메뉴 건너뛰기




Volumn 5, Issue 9-10, 2006, Pages 998-1009

Transpositions and translocations induced by site-specific double-strand breaks in budding yeast

Author keywords

Molecular mechanisms; Translocations; Transpositions

Indexed keywords

DNA FRAGMENT; DOUBLE STRANDED DNA; ENDONUCLEASE;

EID: 33747877763     PISSN: 15687864     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dnarep.2006.05.025     Document Type: Article
Times cited : (54)

References (122)
  • 2
    • 0035223878 scopus 로고    scopus 로고
    • Mechanism and control of meiotic recombination initiation
    • Keeney S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52 (2001) 1-53
    • (2001) Curr. Top. Dev. Biol. , vol.52 , pp. 1-53
    • Keeney, S.1
  • 3
    • 0033780451 scopus 로고    scopus 로고
    • Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae
    • Weil C.F., and Kunze R. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat. Genet. 26 (2000) 187-190
    • (2000) Nat. Genet. , vol.26 , pp. 187-190
    • Weil, C.F.1    Kunze, R.2
  • 4
    • 1642458360 scopus 로고    scopus 로고
    • Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae
    • Yu J., Marshall K., Yamaguchi M., Haber J.E., and Weil C.F. Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol. Cell. Biol. 24 (2004) 1351-1364
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1351-1364
    • Yu, J.1    Marshall, K.2    Yamaguchi, M.3    Haber, J.E.4    Weil, C.F.5
  • 5
    • 85158009972 scopus 로고    scopus 로고
    • Switching of Saccharomyces cerevisiae mating-type genes
    • Craig R.C.N., Gellert M., and Lambowitz A. (Eds), ASM Press
    • Haber J.E. Switching of Saccharomyces cerevisiae mating-type genes. In: Craig R.C.N., Gellert M., and Lambowitz A. (Eds). Mobile DNA II (2002), ASM Press 927-952
    • (2002) Mobile DNA II , pp. 927-952
    • Haber, J.E.1
  • 6
    • 0021646203 scopus 로고
    • The product of the HO gene is a nuclease: purification and characterization of the enzyme
    • Kostriken R., and Heffron F. The product of the HO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harb. Symp. Quant. Biol. 49 (1984) 89-96
    • (1984) Cold Spring Harb. Symp. Quant. Biol. , vol.49 , pp. 89-96
    • Kostriken, R.1    Heffron, F.2
  • 7
    • 0025020278 scopus 로고
    • Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
    • White C.I., and Haber J.E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9 (1990) 663-673
    • (1990) EMBO J. , vol.9 , pp. 663-673
    • White, C.I.1    Haber, J.E.2
  • 8
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase
    • Vaze M., Pellicioli A., Lee S., Ira G., Liberi G., Arbel-Eden A., Foiani M., and Haber J. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase. Mol. Cell 10 (2002) 373
    • (2002) Mol. Cell , vol.10 , pp. 373
    • Vaze, M.1    Pellicioli, A.2    Lee, S.3    Ira, G.4    Liberi, G.5    Arbel-Eden, A.6    Foiani, M.7    Haber, J.8
  • 9
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining or telomere maintenance
    • Moreau S., Ferguson J.R., and Symington L.S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining or telomere maintenance. Mol. Cell. Biol. 19 (1999) 556-566
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 10
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • Aylon Y., Liefshitz B., and Kupiec M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23 (2004) 4868-4875
    • (2004) EMBO J. , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 12
    • 10944233962 scopus 로고    scopus 로고
    • Recruitment of the INO80 Complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
    • van Attikum H., Fritsch O., Hohn B., and Gasser S.M. Recruitment of the INO80 Complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119 (2004) 777-788
    • (2004) Cell , vol.119 , pp. 777-788
    • van Attikum, H.1    Fritsch, O.2    Hohn, B.3    Gasser, S.M.4
  • 13
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara N., Wang X., and Haber J.E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12 (2003) 209-219
    • (2003) Mol. Cell , vol.12 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 14
    • 3543045545 scopus 로고    scopus 로고
    • Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae
    • Wang X., Ira G., Tercero J.A., Holmes A.M., Diffley J.F., and Haber J.E. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 24 (2004) 6891-6899
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6891-6899
    • Wang, X.1    Ira, G.2    Tercero, J.A.3    Holmes, A.M.4    Diffley, J.F.5    Haber, J.E.6
  • 15
