메뉴 건너뛰기




Volumn 5, Issue 8, 2015, Pages 1-24

Regulation of recombination and genomic maintenance

Author keywords

[No Author keywords available]

Indexed keywords

RAD51 PROTEIN;

EID: 84938690223     PISSN: None     EISSN: 21571422     Source Type: Journal    
DOI: 10.1101/cshperspect.a016501     Document Type: Article
Times cited : (21)

References (231)
  • 1
    • 0024445751 scopus 로고
    • RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair characteristics of radH mutants and sequence of the gene
    • Aboussekhra A, Chanet R, Zgaga Z, Cassier Chauvat C, Heude M, Fabre F. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair characteristics of radH mutants and sequence of the gene. Nucleic Acids Res 17: 7211–7219.
    • (1989) Nucleic Acids Res , vol.17 , pp. 7211-7219
    • Aboussekhra, A.1    Chanet, R.2    Zgaga, Z.3    Cassier Chauvat, C.4    Heude, M.5    Fabre, F.6
  • 2
    • 0026751086 scopus 로고
    • Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA protein
    • Aboussekhra A, Chanet R, Adjiri A, Fabre F. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA protein. Mol Cell Biol 12: 3224–3234.
    • (1992) Mol Cell Biol , vol.12 , pp. 3224-3234
    • Aboussekhra, A.1    Chanet, R.2    Adjiri, A.3    Fabre, F.4
  • 4
    • 33747882881 scopus 로고    scopus 로고
    • DNA double-strand break repair and chromosome translocations
    • Agarwal S, Tafel AA, Kanaar R. 2006. DNA double-strand break repair and chromosome translocations. DNA Repair 5: 1075–1081.
    • (2006) DNA Repair , vol.5 , pp. 1075-1081
    • Agarwal, S.1    Tafel, A.A.2    Kanaar, R.3
  • 5
    • 84878556268 scopus 로고    scopus 로고
    • Effect of nuclear architecture on the efficiency of doublestrand break repair
    • Agmon N, Liefshitz B, Zimmer C, Fabre E, Kupiec M. 2013. Effect of nuclear architecture on the efficiency of doublestrand break repair. Nat Cell Biol 15: 694–7281.
    • (2013) Nat Cell Biol , vol.15 , pp. 694-7281
    • Agmon, N.1    Liefshitz, B.2    Zimmer, C.3    Fabre, E.4    Kupiec, M.5
  • 8
    • 84860162767 scopus 로고    scopus 로고
    • Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis
    • Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, Parada LF. 2012. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32: 5880–5890.
    • (2012) J Neurosci , vol.32 , pp. 5880-5890
    • Amiri, A.1    Cho, W.2    Zhou, J.3    Birnbaum, S.G.4    Sinton, C.M.5    McKay, R.M.6    Parada, L.F.7
  • 9
    • 0037317683 scopus 로고    scopus 로고
    • Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae
    • Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M. 2003. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Biol Cell 23: 1403–1417.
    • (2003) Mol Biol Cell , vol.23 , pp. 1403-1417
    • Aylon, Y.1    Liefshitz, B.2    Bitan-Banin, G.3    Kupiec, M.4
  • 10
    • 33646843592 scopus 로고    scopus 로고
    • Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase
    • Bachrati CZ, Borts RH, Hickson ID. 2006. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res 34: 2269–2279.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2269-2279
    • Bachrati, C.Z.1    Borts, R.H.2    Hickson, I.D.3
  • 11
    • 43249117094 scopus 로고    scopus 로고
    • Functional maps of protein complexes from quantitative genetic interaction data
    • Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T. 2008. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comp Biol 4: e1000065.
    • (2008) Plos Comp Biol , pp. 4
    • Bandyopadhyay, S.1    Kelley, R.2    Krogan, N.J.3    Ideker, T.4
  • 13
    • 77956469624 scopus 로고    scopus 로고
    • Enhancing radiotherapy through a greater understanding of homologous recombination
    • Barker CA, Powell SN. 2010. Enhancing radiotherapy through a greater understanding of homologous recombination. Sem Rad Oncol 20: 267–273.
    • (2010) Sem Rad Oncol , vol.20 , pp. 267-273
    • Barker, C.A.1    Powell, S.N.2
  • 16
    • 84880710673 scopus 로고    scopus 로고
    • Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress
    • Bassi C. 2013. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341: 1064–1064.
    • (2013) Science , vol.341 , pp. 1064
    • Bassi, C.1
  • 17
    • 0037965787 scopus 로고    scopus 로고
    • The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10
    • Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ. 2003. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23: 3487–3496.
    • (2003) Mol Cell Biol , vol.23 , pp. 3487-3496
    • Bastin-Shanower, S.A.1    Fricke, W.M.2    Mullen, J.R.3    Brill, S.J.4
  • 19
    • 84886035850 scopus 로고    scopus 로고
    • Meiotic recombination in mammals: Localization and regulation
    • Baudat F, Imai Y, de Massy B. 2013. Meiotic recombination in mammals: Localization and regulation. Nat Rev Genet 14: 794–806.
    • (2013) Nat Rev Genet , vol.14 , pp. 794-806
    • Baudat, F.1    Imai, Y.2    De Massy, B.3
  • 20
    • 0000009360 scopus 로고
    • A possible influence of the spindle fibre on crossing-over in Drosophila
    • Beadle GW. 1932. A possible influence of the spindle fibre on crossing-over in Drosophila. Proc Natl Acad Sci 18: 160–165.
    • (1932) Proc Natl Acad Sci , vol.18 , pp. 160-165
    • Beadle, G.W.1
  • 22
    • 84865576738 scopus 로고    scopus 로고
    • Preserving the genome by regulating chromatin association with the nuclear envelope
    • Bermejo R, Kumar A, Foiani M. 2012. Preserving the genome by regulating chromatin association with the nuclear envelope. Trends Cell Biol 22: 465–473.
    • (2012) Trends Cell Biol , vol.22 , pp. 465-473
    • Bermejo, R.1    Kumar, A.2    Foiani, M.3
  • 24
    • 34249041230 scopus 로고    scopus 로고
    • Exploring genetic interactions and networks with yeast
    • Boone C, Bussey H, Andrews BJ. 2007. Exploring genetic interactions and networks with yeast. Nat Rev Genet 8: 437–449.
    • (2007) Nat Rev Genet , vol.8 , pp. 437-449
    • Boone, C.1    Bussey, H.2    Rews, B.J.3
  • 26
    • 0029162563 scopus 로고
    • Telomere elongation in immortal human cells without detectable telomerase activity
    • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240–4248.
    • (1995) EMBO J , vol.14 , pp. 4240-4248
    • Bryan, T.M.1    Englezou, A.2    Gupta, J.3    Bacchetti, S.4    Reddel, R.R.5
  • 27
    • 0030697342 scopus 로고    scopus 로고
    • Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines
    • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3: 1271–1274.
