-
1
-
-
77951236660
-
The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatinremodeling enzyme
-
Awad S, Ryan D, Prochasson P, Owen-Hughes T, Hassan AH. 2010. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatinremodeling enzyme. J. Biol. Chem. 285:9477-9484.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 9477-9484
-
-
Awad, S.1
Ryan, D.2
Prochasson, P.3
Owen-Hughes, T.4
Hassan, A.H.5
-
2
-
-
25444469961
-
Cell cycle-dependent regulation of doublestrand break repair: a role for the CDK
-
Aylon Y, Kupiec M. 2005. Cell cycle-dependent regulation of doublestrand break repair: a role for the CDK. Cell Cycle 4:259-261.
-
(2005)
Cell Cycle
, vol.4
, pp. 259-261
-
-
Aylon, Y.1
Kupiec, M.2
-
3
-
-
0037062492
-
Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX
-
Bassing CH, et al. 2002. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. U. S. A. 99:8173-8178.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 8173-8178
-
-
Bassing, C.H.1
-
4
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277:45099-45107.
-
(2012)
J. Biol. Chem
, vol.277
, pp. 45099-45107
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
Latorre-Esteves, M.4
Sinclair, D.A.5
-
5
-
-
84866898711
-
The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection
-
Costelloe T, et al. 2012. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489:581-584.
-
(2002)
Nature
, vol.489
, pp. 581-584
-
-
Costelloe, T.1
-
6
-
-
23044479628
-
Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA doublestrand break repair
-
Chai B, Huang J, Cairns BR, Laurent BC. 2005. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA doublestrand break repair. Genes Dev. 19:1656-1661.
-
(2005)
Genes Dev
, vol.19
, pp. 1656-1661
-
-
Chai, B.1
Huang, J.2
Cairns, B.R.3
Laurent, B.C.4
-
7
-
-
77951219621
-
A proteome-wide analysis of kinase-substrate network in the DNA damage response
-
Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. 2010. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J. Biol. Chem. 285:12803-12812.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 12803-12812
-
-
Chen, S.H.1
Albuquerque, C.P.2
Liang, J.3
Suhandynata, R.T.4
Zhou, H.5
-
8
-
-
84866954195
-
The Fun30 nucleosome remodeler promotes resection of DNA double-strand break ends
-
Chen X, et al. 2012. The Fun30 nucleosome remodeler promotes resection of DNA double-strand break ends. Nature 489:576-580.
-
(2012)
Nature
, vol.489
, pp. 576-580
-
-
Chen, X.1
-
9
-
-
80052492286
-
Cell cycle regulation ofDNAdouble-strand break end resection by Cdk1-dependent Dna2 phosphorylation
-
Chen X, et al. 2011. Cell cycle regulation ofDNAdouble-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18:1015-1019.
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 1015-1019
-
-
Chen, X.1
-
10
-
-
80055086479
-
Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors
-
Chi P, et al. 2011. Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. Nucleic Acids Res. 39:6511-6522.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6511-6522
-
-
Chi, P.1
-
11
-
-
77953224210
-
Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting
-
doi:10.1371/ journal.pgen.1000948
-
Chung WH, Zhu Z, Papusha A, Malkova A, Ira G. 2010. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet. 6:e1000948. doi:10.1371/ journal.pgen.1000948.
-
(2010)
PLoS Genet
, vol.6
-
-
Chung, W.H.1
Zhu, Z.2
Papusha, A.3
Malkova, A.4
Ira, G.5
-
12
-
-
33645799075
-
The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling
-
Clerici M, Mantiero D, Lucchini G, Longhese MP. 2006. The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep. 7:212-218.
-
(2006)
EMBO Rep
, vol.7
, pp. 212-218
-
-
Clerici, M.1
Mantiero, D.2
Lucchini, G.3
Longhese, M.P.4
-
13
-
-
33644691699
-
The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends
-
Clerici M, Mantiero D, Lucchini G, Longhese MP. 2005. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280:38631-38638.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 38631-38638
-
-
Clerici, M.1
Mantiero, D.2
Lucchini, G.3
Longhese, M.P.4
-
14
-
-
79551559547
-
Charting the genetic interaction map of a cell
-
Costanzo M, Baryshnikova A, Myers CL, Andrews B, Boone C. 2011. Charting the genetic interaction map of a cell. Curr. Opin. Biotechnol. 22:66-74.
-
(2011)
Curr. Opin. Biotechnol
, vol.22
, pp. 66-74
-
-
Costanzo, M.1
Baryshnikova, A.2
Myers, C.L.3
Andrews, B.4
Boone, C.5
-
16
-
-
12844278880
-
Rejoining of DNA double-strand breaks as a function of overhang length
-
Daley JM, Wilson TE. 2005. Rejoining of DNA double-strand breaks as a function of overhang length. Mol. Cell. Biol. 25:896-906.