    • 0042626553 scopus 로고    scopus 로고
    • Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
    • Wolner B., van Komen S., Sung P., and Peterson C.L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12 (2003) 221-232
    • (2003) Mol. Cell , vol.12 , pp. 221-232
    • Wolner, B.1    van Komen, S.2    Sung, P.3    Peterson, C.L.4
  • 16
    • 0031813153 scopus 로고    scopus 로고
    • High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα
    • Weiss K., and Simpson R.T. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18 (1998) 5392-5403
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 5392-5403
    • Weiss, K.1    Simpson, R.T.2
  • 17
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
    • Chai B., Huang J., Cairns B.R., and Laurent B.C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19 (2005) 1656-1661
    • (2005) Genes Dev. , vol.19 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 18
    • 18144423533 scopus 로고    scopus 로고
    • The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks
    • Shim E.Y., Ma J.L., Oum J.H., Yanez Y., and Lee S.E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25 (2005) 3934-3944
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3934-3944
    • Shim, E.Y.1    Ma, J.L.2    Oum, J.H.3    Yanez, Y.4    Lee, S.E.5
  • 19
    • 2342527027 scopus 로고    scopus 로고
    • DNA damage checkpoint and repair centers
    • Lisby M., and Rothstein R. DNA damage checkpoint and repair centers. Curr. Opin. Cell. Biol. 16 (2004) 328-334
    • (2004) Curr. Opin. Cell. Biol. , vol.16 , pp. 328-334
    • Lisby, M.1    Rothstein, R.2
  • 20
    • 1842509858 scopus 로고    scopus 로고
    • In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair
    • Miyazaki T., Bressan D.A., Shinohara M., Haber J.E., and Shinohara A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23 (2004) 939-949
    • (2004) EMBO J. , vol.23 , pp. 939-949
    • Miyazaki, T.1    Bressan, D.A.2    Shinohara, M.3    Haber, J.E.4    Shinohara, A.5
  • 21
    • 0842331349 scopus 로고    scopus 로고
    • Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III
    • Bressan D.A., Vazquez J., and Haber J.E. Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III. J. Cell. Biol. 164 (2004) 361-371
    • (2004) J. Cell. Biol. , vol.164 , pp. 361-371
    • Bressan, D.A.1    Vazquez, J.2    Haber, J.E.3
  • 23
    • 2542508779 scopus 로고    scopus 로고
    • Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway
    • Colaiácovo M.P., Pâques F., and Haber J.E. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Genetics 151 (1999) 1409-1423
    • (1999) Genetics , vol.151 , pp. 1409-1423
    • Colaiácovo, M.P.1    Pâques, F.2    Haber, J.E.3
  • 24
    • 0026498944 scopus 로고
    • Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1
    • Fishman-Lobell J., and Haber J.E. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 (1992) 480-484
    • (1992) Science , vol.258 , pp. 480-484
    • Fishman-Lobell, J.1    Haber, J.E.2
  • 25
    • 0022399493 scopus 로고
    • An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene
    • Jacquier A., and Dujon B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41 (1985) 383-394
    • (1985) Cell , vol.41 , pp. 383-394
    • Jacquier, A.1    Dujon, B.2
  • 26
    • 0022000934 scopus 로고
    • Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break
    • Zinn A.R., and Butow R.A. Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell 40 (1985) 887-895
    • (1985) Cell , vol.40 , pp. 887-895
    • Zinn, A.R.1    Butow, R.A.2
  • 27
    • 0026573892 scopus 로고
    • Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus
    • Plessis A., Perrin A., Haber J.E., and Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130 (1992) 451-460
    • (1992) Genetics , vol.130 , pp. 451-460
    • Plessis, A.1    Perrin, A.2    Haber, J.E.3    Dujon, B.4
  • 28
    • 0345166826 scopus 로고    scopus 로고
    • Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast
    • Storici F., Durham C.L., Gordenin D.A., and Resnick M.A. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 14994-14999
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 14994-14999
    • Storici, F.1    Durham, C.L.2    Gordenin, D.A.3    Resnick, M.A.4
  • 29
    • 0036812245 scopus 로고    scopus 로고
    • A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio
    • Wilson T.E. A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162 (2002) 677-688
    • (2002) Genetics , vol.162 , pp. 677-688
    • Wilson, T.E.1
  • 30
    • 0028919608 scopus 로고
    • Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
    • Choulika A., Perrin A., Dujon B., and Nicolas J.F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15 (1995) 1968-1973
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1968-1973
    • Choulika, A.1    Perrin, A.2    Dujon, B.3    Nicolas, J.F.4
  • 32
    • 1542609299 scopus 로고    scopus 로고
    • Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease
    • Nickoloff J.A., and Brenneman M.A. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease. Methods Mol. Biol. 262 (2004) 35-52
    • (2004) Methods Mol. Biol. , vol.262 , pp. 35-52
    • Nickoloff, J.A.1    Brenneman, M.A.2
  • 33
    • 16644369531 scopus 로고    scopus 로고
    • Measuring recombination proficiency in mouse embryonic stem cells
    • Pierce A.J., and Jasin M. Measuring recombination proficiency in mouse embryonic stem cells. Methods Mol. Biol. 291 (2005) 373-384
    • (2005) Methods Mol. Biol. , vol.291 , pp. 373-384
    • Pierce, A.J.1    Jasin, M.2
  • 34
    • 0024403230 scopus 로고
    • Double-strand breaks stimulate alternative mechanisms of recombination repair
    • Nickoloff J.A., Singer J.D., Hoekstra M.F., and Heffron F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207 (1989) 527-541
    • (1989) J. Mol. Biol. , vol.207 , pp. 527-541
    • Nickoloff, J.A.1    Singer, J.D.2    Hoekstra, M.F.3    Heffron, F.4
  • 35
    • 0037440659 scopus 로고    scopus 로고
    • Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional
    • Palmer S., Schildkraut E., Lazarin R., Nguyen J., and Nickoloff J.A. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic Acids Res. 31 (2003) 1164-1173
    • (2003) Nucleic Acids Res. , vol.31 , pp. 1164-1173
    • Palmer, S.1    Schildkraut, E.2    Lazarin, R.3    Nguyen, J.4    Nickoloff, J.A.5
  • 36
    • 0028221221 scopus 로고
    • Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity
    • Sweetser D.B., Hough H., Whelden J.F., Arbuckle M., and Nickoloff J.A. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell. Biol. 14 (1994) 3863-3875
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 3863-3875
    • Sweetser, D.B.1    Hough, H.2    Whelden, J.F.3    Arbuckle, M.4    Nickoloff, J.A.5
  • 37
    • 1842763188 scopus 로고    scopus 로고
    • New insights into the mechanism of homologous recombination in yeast
    • Aylon Y., and Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat. Res. 566 (2004) 231-248
    • (2004) Mutat. Res. , vol.566 , pp. 231-248
    • Aylon, Y.1    Kupiec, M.2
  • 38
    • 3242714207 scopus 로고    scopus 로고
    • The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae
    • Ben-Aroya S., Mieczkowski P.A., Petes T.D., and Kupiec M. The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol. Cell 15 (2004) 221-231
    • (2004) Mol. Cell , vol.15 , pp. 221-231
    • Ben-Aroya, S.1    Mieczkowski, P.A.2    Petes, T.D.3    Kupiec, M.4
  • 39
    • 0033940472 scopus 로고    scopus 로고
    • Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner
    • Inbar O., and Kupiec M. Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner. Curr. Genet. 38 (2000) 23-32
    • (2000) Curr. Genet. , vol.38 , pp. 23-32
    • Inbar, O.1    Kupiec, M.2
  • 40
    • 0034613170 scopus 로고    scopus 로고
    • The relationship between homology length and crossing-over during the repair of a broken chromosome
    • Inbar O., Liefshitz B., Bitan G., and Kupiec M. The relationship between homology length and crossing-over during the repair of a broken chromosome. J. Biol. Chem. 275 (2000) 30833-30838
    • (2000) J. Biol. Chem. , vol.275 , pp. 30833-30838
    • Inbar, O.1    Liefshitz, B.2    Bitan, G.3    Kupiec, M.4
  • 41
    • 0028956271 scopus 로고
    • Recombination of Ty elements in yeast can be induced by a double-strand break
    • Parket A., Inbar O., and Kupiec M. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 140 (1995) 67-77
    • (1995) Genetics , vol.140 , pp. 67-77
    • Parket, A.1    Inbar, O.2    Kupiec, M.3
  • 42
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G., Malkova A., Liberi G., Foiani M., and Haber J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115 (2003) 401-411
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 43
    • 0034887008 scopus 로고    scopus 로고
    • Intermediates of yeast meiotic recombination contain heteroduplex DNA
    • Allers T., and Lichten M. Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell 8 (2001) 225-231
    • (2001) Mol. Cell , vol.8 , pp. 225-231
    • Allers, T.1    Lichten, M.2
  • 44
    • 0028972024 scopus 로고