    • (1997) Nat Med , vol.3 , pp. 1271-1274
    • Bryan, T.M.1    Englezou, A.2    Dalla-Pozza, L.3    Dunham, M.A.4    Reddel, R.R.5
  • 29
    • 36849029846 scopus 로고    scopus 로고
    • Novel proand anti-recombination activities of the Bloom’s syndrome helicase
    • Bugreev DV, Yu X, Egelman EH, Mazin AV. 2007. Novel proand anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21: 3085–3094.
    • (2007) Genes Dev , vol.21 , pp. 3085-3094
    • Bugreev, D.V.1    Yu, X.2    Egelman, E.H.3    Mazin, A.V.4
  • 30
    • 50649118135 scopus 로고    scopus 로고
    • RECQ1 possesses DNA branch migration activity
    • Bugreev DV, Brosh RM, Mazin AV. 2008. RECQ1 possesses DNA branch migration activity. J Biol Chem 283: 20231–20242.
    • (2008) J Biol Chem , vol.283 , pp. 20231-20242
    • Bugreev, D.V.1    Brosh, R.M.2    Mazin, A.V.3
  • 32
    • 77950862944 scopus 로고    scopus 로고
    • Double Holliday junctions are intermediates of DNA break repair
    • Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N. 2010. Double Holliday junctions are intermediates of DNA break repair. Nature 464: 937–941.
    • (2010) Nature , vol.464 , pp. 937-941
    • Bzymek, M.1    Thayer, N.H.2    Oh, S.D.3    Kleckner, N.4    Hunter, N.5
  • 33
    • 33744938713 scopus 로고    scopus 로고
    • Cernunnos interacts with the XRCC4 center dot DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1
    • Callebaut I, Malivert L, Fischer A, Mornon JP, Revy P, de Villartay JP. 2006. Cernunnos interacts with the XRCC4 center dot DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J Biol Chem 281: 13857–13860.
    • (2006) J Biol Chem , vol.281 , pp. 13857-13860
    • Callebaut, I.1    Malivert, L.2    Fischer, A.3    Mornon, J.P.4    Revy, P.5    De Villartay, J.P.6
  • 34
    • 84908045717 scopus 로고    scopus 로고
    • Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks
    • Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature 514: 122–125.
    • (2014) Nature , vol.514 , pp. 122-125
    • Cannavo, E.1    Cejka, P.2
  • 35
    • 67749091323 scopus 로고    scopus 로고
    • Nej1 recruits the Srs2 helicase to DNA doublestrand breaks and supports repair by a single-strand annealing-like mechanism
    • Carter SD, Vigasova D, Chen J, Chovanec M, Astrom SU. 2009. Nej1 recruits the Srs2 helicase to DNA doublestrand breaks and supports repair by a single-strand annealing-like mechanism. Proc Natl Acad Sci 106: 12037– 12042.
    • (2009) Proc Natl Acad Sci 106: 12037– , pp. 12042
    • Carter, S.D.1    Vigasova, D.2    Chen, J.3    Chovanec, M.4    Astrom, S.U.5
  • 36
    • 84896382616 scopus 로고    scopus 로고
    • Targeting homologous recombination-mediated DNA repair in cancer
    • Carvalho JFS, Kanaar R. 2014. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 18: 427–458.
    • (2014) Expert Opin Ther Targets , vol.18 , pp. 427-458
    • Carvalho, J.1    Kanaar, R.2
  • 38
    • 67349227137 scopus 로고    scopus 로고
    • Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
    • Chan KL, Palmai-Pallag T, Ying SM, Hickson ID. 2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11: 753–760.
    • (2009) Nat Cell Biol , vol.11 , pp. 753-760
    • Chan, K.L.1    Palmai-Pallag, T.2    Ying, S.M.3    Hickson, I.D.4
  • 39
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497–510.
    • (2012) Mol Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 40
    • 79953011338 scopus 로고    scopus 로고
    • Yeast Nej1 is a key participant in the initial end binding and final ligation steps of nonhomologous end joining
    • Chen X, Tomkinson AE. 2011. Yeast Nej1 is a key participant in the initial end binding and final ligation steps of nonhomologous end joining. J Biol Chem 286: 4931–4940.
    • (2011) J Biol Chem , vol.286 , pp. 4931-4940
    • Chen, X.1    Tomkinson, A.E.2
  • 43
    • 84863063826 scopus 로고    scopus 로고
    • Inhibiting homologous recombination for cancer therapy
    • Chernikova SB, Game JC, Brown JM. 2012. Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13: 61–68.
    • (2012) Cancer Biol Ther , vol.13 , pp. 61-68
    • Chernikova, S.B.1    Game, J.C.2    Brown, J.M.3
  • 44
    • 35649023709 scopus 로고    scopus 로고
    • The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles
    • Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G. 2007. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27: 7439–7450.
    • (2007) Mol Cell Biol , vol.27 , pp. 7439-7450
    • Chiolo, I.1    Saponaro, M.2    Baryshnikova, A.3    Kim, J.H.4    Seo, Y.S.5    Liberi, G.6
  • 45
    • 79952314830 scopus 로고    scopus 로고
    • Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
    • Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH. 2011. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144: 732–744.
    • (2011) Cell , vol.144 , pp. 732-744
    • Chiolo, I.1    Minoda, A.2    Colmenares, S.U.3    Polyzos, A.4    Costes, S.V.5    Karpen, G.H.6
  • 46
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78: 273–304.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 47
    • 0031038170 scopus 로고    scopus 로고
    • Regulation of telomere length and function by a Myb-domain protein in fission yeast
    • Cooper JP, Nimmo ER, Allshire RC, Cech TR. 1997. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747.
    • (1997) Nature , vol.385 , pp. 744-747
    • Cooper, J.P.1    Nimmo, E.R.2    Allshire, R.C.3    Cech, T.R.4
  • 49
    • 33749511276 scopus 로고    scopus 로고
    • Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange
    • Cortes-Ledesma F, Aguilera A. 2006. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7: 919–926.
    • (2006) EMBO Rep , vol.7 , pp. 919-926
    • Cortes-Ledesma, F.1    Aguilera, A.2
  • 54
    • 0030885649 scopus 로고    scopus 로고
    • Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
    • Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S. 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci 94: 9757–9762.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 9757-9762
    • Datta, A.1    Hendrix, M.2    Lipsitch, M.3    Jinks-Robertson, S.4
  • 55
    • 79959635260 scopus 로고    scopus 로고
    • DNA interstrand crosslink repair and cancer
    • Deans AJ, West SC. 2011. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11: 467–480.
    • (2011) Nat Rev Cancer , vol.11 , pp. 467-480
    • Deans, A.J.1    West, S.C.2
  • 56
    • 84888626405 scopus 로고    scopus 로고
    • Modernizing the nonhomologous end-joining repertoire: Alternative and classical NHEJ share the stage
    • Deriano L, Roth DB. 2013. Modernizing the nonhomologous end-joining repertoire: Alternative and classical NHEJ share the stage. Annu Rev Genet 47: 433–455.