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 896-906
-
-
Daley, J.M.1
Wilson, T.E.2
-
17
-
-
34547420591
-
The yeast DNAdamage checkpoint proteins control a cytoplasmic response toDNA damage
-
Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE. 2007. The yeast DNAdamage checkpoint proteins control a cytoplasmic response toDNA damage. Proc. Natl. Acad. Sci. U. S. A. 104:11358-11363.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 11358-11363
-
-
Dotiwala, F.1
Haase, J.2
Arbel-Eden, A.3
Bloom, K.4
Haber, J.E.5
-
18
-
-
76749157172
-
Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism
-
Dotiwala F, Harrison JC, Jain S, Sugawara N, Haber JE. 2010. Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism. Curr. Biol. 20:328-332.
-
(2010)
Curr. Biol
, vol.20
, pp. 328-332
-
-
Dotiwala, F.1
Harrison, J.C.2
Jain, S.3
Sugawara, N.4
Haber, J.E.5
-
19
-
-
84866933806
-
SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae
-
doi:10.1371/journal.pgen.1002974
-
Durand-Dubief M, et al. 2012. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLoS Genet. 8:e1002974. doi:10.1371/journal.pgen.1002974.
-
(2012)
PLoS Genet
, vol.8
-
-
Durand-Dubief, M.1
-
20
-
-
0036903037
-
DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1
-
Fernandez-Capetillo O, et al. 2002. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4:993-997.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 993-997
-
-
Fernandez-Capetillo, O.1
-
21
-
-
0026583875
-
Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
-
Fishman-Lobell J, Rudin N, Haber JE. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292-1303.
-
(1992)
Mol. Cell. Biol
, vol.12
, pp. 1292-1303
-
-
Fishman-Lobell, J.1
Rudin, N.2
Haber, J.E.3
-
22
-
-
53649090109
-
DNA helicases Sgs1 and BLM promote DNA double-strand break resection
-
Gravel S, Chapman JR, Magill C, Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22: 2767-2772.
-
(2008)
Genes Dev
, vol.22
, pp. 2767-2772
-
-
Gravel, S.1
Chapman, J.R.2
Magill, C.3
Jackson, S.P.4
-
23
-
-
34247637883
-
Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae
-
Guillemain G, et al. 2007. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol. Cell. Biol. 27:3378-3389.
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 3378-3389
-
-
Guillemain, G.1
-
24
-
-
33751419716
-
Surviving the breakup: the DNA damage checkpoint
-
Harrison JC, Haber JE. 2006. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40:209-235.
-
(2006)
Annu. Rev. Genet
, vol.40
, pp. 209-235
-
-
Harrison, J.C.1
Haber, J.E.2
-
25
-
-
79952768906
-
Real-time analysis of doublestrand DNA break repair by homologous recombination
-
Hicks WM, Yamaguchi M, Haber JE. 2011. Real-time analysis of doublestrand DNA break repair by homologous recombination. Proc. Natl. Acad. Sci. U. S. A. 108:3108-3115.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 3108-3115
-
-
Hicks, W.M.1
Yamaguchi, M.2
Haber, J.E.3
-
26
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G, et al. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011-1017.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
-
27
-
-
59949092789
-
A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA doublestrand break repair
-
Jain S, et al. 2009. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA doublestrand break repair. Genes Dev. 23:291-303.
-
(2009)
Genes Dev
, vol.23
, pp. 291-303
-
-
Jain, S.1
-
28
-
-
47949121598
-
Mre11- Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity
-
Jazayeri A, Balestrini A, Garner E, Haber JE, Costanzo V. 2008. Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J. 27:1953-1962.
-
(2008)
EMBO J
, vol.27
, pp. 1953-1962
-
-
Jazayeri, A.1
Balestrini, A.2
Garner, E.3
Haber, J.E.4
Costanzo, V.5
-
29
-
-
31444445458
-
A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery
-
Keogh MC, et al. 2006. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439: 497-501.
-
(2006)
Nature
, vol.439
, pp. 497-501
-
-
Keogh, M.C.1
-
30
-
-
59049094825
-
Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete
-
Kim JA, Haber JE. 2009. Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc. Natl. Acad. Sci. U. S. A. 106:1151-1156.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1151-1156
-
-
Kim, J.A.1
Haber, J.E.2
-
31
-
-
34447532525
-
Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals
-
Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE. 2007. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J. Cell Biol. 178:209-218.