    • Identification of double Holliday junctions as intermediates in meiotic recombination
    • Schwacha A., and Kleckner N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83 (1995) 783-791
    • (1995) Cell , vol.83 , pp. 783-791
    • Schwacha, A.1    Kleckner, N.2
  • 45
    • 0020541955 scopus 로고
    • The double-strand-break repair model for recombination
    • Szostak J.W., Orr W.T., Rothstein R.J., and Stahl F.W. The double-strand-break repair model for recombination. Cell 33 (1983) 25-35
    • (1983) Cell , vol.33 , pp. 25-35
    • Szostak, J.W.1    Orr, W.T.2    Rothstein, R.J.3    Stahl, F.W.4
  • 46
    • 0033637253 scopus 로고    scopus 로고
    • Control of crossing over
    • Cromie G.A., and Leach D.R. Control of crossing over. Mol. Cell 6 (2000) 815-826
    • (2000) Mol. Cell , vol.6 , pp. 815-826
    • Cromie, G.A.1    Leach, D.R.2
  • 47
    • 21844477298 scopus 로고    scopus 로고
    • Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting
    • Langston L.D., and Symington L.S. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. EMBO J. 24 (2005) 2214-2223
    • (2005) EMBO J. , vol.24 , pp. 2214-2223
    • Langston, L.D.1    Symington, L.S.2
  • 48
    • 0141707817 scopus 로고    scopus 로고
    • Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Emel in meiosis
    • Osman F., Dixon J., Doe C.L., and Whitby M.C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Emel in meiosis. Mol. Cell 12 (2003) 761-774
    • (2003) Mol. Cell , vol.12 , pp. 761-774
    • Osman, F.1    Dixon, J.2    Doe, C.L.3    Whitby, M.C.4
  • 50
    • 28844475500 scopus 로고    scopus 로고
    • Making crossovers during meiosis
    • Whitby M.C. Making crossovers during meiosis. Biochem. Soc. Trans. 33 (2005) 1451-1455
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 1451-1455
    • Whitby, M.C.1
  • 51
    • 0037107402 scopus 로고    scopus 로고
    • Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities
    • Constantinou A., Chen X.B., McGowan C.H., and West S.C. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 21 (2002) 5577-5585
    • (2002) EMBO J. , vol.21 , pp. 5577-5585
    • Constantinou, A.1    Chen, X.B.2    McGowan, C.H.3    West, S.C.4
  • 53
    • 0037854709 scopus 로고    scopus 로고
    • The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast
    • de los Santos T., Hunter N., Lee C., Larkin B., Loidl J., and Hollingsworth N.M. The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164 (2003) 81-94
    • (2003) Genetics , vol.164 , pp. 81-94
    • de los Santos, T.1    Hunter, N.2    Lee, C.3    Larkin, B.4    Loidl, J.5    Hollingsworth, N.M.6
  • 54
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F., Chan A., Heyer W.D., and Gangloff S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 16887-16892
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 55
    • 28044431820 scopus 로고    scopus 로고
    • Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae
    • Ii M., and Brill S.J. Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae. Curr. Genet. 48 (2005) 213-225
    • (2005) Curr. Genet. , vol.48 , pp. 213-225
    • Ii, M.1    Brill, S.J.2
  • 57
    • 0035148955 scopus 로고    scopus 로고
    • Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae
    • Mullen J.R., Kaliraman V., Ibrahim S.S., and Brill S.J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157 (2001) 103-118
    • (2001) Genetics , vol.157 , pp. 103-118
    • Mullen, J.R.1    Kaliraman, V.2    Ibrahim, S.S.3    Brill, S.J.4
  • 58
    • 0037160099 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen
    • Schmidt K.H., Derry K.L., and Kolodner R.D. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J. Biol. Chem. 277 (2002) 45331-45337
    • (2002) J. Biol. Chem. , vol.277 , pp. 45331-45337
    • Schmidt, K.H.1    Derry, K.L.2    Kolodner, R.D.3
  • 59
    • 1642309305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
    • Torres J.Z., Schnakenberg S.L., and Zakian V.A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24 (2004) 3198-3212
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3198-3212
    • Torres, J.Z.1    Schnakenberg, S.L.2    Zakian, V.A.3
  • 60
    • 0029927124 scopus 로고    scopus 로고
    • Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model
    • Ferguson D.O., and Holloman W.K. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 5419-5424
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 5419-5424
    • Ferguson, D.O.1    Holloman, W.K.2
  • 61
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Pâques F., and Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63 (1999) 349-404