    • (2013) Annu Rev Genet , vol.47 , pp. 433-455
    • Deriano, L.1    Roth, D.B.2
  • 57
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
    • Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM. 2012. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14: 502–509.
    • (2012) Nat Cell Biol , vol.14 , pp. 502-509
    • Dion, V.1    Kalck, V.2    Horigome, C.3    Towbin, B.D.4    Gasser, S.M.5
  • 58
    • 84872625067 scopus 로고
    • Genetics of natural populations. XIII: Recombination and variability in populations of Drosophila pseudoobscura
    • Dobzhansky T. 1946. Genetics of natural populations. XIII: Recombination and variability in populations of Drosophila pseudoobscura. Genetics 31: 269–290.
    • (1946) Genetics , vol.31 , pp. 269-290
    • Dobzhansky, T.1
  • 59
    • 84919390877 scopus 로고    scopus 로고
    • The role of double-strand break repair pathways at functional and dysfunctional telomeres
    • ? Doksani Y, de Lange T. 2014. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 6: a016576.
    • (2014) Cold Spring Harb Perspect Biol , pp. 6
    • ? Doksani, Y.1    De Lange, T.2
  • 60
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination
    • Dupaigne P, Le Breton C, Fabre F, Giangloff S, Le Cam E, Veaute X. 2008. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination. Mol Cell 29: 243–254.
    • (2008) Mol Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Giangloff, S.4    Le Cam, E.5    Veaute, X.6
  • 61
    • 84868694661 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation
    • Eapen VV, Sugawara N, Tsabar M, Wu WH, Haber JE. 2012. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 32: 4727–4740.
    • (2012) Mol Cell Biol , vol.32 , pp. 4727-4740
    • Eapen, V.V.1    Sugawara, N.2    Tsabar, M.3    Wu, W.H.4    Haber, J.E.5
  • 62
    • 0036480427 scopus 로고    scopus 로고
    • Double-strand breaks and translocations in cancer
    • Elliott B, Jasin M. 2002. Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373–385.
    • (2002) Cell Mol Life Sci , vol.59 , pp. 373-385
    • Elliott, B.1    Jasin, M.2
  • 63
    • 0017843077 scopus 로고
    • Induced intragenic recombination in yeast can occur during the G1 mitotic phase
    • 1 mitotic phase. Nature 272: 795–797.
    • (1978) Nature , vol.272 , pp. 795-797
    • Fabre, F.1
  • 64
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F, Chan A, Heyer WD, Gangloff S. 2002. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci 99: 16887–16892.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 66
    • 84923838375 scopus 로고    scopus 로고
    • Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism
    • Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. 2015. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell Biol 57: 595–606.
    • (2015) Mol Cell Biol , vol.57 , pp. 595-606
    • Fasching, C.L.1    Cejka, P.2    Kowalczykowski, S.C.3    Heyer, W.D.4
  • 67
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • Filippo JS, Sung P, Klein H. 2008. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229–257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • Filippo, J.S.1    Sung, P.2    Klein, H.3
  • 69
    • 84866728909 scopus 로고    scopus 로고
    • Chromothripsis and cancer: Causes and consequences of chromosome shattering
    • Forment JV, Kaidi A, Jackson SP. 2012. Chromothripsis and cancer: Causes and consequences of chromosome shattering. Nat Rev Cancer 12: 663–670.
    • (2012) Nat Rev Cancer , vol.12 , pp. 663-670
    • Forment, J.V.1    Kaidi, A.2    Jackson, S.P.3
  • 70
    • 0035889233 scopus 로고    scopus 로고
    • NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway
    • Frank-Vaillant M, Marcand S. 2001. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev 15: 3005– 3012.
    • (2001) Genes Dev 15: 3005– , pp. 3012
    • Frank-Vaillant, M.1    Marcand, S.2
  • 72
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • Gangloff S, Soustelle C, Fabre F. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25: 192–194.
    • (2000) Nat Genet , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 73
    • 84860203870 scopus 로고    scopus 로고
    • Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA
    • George CM, Alani E. 2012. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Biochem Mol Biol 47: 297–313.
    • (2012) Crit Rev Biochem Mol Biol , vol.47 , pp. 297-313
    • George, C.M.1    Alani, E.2
  • 74
    • 84859087611 scopus 로고    scopus 로고
    • R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
    • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F. 2012. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45: 814–825.
    • (2012) Mol Cell , vol.45 , pp. 814-825
    • Ginno, P.A.1    Lott, P.L.2    Christensen, H.C.3    Korf, I.4    Chedin, F.5
  • 75
    • 78649449767 scopus 로고    scopus 로고
    • The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax
    • Goodarzi AA, Jeggo P, Lobrich M. 2010. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair 9: 1273–1282.
    • (2010) DNA Repair , vol.9 , pp. 1273-1282
    • Goodarzi, A.A.1    Jeggo, P.2    Lobrich, M.3
  • 76
    • 33747877763 scopus 로고    scopus 로고
    • Transpositions and translocations induced by site-specific double-strand breaks in budding yeast
    • Haber JE. 2006. Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5: 998–1009.
    • (2006) DNA Repair , vol.5 , pp. 998-1009
    • Haber, J.E.1
  • 77
    • 33751419716 scopus 로고    scopus 로고
    • Surviving the breakup: The DNA damage checkpoint
    • Harrison JC, Haber JE. 2006. Surviving the breakup: The DNA damage checkpoint. Annu Rev Genet 40: 209–235.
    • (2006) Annu Rev Genet , vol.40 , pp. 209-235
    • Harrison, J.C.1    Haber, J.E.2
  • 78
  • 79
    • 78549251695 scopus 로고    scopus 로고
    • Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
    • Hashimoto Y, Chaudhuri AR, Lopes M, Costanzo V. 2010. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17: 1305–U1268.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1268-1305
    • Hashimoto, Y.1    Chaudhuri, A.R.2    Lopes, M.3    Costanzo, V.4
  • 81
    • 46149118183 scopus 로고    scopus 로고
    • The kleisin subunit of cohesin dictates damage-induced cohesion
    • Heidinger-Pauli JM, Unal E, Guacci V, Koshland D. 2008. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol Cell 31: 47–56.
    • (2008) Mol Cell , vol.31 , pp. 47-56
    • Heidinger-Pauli, J.M.1    Unal, E.2    Guacci, V.3    Koshland, D.4
  • 82
    • 0029144279 scopus 로고
    • Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation
    • Heude M, Chanet R, Fabre F. 1995. Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol Gen Genet 248: 59–68.
