopus 로고    scopus 로고
    • Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine
    • Calabrese V., Scapagnini G., Ravagna A., Bella R., Butterfield D.A., Calvani M., Pennisi G., Giuffrida Stella A.M. Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem. Res. 2003, 28:1321-1328.
    • (2003) Neurochem. Res. , vol.28 , pp. 1321-1328
    • Calabrese, V.1    Scapagnini, G.2    Ravagna, A.3    Bella, R.4    Butterfield, D.A.5    Calvani, M.6    Pennisi, G.7    Giuffrida Stella, A.M.8
  • 193
    • 0037390718 scopus 로고    scopus 로고
    • Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP
    • Kenchappa R.S., Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. Faseb J. 2003, 17:717-719.
    • (2003) Faseb J. , vol.17 , pp. 717-719
    • Kenchappa, R.S.1    Ravindranath, V.2
  • 194
    • 24144493633 scopus 로고    scopus 로고
    • Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein
    • Dinoto L., Deture M.A., Purich D.L. Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein. Microsc. Res. Tech. 2005, 67:156-163.
    • (2005) Microsc. Res. Tech. , vol.67 , pp. 156-163
    • Dinoto, L.1    Deture, M.A.2    Purich, D.L.3
  • 195
    • 33749047253 scopus 로고    scopus 로고
    • Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease
    • Chinta S.J., Andersen J.K. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease. Free Radic. Biol. Med. 2006, 41:1442-1448.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 1442-1448
    • Chinta, S.J.1    Andersen, J.K.2
  • 196
    • 14644416354 scopus 로고    scopus 로고
    • Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease
    • Hsu M., Srinivas B., Kumar J., Subramanian R., Andersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease. J. Neurochem. 2005, 92:1091-1103.
    • (2005) J. Neurochem. , vol.92 , pp. 1091-1103
    • Hsu, M.1    Srinivas, B.2    Kumar, J.3    Subramanian, R.4    Andersen, J.5
  • 197
    • 80051781073 scopus 로고    scopus 로고
    • Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases
    • Nakamura T., Lipton S.A. Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ. 2011, 18:1478-1486.
    • (2011) Cell Death Differ. , vol.18 , pp. 1478-1486
    • Nakamura, T.1    Lipton, S.A.2
  • 198
  • 199
    • 64249133725 scopus 로고    scopus 로고
    • S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury
    • Cho D.H., Nakamura T., Fang J., Cieplak P., Godzik A., Gu Z., Lipton S.A. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009, 324:102-105.
    • (2009) Science , vol.324 , pp. 102-105
    • Cho, D.H.1    Nakamura, T.2    Fang, J.3    Cieplak, P.4    Godzik, A.5    Gu, Z.6    Lipton, S.A.7
  • 200
    • 67649760168 scopus 로고    scopus 로고
    • Mitochondrial dynamics in Parkinson's disease
    • Van Laar V.S., Berman S.B. Mitochondrial dynamics in Parkinson's disease. Exp. Neurol. 2009, 218:247-256.
    • (2009) Exp. Neurol. , vol.218 , pp. 247-256
    • Van Laar, V.S.1    Berman, S.B.2
  • 201
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics-fusion, fission, movement, and mitophagy--in neurodegenerative diseases
    • Chen H., Chan D.C. Mitochondrial dynamics-fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 2009, 18:R169-R176.
    • (2009) Hum. Mol. Genet. , vol.18
    • Chen, H.1    Chan, D.C.2
  • 203
    • 78751705612 scopus 로고    scopus 로고
    • Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging
    • Moosmann B. Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp. Gerontol. 2011, 46:164-169.
    • (2011) Exp. Gerontol. , vol.46 , pp. 164-169
    • Moosmann, B.1
  • 204
    • 79955782703 scopus 로고    scopus 로고
    • Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity
    • Schindeldecker M., Stark M., Behl C., Moosmann B. Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity. Mech. Ageing Dev. 2011, 132:171-179.