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 62
    • 17644410077 scopus 로고    scopus 로고
    • Recq15 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers
    • Hu Y., Lu X., Barnes E., Yan M., Lou H., and Luo G. Recq15 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell. Biol. 25 (2005) 3431-3442
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3431-3442
    • Hu, Y.1    Lu, X.2    Barnes, E.3    Yan, M.4    Lou, H.5    Luo, G.6
  • 63
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom's syndrome helicase suppresses crossing over during homologous recombination
    • Wu L., and Hickson I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426 (2003) 870-874
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 64
    • 0026751086 scopus 로고
    • Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins
    • Aboussekhra A., Chanet R., Adjiri A., and Fabre F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12 (1992) 3224-3234
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 3224-3234
    • Aboussekhra, A.1    Chanet, R.2    Adjiri, A.3    Fabre, F.4
  • 65
    • 0035850252 scopus 로고    scopus 로고
    • Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae
    • Friedl A.A., Liefshitz B., Steinlauf R., and Kupiec M. Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat. Res. 486 (2001) 137-146
    • (2001) Mutat. Res. , vol.486 , pp. 137-146
    • Friedl, A.A.1    Liefshitz, B.2    Steinlauf, R.3    Kupiec, M.4
  • 67
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., and Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423 (2003) 309-312
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 68
    • 14844296413 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase
    • Prakash R., Krejci L., Van Komen S., Schurer K.A., Kramer W., and Sung P. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase. J. Biol. Chem. (2005)
    • (2005) J. Biol. Chem.
    • Prakash, R.1    Krejci, L.2    Van Komen, S.3    Schurer, K.A.4    Kramer, W.5    Sung, P.6
  • 69
    • 17344391705 scopus 로고    scopus 로고
    • MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage
    • Scheller J., Schurer A., Rudolph C., Hettwer S., and Kramer W. MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics 155 (2000) 1069-1081
    • (2000) Genetics , vol.155 , pp. 1069-1081
    • Scheller, J.1    Schurer, A.2    Rudolph, C.3    Hettwer, S.4    Kramer, W.5
  • 70
    • 2442572065 scopus 로고    scopus 로고
    • Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair
    • Schurer K.A., Rudolph C., Ulrich H.D., and Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 166 (2004) 1673-1686
    • (2004) Genetics , vol.166 , pp. 1673-1686
    • Schurer, K.A.1    Rudolph, C.2    Ulrich, H.D.3    Kramer, W.4
  • 71
    • 0026583875 scopus 로고
    • Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell J., Rudin N., and Haber J.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12 (1992) 1292-1303
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 72
    • 0027383921 scopus 로고
    • Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination
    • Plessis A., and Dujon B. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene 134 (1993) 41-50
    • (1993) Gene , vol.134 , pp. 41-50
    • Plessis, A.1    Dujon, B.2
  • 73
    • 0030963745 scopus 로고    scopus 로고
    • The exaptive excellence of spandrels as a term and prototype
    • Gould S.J. The exaptive excellence of spandrels as a term and prototype. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 10750-10755
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 10750-10755
    • Gould, S.J.1
  • 74
    • 0030800629 scopus 로고    scopus 로고
    • Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination
    • Wu X., Wu C., and Haber J.E. Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147 (1997) 399-407
    • (1997) Genetics , vol.147 , pp. 399-407
    • Wu, X.1    Wu, C.2    Haber, J.E.3
  • 75
    • 0031242008 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination
    • Shinohara A., Gasior S., Ogawa T., Kleckner N., and Bishop D.K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2 (1997) 615-629
    • (1997) Genes Cells , vol.2 , pp. 615-629
    • Shinohara, A.1    Gasior, S.2    Ogawa, T.3    Kleckner, N.4    Bishop, D.K.5
  • 76
    • 23344449102 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype
    • Putnam C.D., Pennaneach V., and Kolodner R.D. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol. Cell. Biol. 25 (2005) 7226-7238