    • (1995) Mol Gen Genet , vol.248 , pp. 59-68
    • Heude, M.1    Chanet, R.2    Fabre, F.3
  • 83
    • 38049185448 scopus 로고    scopus 로고
    • Biochemistry of eukaryotic homologous recombination
    • (ed. Aguilera A, Rothstein R, Springer, Berlin
    • Heyer WD. 2007. Biochemistry of eukaryotic homologous recombination. In Molecular genetics of recombination (ed. Aguilera A, Rothstein R), pp. 95–133. Springer, Berlin.
    • (2007) Molecular Genetics of Recombination , pp. 95-133
    • Heyer, W.D.1
  • 84
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer WD, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44: 113–139.
    • (2010) Annu Rev Genet , vol.44 , pp. 113-139
    • Heyer, W.D.1    Ehmsen, K.T.2    Liu, J.3
  • 85
    • 0033790431 scopus 로고    scopus 로고
    • Chromosome cohesion, condensation, and separation
    • Hirano T. 2000. Chromosome cohesion, condensation, and separation. Annu Rev Biochem 69: 115–144.
    • (2000) Annu Rev Biochem , vol.69 , pp. 115-144
    • Hirano, T.1
  • 86
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 87
    • 33748699358 scopus 로고    scopus 로고
    • Tid1/ Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites on meiotic chromatin
    • Holzen TM, Shah PP, Olivares HA, Bishop DK. 2006. Tid1/ Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites on meiotic chromatin. Genes Dev 20: 2593–2604.
    • (2006) Genes Dev , vol.20 , pp. 2593-2604
    • Holzen, T.M.1    Shah, P.P.2    Olivares, H.A.3    Bishop, D.K.4
  • 88
    • 80155198806 scopus 로고    scopus 로고
    • Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding
    • Honda M, Okuno Y, Yoo J, Ha T, Spies M. 2011. Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding. EMBO J 30: 3368–3382.
    • (2011) EMBO J , vol.30 , pp. 3368-3382
    • Honda, M.1    Okuno, Y.2    Yoo, J.3    Ha, T.4    Spies, M.5
  • 90
    • 66149114020 scopus 로고    scopus 로고
    • Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
    • Huertas P, Jackson SP. 2009. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284: 9558–9565.
    • (2009) J Biol Chem , vol.284 , pp. 9558-9565
    • Huertas, P.1    Jackson, S.P.2
  • 91
  • 92
    • 35948932274 scopus 로고    scopus 로고
    • Meiotic recombination
    • Homologous recombination (ed., Springer, Berlin
    • Hunter N. 2007. Meiotic recombination. In Homologous recombination (ed. Aguilera A, Rothstein R), pp. 381– 441. Springer, Berlin.
    • (2007) Aguilera A, Rothstein R), Pp. 381– , pp. 441
    • Hunter, N.1
  • 93
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401–411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 94
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3p, a 50 to 30 DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • 0 DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16: 1383–1396.
    • (2002) Genes Dev , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 95
    • 84876886904 scopus 로고    scopus 로고
    • Regulation of DNA damage responses by ubiquitin and SUMO
    • Jackson SP, Durocher D. 2013. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49: 795– 807.
    • (2013) Mol Cell 49: 795– , pp. 807
    • Jackson, S.P.1    Durocher, D.2
  • 96
    • 59949092789 scopus 로고    scopus 로고
    • A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair
    • Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber JE. 2009. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23: 291–303.
    • (2009) Genes Dev , vol.23 , pp. 291-303
    • Jain, S.1    Sugawara, N.2    Lydeard, J.3    Vaze, M.4    Le Tanguy Gac, N.5    Haber, J.E.6
  • 97
    • 84888617317 scopus 로고    scopus 로고
    • Control of nuclear activities by substrate-selective and protein-group SUMOylation
    • Jentsch S, Psakhye I. 2013. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47: 167–186.
    • (2013) Annu Rev Genet , vol.47 , pp. 167-186
    • Jentsch, S.1    Psakhye, I.2
  • 99
    • 0026709385 scopus 로고
    • Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae
    • Kadyk LC, Hartwell LH. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132: 387– 402.
    • (1992) Genetics 132: 387– , pp. 402
    • Kadyk, L.C.1    Hartwell, L.H.2
  • 100
    • 39449092872 scopus 로고    scopus 로고
    • Quality control of DNA break metabolism: In the “end,” it’s a good thing
    • Kanaar R, Wyman C, Rothstein R. 2008. Quality control of DNA break metabolism: In the “end,” it’s a good thing. EMBO J 27: 581–588.
    • (2008) EMBO J , vol.27 , pp. 581-588
    • Kanaar, R.1    Wyman, C.2    Rothstein, R.3
  • 101
    • 0035899933 scopus 로고    scopus 로고
    • Nej1p, a cell typespecific regulator of nonhomologous end joining in yeast
    • Kegel A, Sjostrand JO, Astrom SU. 2001. Nej1p, a cell typespecific regulator of nonhomologous end joining in yeast. Curr Biol 11: 1611–1617.
    • (2001) Curr Biol , vol.11 , pp. 1611-1617
    • Kegel, A.1    Sjostrand, J.O.2    Astrom, S.U.3
  • 102
    • 84863670930 scopus 로고    scopus 로고
    • Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway
    • Kim H, D’Andrea AD. 2012. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26: 1393–1408.
    • (2012) Genes Dev , vol.26 , pp. 1393-1408
    • Kim, H.1    D’Andrea, A.D.2
  • 103
    • 84857191660 scopus 로고    scopus 로고
    • Transcription as a source of genome instability
    • Kim N, Jinks-Robertson S. 2012. Transcription as a source of genome instability. Nat Rev Genet 13: 204–214.
    • (2012) Nat Rev Genet , vol.13 , pp. 204-214
    • Kim, N.1    Jinks-Robertson, S.2
  • 105
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner RD, Putnam CD, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552–557.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 106
  • 110
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu Rev Genet 38: 233–271.
    • (2004) Annu Rev Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 111
    • 0017288156 scopus 로고
    • UV mutagenesis in radiation-sensitive strains of yeast
    • Lawrence CW, Christensen R. 1976. UV mutagenesis in radiation-sensitive strains of yeast. Genetics 82: 207–232.
    • (1976) Genetics , vol.82 , pp. 207-232
    • Lawrence, C.W.1    Christensen, R.2
  • 112
    • 0001908121 scopus 로고
    • Mutants of yeast defective in mutation induced by ultraviolet light
    • Lemontt JF. 1971. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68: 21–33.
    • (1971) Genetics , vol.68 , pp. 21-33
    • Lemontt, J.F.1
  • 113
    • 0032542364 scopus 로고    scopus 로고
    • Genetic instabilities in human cancers
    • Lengauer C, Kinzler KW, Vogelstein B. 1998. Genetic instabilities in human cancers. Nature 396: 643–649.
    • (1998) Nature , vol.396 , pp. 643-649
    • Lengauer, C.1    Kinzler, K.W.2    Vogelstein, B.3
  • 114
    • 36248942617 scopus 로고    scopus 로고
    • Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
    • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28: 638–651.