    • (2011) Mech. Ageing Dev. , vol.132 , pp. 171-179
    • Schindeldecker, M.1    Stark, M.2    Behl, C.3    Moosmann, B.4
  • 205
    • 84859822386 scopus 로고    scopus 로고
    • Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes
    • Held J.M., Gibson B.W. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol. Cell. Proteomics: MCP 2012, 11(R111):013037.
    • (2012) Mol. Cell. Proteomics: MCP , vol.11 , Issue.R111 , pp. 013037
    • Held, J.M.1    Gibson, B.W.2
  • 207
    • 79251614656 scopus 로고    scopus 로고
    • Cysteine/cystine redox signaling in cardiovascular disease
    • Go Y.M., Jones D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 2011, 50:495-509.
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 495-509
    • Go, Y.M.1    Jones, D.P.2
  • 208
    • 0034678112 scopus 로고    scopus 로고
    • N-acetylcysteine elicited increase in complex I activity in synaptic mitochondria from aged mice: implications for treatment of Parkinson's disease
    • Martinez Banaclocha M. N-acetylcysteine elicited increase in complex I activity in synaptic mitochondria from aged mice: implications for treatment of Parkinson's disease. Brain Res. 2000, 859:173-175.
    • (2000) Brain Res. , vol.859 , pp. 173-175
    • Martinez Banaclocha, M.1
  • 209
    • 6944220226 scopus 로고    scopus 로고
    • Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities
    • Rebrin I., Sohal R.S. Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp. Gerontol. 2004, 39:1513-1519.
    • (2004) Exp. Gerontol. , vol.39 , pp. 1513-1519
    • Rebrin, I.1    Sohal, R.S.2
  • 211
    • 84889585312 scopus 로고    scopus 로고
    • Protein oxidative modifications: beneficial roles in disease and health
    • Cai Z., Yan L.J. Protein oxidative modifications: beneficial roles in disease and health. J. Biochem. Pharmacol. Res. 2013, 1:15-26.
    • (2013) J. Biochem. Pharmacol. Res. , vol.1 , pp. 15-26
    • Cai, Z.1    Yan, L.J.2
  • 212
    • 0036545912 scopus 로고    scopus 로고
    • The plasma redox state and ageing
    • Droge W. The plasma redox state and ageing. Ageing Res. Rev. 2002, 1:257-278.
    • (2002) Ageing Res. Rev. , vol.1 , pp. 257-278
    • Droge, W.1
  • 213
    • 34347329257 scopus 로고    scopus 로고
    • Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress
    • Velu C.S., Niture S.K., Doneanu C.E., Pattabiraman N., Srivenugopal K.S. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 2007, 46:7765-7780.
    • (2007) Biochemistry , vol.46 , pp. 7765-7780
    • Velu, C.S.1    Niture, S.K.2    Doneanu, C.E.3    Pattabiraman, N.4    Srivenugopal, K.S.5
  • 216
    • 84860447270 scopus 로고    scopus 로고
    • Regulation of cardiovascular cellular processes by S-nitrosylation
    • Schulman I.H., Hare J.M. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim. Biophys. Acta 2012, 1820:752-762.
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 752-762
    • Schulman, I.H.1    Hare, J.M.2
  • 218
    • 79959221560 scopus 로고    scopus 로고
    • Reversible and irreversible protein glutathionylation: biological and clinical aspects
    • Cooper A.J., Pinto J.T., Callery P.S. Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin. Drug Metab. Toxicol. 2011, 7:891-910.
    • (2011) Expert Opin. Drug Metab. Toxicol. , vol.7 , pp. 891-910
    • Cooper, A.J.1    Pinto, J.T.2    Callery, P.S.3
  • 219
    • 84871107379 scopus 로고    scopus 로고
    • Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease
    • Newman J.C., He W., Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J. Biol. Chem. 2012, 287:42436-42443.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42436-42443
    • Newman, J.C.1    He, W.2    Verdin, E.3
  • 220
    • 79959492292 scopus 로고    scopus 로고
    • Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?
    • Bouillaud F., Blachier F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?. Antioxid. Redox Signal. 2011, 15:379-391.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 379-391
    • Bouillaud, F.1    Blachier, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.