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7226-7238
    • Putnam, C.D.1    Pennaneach, V.2    Kolodner, R.D.3
  • 77
    • 0034759324 scopus 로고    scopus 로고
    • The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing
    • Davis A.P., and Symington L.S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159 (2001) 515-525
    • (2001) Genetics , vol.159 , pp. 515-525
    • Davis, A.P.1    Symington, L.S.2
  • 78
    • 0033946617 scopus 로고    scopus 로고
    • DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair
    • Sugawara N., Ira G., and Haber J.E. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20 (2000) 5300-5309
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5300-5309
    • Sugawara, N.1    Ira, G.2    Haber, J.E.3
  • 79
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu K., Sugawara N., Chen C., Haber J.E., and Kolodner R.D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148 (1998) 989-1005
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 80
    • 1842366037 scopus 로고    scopus 로고
    • Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae
    • Pâques F., and Haber J.E. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17 (1997) 6765-6771
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6765-6771
    • Pâques, F.1    Haber, J.E.2
  • 81
    • 0030834260 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination
    • Sugawara N., Paques F., Colaiacovo M., and Haber J.E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 9214-9219
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 9214-9219
    • Sugawara, N.1    Paques, F.2    Colaiacovo, M.3    Haber, J.E.4
  • 82
    • 0026030088 scopus 로고
    • A unique pathway of double-strand break repair operates in tandemly repeated genes
    • Ozenberger B.A., and Roeder G.S. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11 (1991) 1222-1231
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 1222-1231
    • Ozenberger, B.A.1    Roeder, G.S.2
  • 83
    • 3042546122 scopus 로고    scopus 로고
    • Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
    • Sugawara N., Goldfarb T., Studamire B., Alani E., and Haber J.E. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 9315-9320
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 9315-9320
    • Sugawara, N.1    Goldfarb, T.2    Studamire, B.3    Alani, E.4    Haber, J.E.5
  • 84
    • 15244361942 scopus 로고    scopus 로고
    • Chromosomal translocation mechanisms at intronic alu elements in mammalian cells
    • Elliott B., Richardson C., and Jasin M. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol. Cell 17 (2005) 885-894
    • (2005) Mol. Cell , vol.17 , pp. 885-894
    • Elliott, B.1    Richardson, C.2    Jasin, M.3
  • 85
    • 0030463946 scopus 로고    scopus 로고
    • Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends
    • Haber J.E., and Leung W.Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 13949-13954
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 13949-13954
    • Haber, J.E.1    Leung, W.Y.2
  • 86
    • 0034461607 scopus 로고    scopus 로고
    • Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells
    • Richardson C., and Jasin M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20 (2000) 9068-9075
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 9068-9075
    • Richardson, C.1    Jasin, M.2
  • 87
    • 0034621854 scopus 로고    scopus 로고
    • Frequent chromosomal translocations induced by DNA double-strand breaks
    • Richardson C., and Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405 (2000) 697-700
    • (2000) Nature , vol.405 , pp. 697-700
    • Richardson, C.1    Jasin, M.2
  • 88
    • 0030930989 scopus 로고    scopus 로고
    • Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by Chi sites
    • Dabert P., and Smith G.R. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by Chi sites. Genetics 145 (1997) 877-889
    • (1997) Genetics , vol.145 , pp. 877-889
    • Dabert, P.1    Smith, G.R.2
  • 89
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61 (1997) 212-238
    • (1997) Microbiol. Mol. Biol. Rev. , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 90
    • 0033082256 scopus 로고    scopus 로고
    • Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication
    • Kuzminov A., and Stahl F.W. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev. 13 (1999) 345-356
    • (1999) Genes Dev. , vol.13 , pp. 345-356
    • Kuzminov, A.1    Stahl, F.W.2
  • 91
    • 0032426554 scopus 로고    scopus 로고