    • (2007) Mol Cell , vol.28 , pp. 638-651
    • Lengsfeld, B.M.1    Rattray, A.J.2    Bhaskara, V.3    Ghirlando, R.4    Paull, T.T.5
  • 116
    • 38049173021 scopus 로고    scopus 로고
    • Homologous recombination in DNA repair and DNA damage tolerance
    • Li X, Heyer WD. 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18: 99–113.
    • (2008) Cell Res , vol.18 , pp. 99-113
    • Li, X.1    Heyer, W.D.2
  • 117
    • 59649102253 scopus 로고    scopus 로고
    • RAD54 controls access to the invading 3-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae
    • Li X, Heyer WD. 2009. RAD54 controls access to the invading 3-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37: 638–646.
    • (2009) Nucleic Acids Res , vol.37 , pp. 638-646
    • Li, X.1    Heyer, W.D.2
  • 119
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogs Rad55–Rad57 balance the antirecombinase function of Srs2 in Rad51 pre-synaptic filament formation
    • Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer W-D. 2011a. Rad51 paralogs Rad55–Rad57 balance the antirecombinase function of Srs2 in Rad51 pre-synaptic filament formation. Nature 479: 245–248.
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.-D.6
  • 121
    • 84862491113 scopus 로고    scopus 로고
    • Mechanisms for recurrent and complex human genomic rearrangements
    • Liu PF, Carvalho CMB, Hastings PJ, Lupski JR. 2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr Op Genet Dev 22: 211–220.
    • (2012) Curr Op Genet Dev , vol.22 , pp. 211-220
    • Liu, P.F.1    Carvalho, C.2    Hastings, P.J.3    Lupski, J.R.4
  • 122
    • 84862603467 scopus 로고    scopus 로고
    • The fission yeast FANCM ortholog directs non-crossover recombination during meiosis
    • Lorenz A, Osman F, Sun W, Nandi S, Steinacher R, Whitby MC. 2012. The fission yeast FANCM ortholog directs non-crossover recombination during meiosis. Science 336: 1585–1588.
    • (2012) Science , vol.336 , pp. 1585-1588
    • Lorenz, A.1    Osman, F.2    Sun, W.3    Nandi, S.4    Steinacher, R.5    Whitby, M.C.6
  • 123
    • 84862732690 scopus 로고    scopus 로고
    • New insights into nucleosome and chromatin structure: An ordered or a disordered affair?
    • Luger K, Dechassa ML, Tremethick DJ. 2012. New insights into nucleosome and chromatin structure: An ordered or a disordered affair? Nat Rev Mol Cell Biol 13: 436–447.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 436-447
    • Luger, K.1    Dechassa, M.L.2    Tremethick, D.J.3
  • 125
    • 84870218426 scopus 로고    scopus 로고
    • Mutations arising during repair of chromosome breaks
    • Malkova A, Haber JE. 2012. Mutations arising during repair of chromosome breaks. Annu Rev Genet 46: 455–473.
    • (2012) Annu Rev Genet , vol.46 , pp. 455-473
    • Malkova, A.1    Haber, J.E.2
  • 126
    • 77955626857 scopus 로고    scopus 로고
    • Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly
    • McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, Herman GE. 2010. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res 3: 137–141.
    • (2010) Autism Res , vol.3 , pp. 137-141
    • McBride, K.L.1    Varga, E.A.2    Pastore, M.T.3    Prior, T.W.4    Manickam, K.5    Atkin, J.F.6    Herman, G.E.7
  • 127
    • 84903757525 scopus 로고    scopus 로고
    • Sources of DNA double-strand breaks and models of recombinational DNA repair
    • ? Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6: a016428.
    • (2014) Cold Spring Harb Perspect Biol , pp. 6
    • Mehta, A.1    Haber, J.E.2
  • 130
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Mine-Hattab J, Rothstein R. 2012. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14: 510–517.
    • (2012) Nat Cell Biol , vol.14 , pp. 510-517
    • Mine-Hattab, J.1    Rothstein, R.2
  • 131
    • 84875974599 scopus 로고    scopus 로고
    • Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes
    • Mitchel K, Lehner K, Jinks-Robertson S. 2013. Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 9.
    • (2013) Plos Genet , pp. 9
    • Mitchel, K.1    Lehner, K.2    Jinks-Robertson, S.3
  • 132
    • 84885073578 scopus 로고    scopus 로고
    • Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity
    • Miura T, Shibata T, Kusano K. 2013. Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity. Proc Natl Acad Sci 110: 16067–16072.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 16067-16072
    • Miura, T.1    Shibata, T.2    Kusano, K.3
  • 133
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan GL, Pfander B, Jentsch S. 2007. PCNA, the maestro of the replication fork. Cell 129: 665–679.
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 136
    • 84906907753 scopus 로고    scopus 로고
    • DNA-pairing and annealing processes in homologous recombination and homology-directed repair
    • ? Morrical SW. 2014. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 6: a016428.
    • (2014) Cold Spring Harb Perspect Biol , pp. 6
    • Morrical, S.W.1
  • 137
    • 0032426554 scopus 로고    scopus 로고
    • Recombination and recombination-dependent DNA replication in bacteriophage T4
    • Mosig G. 1998. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet 32: 379–413.
    • (1998) Annu Rev Genet , vol.32 , pp. 379-413
    • Mosig, G.1
  • 138
    • 77649131406 scopus 로고    scopus 로고
    • Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis
    • Moynahan ME, Jasin M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11: 196–207.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 196-207
    • Moynahan, M.E.1    Jasin, M.2
  • 139
    • 77955393744 scopus 로고    scopus 로고
    • Stable morphology, but dynamic internal reorganization, of interphase human chromosomes in living cells
    • Müller I, Boyle S, Singer RH, Bickmore WA, Chubb JR. 2010. Stable morphology, but dynamic internal reorganization, of interphase human chromosomes in living cells. PLoS ONE 5: e11560.
    • (2010) Plos ONE , pp. 5
    • Müller, I.1    Boyle, S.2    Singer, R.H.3    Bickmore, W.A.4    Chubb, J.R.5
  • 141
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073–1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 143
    • 0029952294 scopus 로고    scopus 로고
    • Thymine–thymine dimer bypass by yeast DNA polymerase z
    • Nelson JR, Lawrence CW, Hinkle DC. 1996. Thymine–thymine dimer bypass by yeast DNA polymerase z. Science 272: 1646–1649.
    • (1996) Science , vol.272 , pp. 1646-1649
    • Nelson, J.R.1    Lawrence, C.W.2    Hinkle, D.C.3
  • 144
    • 24944550999 scopus 로고    scopus 로고
    • Replication termination in Escherichia coli: Structure and antihelicase activity of the Tus–Ter complex
    • Neylon C, Kralicek AV, Hill TM, Dixon NE. 2005. Replication termination in Escherichia coli: Structure and antihelicase activity of the Tus–Ter complex. Microbiol Mol Biol Rev 69: 501–526.
    • (2005) Microbiol Mol Biol Rev , vol.69 , pp. 501-526
    • Neylon, C.1    Kralicek, A.V.2    Hill, T.M.3    Dixon, N.E.4
  • 145
  • 146
    • 24344440628 scopus 로고    scopus 로고
    • The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins
    • Osman F, Dixon J, Barr AR, Whitby MC. 2005. The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 25: 8084–8096.
    • (2005) Mol Cell Biol , vol.25 , pp. 8084-8096
    • Osman, F.1    Dixon, J.2    Barr, A.R.3    Whitby, M.C.4
  • 148
    • 84895828055 scopus 로고    scopus 로고
    • Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing
    • Paliwal S, Kanagaraj R, Sturzenegger A, Burdova K, Janscak P. 2014. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res 42: 2380–2390.
    • (2014) Nucleic Acids Res , vol.42 , pp. 2380-2390
    • Paliwal, S.1    Kanagaraj, R.2    Sturzenegger, A.3    Burdova, K.4    Janscak, P.5
  • 149
    • 0026669523 scopus 로고
    • Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants
    • Palladino F, Klein HL. 1992. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132: 23–37.
    • (1992) Genetics , vol.132 , pp. 23-37
    • Palladino, F.1    Klein, H.L.2
  • 150
    • 21244449061 scopus 로고    scopus 로고
    • Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
    • Papouli E, Chen SH, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19: 123–133.
    • (2005) Mol Cell , vol.19 , pp. 123-133
    • Papouli, E.1    Chen, S.H.2    Davies, A.A.3    Huttner, D.4    Krejci, L.5    Sung, P.6    Ulrich, H.D.7
  • 151
    • 76749151934 scopus 로고    scopus 로고
    • Prdm9 controls activation of mammalian recombination hotspots
    • Parvanov ED, Petkov PM, Paigen K. 2010. Prdm9 controls activation of mammalian recombination hotspots. Science 327: 835.
    • (2010) Science , vol.327 , pp. 835
    • Parvanov, E.D.1    Petkov, P.M.2    Paigen, K.3
  • 152
    • 52949143512 scopus 로고    scopus 로고
    • Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
    • Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175.
    • (2008) Plos Genet , pp. 4
    • Payen, C.1    Koszul, R.2    Dujon, B.3    Fischer, G.4
  • 153
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • Petukhova G, Stratton S, Sung P. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393: 91–94.
    • (1998) Nature , vol.393 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 154
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428–433.
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 155
    • 79952235291 scopus 로고    scopus 로고
    • Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications
    • Polo SE, Jackson SP. 2011. Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev 25: 409–433.
    • (2011) Genes Dev , vol.25 , pp. 409-433
    • Polo, S.E.1    Jackson, S.P.2
  • 156
    • 21244506437 scopus 로고    scopus 로고
    • Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function
    • Prakash S, Johnson RE, Prakash L. 2005. Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu Rev Biochem 74: 317–353.
    • (2005) Annu Rev Biochem , vol.74 , pp. 317-353
    • Prakash, S.1    Johnson, R.E.2    Prakash, L.3
  • 158
    • 84926432359 scopus 로고    scopus 로고
    • Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins
    • ? Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7: a016600.
    • (2015) Cold Spring Harb Perspect Biol , pp. 7
    • Prakash, R.1    Zhang, Y.2    Feng, W.3    Jasin, M.4
  • 159
    • 84875198804 scopus 로고    scopus 로고
    • Chromatin remodeling at DNA double-strand breaks
    • Price BD, D’Andrea AD. 2013. Chromatin remodeling at DNA double-strand breaks. Cell 152: 1344–1354.
    • (2013) Cell , vol.152 , pp. 1344-1354
    • Price, B.D.1    D’Andrea, A.D.2
  • 160
    • 69249231999 scopus 로고    scopus 로고
    • Specific pathways prevent duplication-mediated genome rearrangements
    • Putnam CD, Hayes TK, Kolodner RD. 2009. Specific pathways prevent duplication-mediated genome rearrangements. Nature 460: U984–U965.
    • (2009) Nature , vol.460 , pp. 965-984
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 162
    • 0027089978 scopus 로고
    • Stability and properties of double and triple helices: Dramatic effects of RNA or DNA backbone composition
    • Roberts RW, Caruthers DM. 1992. Stability and properties of double and triple helices: Dramatic effects of RNA or DNA backbone composition. Science 258: 1463–1466.
    • (1992) Science , vol.258 , pp. 1463-1466
    • Roberts, R.W.1    Caruthers, D.M.2
  • 163
    • 0032489520 scopus 로고    scopus 로고
    • DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
    • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.
    • (1998) J Biol Chem , vol.273 , pp. 5858-5868
    • Rogakou, E.P.1    Pilch, D.R.2    Orr, A.H.3    Ivanova, V.S.4    Bonner, W.M.5
  • 165
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale JE, Lehmann AR, Woodgate R. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13: 141–152.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 141-152
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 166
    • 77649191573 scopus 로고    scopus 로고
    • Genome destabilization by homologous recombination in the germ line
    • Sasaki M, Lange J, Keeney S. 2010. Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11: 182–195.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 182-195
    • Sasaki, M.1    Lange, J.2    Keeney, S.3
  • 167
    • 15144348297 scopus 로고
    • Chromosome structure and mechanism of crossing over
    • Sax K. 1930. Chromosome structure and mechanism of crossing over. J Arnold Arb 11: 193–220.
    • (1930) J Arnold Arb , vol.11 , pp. 193-220
    • Sax, K.1
  • 168
    • 0025232659 scopus 로고
    • The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
    • Schiestl RH, Prakash S, Prakash L. 1990. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124: 817–831.
    • (1990) Genetics , vol.124 , pp. 817-831
    • Schiestl, R.H.1    Prakash, S.2    Prakash, L.3
  • 169
    • 0028946208 scopus 로고
    • Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity
    • Schild D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140: 115–127.
    • (1995) Genetics , vol.140 , pp. 115-127
    • Schild, D.1
  • 170
    • 79955799175 scopus 로고    scopus 로고
    • Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
    • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145: 529–542.
    • (2011) Cell , vol.145 , pp. 529-542
    • Schlacher, K.1    Christ, N.2    Siaud, N.3    Egashira, A.4    Wu, H.5    Jasin, M.6
  • 171
    • 33750845099 scopus 로고    scopus 로고
    • Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions
    • Schuldiner M, Collins SR, Weissman JS, Krogan NJ. 2006. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. Methods 40: 344–352.