    • Recombination and recombination-dependent DNA replication in bacteriophage T4
    • Mosig G. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu. Rev. Genet. 32 (1998) 379-413
    • (1998) Annu. Rev. Genet. , vol.32 , pp. 379-413
    • Mosig, G.1
  • 92
    • 0032749835 scopus 로고    scopus 로고
    • Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo
    • Motamedi M.R., Szigety S.K., and Rosenberg S.M. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev. 13 (1999) 2889-2903
    • (1999) Genes Dev. , vol.13 , pp. 2889-2903
    • Motamedi, M.R.1    Szigety, S.K.2    Rosenberg, S.M.3
  • 94
    • 0033168376 scopus 로고    scopus 로고
    • DNA recombination: the replication connection
    • Haber J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24 (1999) 271-275
    • (1999) Trends Biochem. Sci. , vol.24 , pp. 271-275
    • Haber, J.E.1
  • 95
    • 0035902459 scopus 로고    scopus 로고
    • Break-induced replication: a review and an example in budding yeast
    • Kraus E., Leung W.Y., and Haber J.E. Break-induced replication: a review and an example in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 8255-8262
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8255-8262
    • Kraus, E.1    Leung, W.Y.2    Haber, J.E.3
  • 96
    • 0029947714 scopus 로고    scopus 로고
    • Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication
    • Malkova A., Ivanov E.L., and Haber J.E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 7131-7136
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 7131-7136
    • Malkova, A.1    Ivanov, E.L.2    Haber, J.E.3
  • 97
    • 0036723660 scopus 로고    scopus 로고
    • Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences
    • Ira G., and Haber J.E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22 (2002) 6384-6392
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6384-6392
    • Ira, G.1    Haber, J.E.2
  • 98
    • 1542344337 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication in yeast
    • Davis A.P., and Symington L.S. RAD51-dependent break-induced replication in yeast. Mol. Cell. Biol. 24 (2004) 2344-2351
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2344-2351
    • Davis, A.P.1    Symington, L.S.2
  • 99
    • 0030760609 scopus 로고    scopus 로고
    • "Break copy" duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow D.M., Connelly C., and Hieter P. "Break copy" duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147 (1997) 371-382
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1    Connelly, C.2    Hieter, P.3
  • 100
    • 0035338254 scopus 로고    scopus 로고
    • RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site
    • Malkova A., Signon L., Schaefer C.B., Naylor M., Theis J.F., Newlon C.S., and Haber J.E. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 15 (2001) 1055-1160
    • (2001) Genes Dev. , vol.15 , pp. 1055-1160
    • Malkova, A.1    Signon, L.2    Schaefer, C.B.3    Naylor, M.4    Theis, J.F.5    Newlon, C.S.6    Haber, J.E.7
  • 101
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine F.J., Degtyareva N.P., Lobachev K., and Petes T.D. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120 (2005) 587-598
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 102
    • 0035000154 scopus 로고    scopus 로고
    • Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break
    • Signon L., Malkova A., Naylor M., and Haber J.E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21 (2001) 2048-2056
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2048-2056
    • Signon, L.1    Malkova, A.2    Naylor, M.3    Haber, J.E.4
  • 103
  • 104
    • 12844289007 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion
    • Malkova A., Naylor M., Yamaguchi M., Ira G., and Haber J.E. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 25 (2005) 933-944
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 933-944
    • Malkova, A.1    Naylor, M.2    Yamaguchi, M.3    Ira, G.4    Haber, J.E.5
  • 105
    • 0032959506 scopus 로고    scopus 로고
    • RAD50 and RAD51 define two different pathways that collaborate to maintain telomeres in the absence of telomerase
    • Le S., Moore J.K., Haber J.E., and Greider C. RAD50 and RAD51 define two different pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152 (1999) 143-152
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.4
  • 106
    • 0027266758 scopus 로고
    • An alternative pathway for yeast telomere maintenance rescues est1-senescence
    • Lundblad V., and Blackburn E.H. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73 (1993) 347-360