    • (2006) Methods , vol.40 , pp. 344-352
    • Schuldiner, M.1    Collins, S.R.2    Weissman, J.S.3    Krogan, N.J.4
  • 172
    • 0028178792 scopus 로고
    • The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz VP, Zakian VA. 1994. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 173
    • 0028972024 scopus 로고
    • Identification of double Holliday junctions as intermediates in meiotic recombination
    • Schwacha A, Kleckner N. 1995. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83: 783–791.
    • (1995) Cell , vol.83 , pp. 783-791
    • Schwacha, A.1    Kleckner, N.2
  • 175
    • 84877801676 scopus 로고    scopus 로고
    • Nucleosome remodelers in double-strand break repair
    • Seeber A, Hauer M, Gasser SM. 2013. Nucleosome remodelers in double-strand break repair. Curr Opin Genet Dev 23: 174–184.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 174-184
    • Seeber, A.1    Hauer, M.2    Gasser, S.M.3
  • 177
    • 77956924865 scopus 로고    scopus 로고
    • Swi2/Snf2-Related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth
    • Shah PP, Zheng XZ, Epshtein A, Carey JN, Bishop DK, Klein HL. 2010. Swi2/Snf2-Related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39: 862–872.
    • (2010) Mol Cell , vol.39 , pp. 862-872
    • Shah, P.P.1    Zheng, X.Z.2    Epshtein, A.3    Carey, J.N.4    Bishop, D.K.5    Klein, H.L.6
  • 178
    • 40249083431 scopus 로고    scopus 로고
    • Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges
    • Sharma S, Brosh RM Jr. 2007. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS ONE 2: e1297.
    • (2007) Plos ONE , pp. 2
    • Sharma, S.1    Brosh, R.M.2
  • 179
    • 33845999615 scopus 로고    scopus 로고
    • Essential role for nuclear PTEN in maintaining chromosomal integrity
    • Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y. 2007. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128: 157–170.
    • (2007) Cell , vol.128 , pp. 157-170
    • Shen, W.H.1    Balajee, A.S.2    Wang, J.3    Wu, H.4    Eng, C.5    Pandolfi, P.P.6    Yin, Y.7
  • 183
    • 0036864703 scopus 로고    scopus 로고
    • Rad54, a Swi2/ Snf2-like recombinational repair protein, disassembles Rad51:DsDNA filaments
    • Solinger JA, Kiianitsa K, Heyer W-D. 2002. Rad54, a Swi2/ Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10: 1175–1188.
    • (2002) Mol Cell , vol.10 , pp. 1175-1188
    • Solinger, J.A.1    Kiianitsa, K.2    Heyer, W.-D.3
  • 184
    • 65549113446 scopus 로고    scopus 로고
    • FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
    • Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM. 2009. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 284: 7502–7514.
    • (2009) J Biol Chem , vol.284 , pp. 7502-7514
    • Sommers, J.A.1    Rawtani, N.2    Gupta, R.3    Bugreev, D.V.4    Mazin, A.V.5    Cantor, S.B.6    Brosh, R.M.7
  • 185
    • 84901659561 scopus 로고    scopus 로고
    • Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae
    • Song W, Dominska M, Greenwell PW, Petes TD. 2014. Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae. Proc Natl Acad Sci 111: 2210–2218.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 2210-2218
    • Song, W.1    Dominska, M.2    Greenwell, P.W.3    Petes, T.D.4
  • 186
    • 84863001577 scopus 로고    scopus 로고
    • Prime, repair, restore: The active role of chromatin in the DNA damage response
    • Soria G, Polo SE, Almouzni G. 2012. Prime, repair, restore: The active role of chromatin in the DNA damage response. Mol Cell 46: 722–734.
    • (2012) Mol Cell , vol.46 , pp. 722-734
    • Soria, G.1    Polo, S.E.2    Almouzni, G.3
  • 188
    • 84924787370 scopus 로고    scopus 로고
    • Mismatch repair during homologous and homeologous recombination
    • Spies M, Fishel R. 2015. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb Perspect Biol 7: a022657.
    • (2015) Cold Spring Harb Perspect Biol , pp. 7
    • Spies, M.1    Fishel, R.2
  • 189
    • 77949831756 scopus 로고    scopus 로고
    • Structural variation in the human genome and its role in disease
    • Stankiewicz P, Lupski JR. 2010. Structural variation in the human genome and its role in disease. Annu Rev Med 61: 437–455.
    • (2010) Annu Rev Med , vol.61 , pp. 437-455
    • Stankiewicz, P.1    Lupski, J.R.2
  • 190
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter P, Ulrich HD. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188–191.
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 191
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403: 41–45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 192
    • 0029024834 scopus 로고
    • DNA synthesis errors associated with double-strand-break repair
    • Strathern JN, Shafer BK, Mcgill CB. 1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140: 965–972.
    • (1995) Genetics , vol.140 , pp. 965-972
    • Strathern, J.N.1    Shafer, B.K.2    McGill, C.B.3
  • 193
    • 25444496210 scopus 로고    scopus 로고
    • DNA damage-induced cohesion
    • Ström L, Sjogren C. 2005. DNA damage-induced cohesion. Cell Cycle 4: 536–539.
    • (2005) Cell Cycle , vol.4 , pp. 536-539
    • Ström, L.1    Sjogren, C.2
  • 194
    • 34250211440 scopus 로고    scopus 로고
    • Chromosome segregation and double-strand break repair—A complex connection
    • Ström L, Sjogren C. 2007. Chromosome segregation and double-strand break repair—A complex connection. Curr Opin Cell Biol 19: 344–349.
    • (2007) Curr Opin Cell Biol , vol.19 , pp. 344-349
    • Ström, L.1    Sjogren, C.2
  • 195
    • 10944232673 scopus 로고    scopus 로고
    • Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
    • Ström L, Lindroos HB, Shirahige K, Sjögren C. 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16: 1003– 1015.
    • (2004) Mol Cell 16: 1003– , pp. 1015
    • Ström, L.1    Lindroos, H.B.2    Shirahige, K.3    Sjögren, C.4
  • 196
    • 34447549077 scopus 로고    scopus 로고
    • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
    • Ström L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjogren C. 2007. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317: 242–245.
    • (2007) Science , vol.317 , pp. 242-245
    • Ström, L.1    Karlsson, C.2    Lindroos, H.B.3    Wedahl, S.4    Katou, Y.5    Shirahige, K.6    Sjogren, C.7
  • 199
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247–271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 200
    • 33748681302 scopus 로고    scopus 로고
    • Some disassembly required: Role of DNA translocases in the disruption of recombination intermediates and dead-end complexes
    • Symington LS, Heyer WD. 2006. Some disassembly required: Role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev 20: 2479–2486.
    • (2006) Genes Dev , vol.20 , pp. 2479-2486
    • Symington, L.S.1    Heyer, W.D.2
  • 201
    • 0022575104 scopus 로고
    • Mitotic recombination between dispersed but related tRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation
    • Szankasi P, Gysler C, Zehntner U, Leupold U, Kohli J, Munz P. 1986. Mitotic recombination between dispersed but related tRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation. Mol Gen Genet 202: 394– 402.
    • (1986) Mol Gen Genet 202: 394– , pp. 402
    • Szankasi, P.1    Gysler, C.2    Zehntner, U.3    Leupold, U.4    Kohli, J.5    Munz, P.6
  • 202
    • 84930423588 scopus 로고    scopus 로고
    • Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling
    • Székvölgyi L, Ohta K, Nicolas A. 2015. Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb Perspect Biol 7: a016527.
    • (2015) Cold Spring Harb Perspect Biol , pp. 7
    • Székvölgyi, L.1    Ohta, K.2    Nicolas, A.3
  • 203
    • 77950586378 scopus 로고    scopus 로고
    • A possible influence of the spindle fibre on crossing-over in Drosophila
    • Talbert PB, Henikoff S. 2010. A possible influence of the spindle fibre on crossing-over in Drosophila. PLoS Biol 8: e1000326.
    • (2010) Plos Biol , pp. 8
    • Talbert, P.B.1    Henikoff, S.2
  • 205
    • 84877816931 scopus 로고    scopus 로고
    • Chromatin modifications and chromatin remodeling during DNA repair in budding yeast
    • Tsabar M, Haber JE. 2013. Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr Opin Genet Dev 23: 166–173.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 166-173
    • Tsabar, M.1    Haber, J.E.2
  • 207
    • 10944262393 scopus 로고    scopus 로고
    • DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
    • Ünal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16: 991–1002.
    • (2004) Mol Cell , vol.16 , pp. 991-1002
    • Ünal, E.1    Arbel-Eden, A.2    Sattler, U.3    Shroff, R.4    Lichten, M.5    Haber, J.E.6    Koshland, D.7
  • 208
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
    • Ünal E, Heidinger-Pauli JM, Koshland D. 2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317: 245–248.
    • (2007) Science , vol.317 , pp. 245-248
    • Ünal, E.1    Heidinger-Pauli, J.M.2    Koshland, D.3
  • 210
    • 84904762540 scopus 로고    scopus 로고
    • Studying the organization of DNA repair by single-cell and single-molecule imaging
    • Uphoff S, Kapanidis AN. 2014. Studying the organization of DNA repair by single-cell and single-molecule imaging. DNA Repair 20: 32–40.
    • (2014) DNA Repair , vol.20 , pp. 32-40
    • Uphoff, S.1    Kapanidis, A.N.2
  • 213
    • 84860854071 scopus 로고    scopus 로고
    • RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity
    • Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MIR, Ding H, Boulton SJ. 2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149: 795–806.
    • (2012) Cell , vol.149 , pp. 795-806
    • Vannier, J.B.1    Pavicic-Kaltenbrunner, V.2    Petalcorin, M.3    Ding, H.4    Boulton, S.J.5
  • 214
    • 62149104335 scopus 로고    scopus 로고
    • The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly
    • Varga EA, Pastore M, Prior T, Herman GE, McBride KL. 2009. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med 11: 111–117.
    • (2009) Genet Med , vol.11 , pp. 111-117
    • Varga, E.A.1    Pastore, M.2    Prior, T.3    Herman, G.E.4    McBride, K.L.5
  • 216
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309–312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 217
    • 79953239469 scopus 로고    scopus 로고
    • Aberrant chromosome morphology in human cells defective for Holliday junction resolution
    • Wechsler T, Newman S, West SC. 2011. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471: 642–646.
    • (2011) Nature , vol.471 , pp. 642-646
    • Wechsler, T.1    Newman, S.2    West, S.C.3
  • 218
    • 33747888634 scopus 로고    scopus 로고
    • Modeling oncogenic translocations: Distinct roles for double-strand break repair pathways in translocation formation in mammalian cells
    • Weinstock DM, Richardson CA, Elliott B, Jasin M. 2006. Modeling oncogenic translocations: Distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair 5: 1065–1074.
    • (2006) DNA Repair , vol.5 , pp. 1065-1074
    • Weinstock, D.M.1    Richardson, C.A.2    Elliott, B.3    Jasin, M.4
  • 219
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom’s syndrome helicase suppresses crossing-over during homologous recombination
    • Wu LJ, Hickson ID. 2003. The Bloom’s syndrome helicase suppresses crossing-over during homologous recombination. Nature 426: 870–874.
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.J.1    Hickson, I.D.2
  • 220
    • 33751426143 scopus 로고    scopus 로고
    • DNA helicases required for homologous recombination and repair of damaged replication forks
    • Wu L, Hickson ID. 2006. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40: 279–306.
    • (2006) Annu Rev Genet , vol.40 , pp. 279-306
    • Wu, L.1    Hickson, I.D.2
  • 221
  • 223
    • 33845604556 scopus 로고    scopus 로고
    • DNA double-strand break repair: All’s well that ends well
    • Wyman C, Kanaar R. 2006. DNA double-strand break repair: All’s well that ends well. Annu Rev Genet 40: 363–383.
    • (2006) Annu Rev Genet , vol.40 , pp. 363-383
    • Wyman, C.1    Kanaar, R.2
  • 224
    • 84892703043 scopus 로고    scopus 로고
    • Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis
    • Xaver M, Huang LZ, Chen D, Klein F. 2013. Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLoS Genet 9: e1004067.
    • (2013) Plos Genet , pp. 9
    • Xaver, M.1    Huang, L.Z.2    Chen, D.3    Klein, F.4
  • 225
    • 57149094856 scopus 로고    scopus 로고
    • Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae
    • Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. 2008. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4: e1000264.
    • (2008) Plos Genet , pp. 4
    • Yang, Y.1    Sterling, J.2    Storici, F.3    Resnick, M.A.4    Gordenin, D.A.5
  • 226
    • 84964314244 scopus 로고    scopus 로고
    • Highresolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae
    • Yim E, O’Connell KE, St Charles J, Petes TD. 2014. Highresolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics 198: 181–192.
    • (2014) Genetics , vol.198 , pp. 181-192
    • Yim, E.1    O’Connell, K.E.2    St Charles, J.3    Petes, T.D.4
  • 230
    • 0033368701 scopus 로고    scopus 로고
    • Meiotic chromosomes: Integrating structure and function
    • Zickler D, Kleckner N. 1999. Meiotic chromosomes: Integrating structure and function. Annu Rev Genet 33: 603– 754.
    • (1999) Annu Rev Genet 33: 603– , pp. 754
    • Zickler, D.1    Kleckner, N.2
  • 231
    • 84876908617 scopus 로고    scopus 로고
    • Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps
    • Zinovyev A, Kuperstein I, Barillot E, Heyer WD. 2013. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps. PLoS Comp Biol 9: e1003016.
    • (2013) Plos Comp Biol , pp. 9
    • Zinovyev, A.1    Kuperstein, I.2    Barillot, E.3    Heyer, W.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.