    • (1993) Cell , vol.73 , pp. 347-360
    • Lundblad, V.1    Blackburn, E.H.2
  • 107
    • 0142217320 scopus 로고    scopus 로고
    • Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis
    • Natarajan S., Groff-Vindman C., and McEachern M.J. Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis. Eukaryot. Cell 2 (2003) 1115-1127
    • (2003) Eukaryot. Cell , vol.2 , pp. 1115-1127
    • Natarajan, S.1    Groff-Vindman, C.2    McEachern, M.J.3
  • 108
    • 0033636907 scopus 로고    scopus 로고
    • Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process
    • Teng S., Chang J., McCowan B., and Zakian V.A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6 (2000) 947-952
    • (2000) Mol. Cell , vol.6 , pp. 947-952
    • Teng, S.1    Chang, J.2    McCowan, B.3    Zakian, V.A.4
  • 109
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern M.J., and Haber J.E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75 (2006) 111-135
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 110
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore J.K., and Haber J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16 (1996) 2164-2173
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 112
    • 0028013486 scopus 로고
    • Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
    • Kramer K.M., Brock J.A., Bloom K., Moore J.K., and Haber J.E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14 (1994) 1293-1301
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1293-1301
    • Kramer, K.M.1    Brock, J.A.2    Bloom, K.3    Moore, J.K.4    Haber, J.E.5
  • 113
    • 0242468933 scopus 로고    scopus 로고
    • Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
    • Ma J.L., Kim E.M., Haber J.E., and Lee S.E. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell. Biol. 23 (2003) 8820-8828
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8820-8828
    • Ma, J.L.1    Kim, E.M.2    Haber, J.E.3    Lee, S.E.4
  • 114
    • 1642385754 scopus 로고    scopus 로고
    • Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining
    • Yu X., and Gabriel A. Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining. Genetics 166 (2004) 741-751
    • (2004) Genetics , vol.166 , pp. 741-751
    • Yu, X.1    Gabriel, A.2
  • 116
    • 33645229532 scopus 로고    scopus 로고
    • Alternative pathways for the repair of RAG-induced DNA breaks
    • Weinstock D.M., and Jasin M. Alternative pathways for the repair of RAG-induced DNA breaks. Mol. Cell. Biol. 26 (2006) 131-139
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 131-139
    • Weinstock, D.M.1    Jasin, M.2
  • 117
    • 0029970701 scopus 로고    scopus 로고
    • Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks
    • Moore J.K., and Haber J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383 (1996) 644-646
    • (1996) Nature , vol.383 , pp. 644-646
    • Moore, J.K.1    Haber, J.E.2
  • 118
    • 0029975794 scopus 로고    scopus 로고
    • Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks
    • Teng S.C., Kim B., and Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383 (1996) 641-644
    • (1996) Nature , vol.383 , pp. 641-644
    • Teng, S.C.1    Kim, B.2    Gabriel, A.3
  • 119
    • 0033523903 scopus 로고    scopus 로고
    • Mitochondrial DNA repairs double-strand breaks in yeast chromosomes
    • Ricchetti M., Fairhead C., and Dujon B. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402 (1999) 96-100
    • (1999) Nature , vol.402 , pp. 96-100
    • Ricchetti, M.1    Fairhead, C.2    Dujon, B.3
  • 120
    • 0033231558 scopus 로고    scopus 로고
    • Patching broken chromosomes with extranuclear cellular DNA
    • Yu X., and Gabriel A. Patching broken chromosomes with extranuclear cellular DNA. Mol. Cell 4 (1999) 873-881
    • (1999) Mol. Cell , vol.4 , pp. 873-881
    • Yu, X.1    Gabriel, A.2
  • 121
    • 0028197257 scopus 로고
    • Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair
    • Nassif N., Penney J., Pal S., Engels W.R., and Gloor G.B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14 (1994) 1613-1625
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1613-1625
    • Nassif, N.1    Penney, J.2    Pal, S.3    Engels, W.R.4    Gloor, G.B.5
  • 122
    • 0027227703 scopus 로고
    • Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions
    • Perrin A., Buckle M., and Dujon B. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J. 12 (1993) 2939-2947
    • (1993) EMBO J. , vol.12 , pp. 2939-2947
    • Perrin, A.1    Buckle, M.2    Dujon, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.