-
(2007)
J. Cell Biol
, vol.178
, pp. 209-218
-
-
Kim, J.A.1
Kruhlak, M.2
Dotiwala, F.3
Nussenzweig, A.4
Haber, J.E.5
-
32
-
-
0028013486
-
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
-
Kramer KM, Brock JA, Bloom K, Moore JK, Haber JE. 1994. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14:1293-1301.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 1293-1301
-
-
Kramer, K.M.1
Brock, J.A.2
Bloom, K.3
Moore, J.K.4
Haber, J.E.5
-
33
-
-
1842431822
-
Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex
-
Lee JH, Paull TT. 2004. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93-96.
-
(2004)
Science
, vol.304
, pp. 93-96
-
-
Lee, J.H.1
Paull, T.T.2
-
34
-
-
34548401682
-
Saccharomyces cerevisiae Sae2-and Tel1-dependent single-strand DNA formation at DNA break promotes microhomologymediated end joining
-
Lee K, Lee SE. 2007. Saccharomyces cerevisiae Sae2-and Tel1-dependent single-strand DNA formation at DNA break promotes microhomologymediated end joining. Genetics 176:2003-2014.
-
(2007)
Genetics
, vol.176
, pp. 2003-2014
-
-
Lee, K.1
Lee, S.E.2
-
35
-
-
0036245193
-
Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance
-
Lee SE, Bressan DA, Petrini JH, Haber JE. 2002. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst.) 1:27-40.
-
(2002)
DNA Repair (Amst. )
, vol.1
, pp. 27-40
-
-
Lee, S.E.1
Bressan, D.A.2
Petrini, J.H.3
Haber, J.E.4
-
36
-
-
0032493889
-
Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
-
Lee SE, et al. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-409.
-
(1998)
Cell
, vol.94
, pp. 399-409
-
-
Lee, S.E.1
-
37
-
-
0035838373
-
The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break
-
Lee SE, Pellicioli A, Malkova A, Foiani M, Haber JE. 2001. The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr. Biol. 11:1053-1057.
-
(2001)
Curr. Biol.
, vol.11
, pp. 1053-1057
-
-
Lee, S.E.1
Pellicioli, A.2
Malkova, A.3
Foiani, M.4
Haber, J.E.5
-
38
-
-
0344643062
-
PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break
-
Leroy C, et al. 2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11: 827-835.
-
(2003)
Mol. Cell
, vol.11
, pp. 827-835
-
-
Leroy, C.1
-
39
-
-
34547927220
-
Break-induced replication and telomerase-independent telomere maintenance require Pol32
-
Lydeard JR, Jain S, Yamaguchi M, Haber JE. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820-823.
-
(2007)
Nature
, vol.448
, pp. 820-823
-
-
Lydeard, J.R.1
Jain, S.2
Yamaguchi, M.3
Haber, J.E.4
-
40
-
-
77953219442
-
Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends
-
doi: 10.1371/journal.pgen.1000973
-
Lydeard JR, Lipkin-Moore Z, Jain S, Eapen VV, Haber JE. 2010. Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet. 6:e1000973. doi: 10.1371/journal.pgen.1000973.
-
(2010)
PLoS Genet
, vol.6
-
-
Lydeard, J.R.1
Lipkin-Moore, Z.2
Jain, S.3
Eapen, V.V.4
Haber, J.E.5
-
41
-
-
77953076932
-
Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
-
Lydeard JR, et al. 2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24:1133-1144.
-
(2010)
Genes Dev
, vol.24
, pp. 1133-1144
-
-
Lydeard, J.R.1
-
42
-
-
0242468933
-
Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
Ma JL, Kim EM, Haber JE, Lee SE. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell. Biol. 23:8820-8828.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
Kim, E.M.2
Haber, J.E.3
Lee, S.E.4
-
43
-
-
34548243751
-
Clamping the Mec1/ATR checkpoint kinase into action
-
Majka J, Burgers PM. 2007. Clamping the Mec1/ATR checkpoint kinase into action. Cell Cycle 6:1157-1160.
-
(2007)
Cell Cycle
, vol.6
, pp. 1157-1160
-
-
Majka, J.1
Burgers, P.M.2
-
44
-
-
0037418195
-
Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint
-
Majka J, Burgers PM. 2003. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc. Natl. Acad. Sci. U. S. A. 100:2249-2254.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 2249-2254
-
-
Majka, J.1
Burgers, P.M.2
-
45
-
-
70449522305
-
DNA damage signalling prevents deleterious telomere addition at DNA breaks
-
Makovets S, Blackburn EH. 2009. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat. Cell Biol. 11:1383-1386.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1383-1386
-
-
Makovets, S.1
Blackburn, E.H.2
-
46
-
-
34249947699
-
ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
-
Matsuoka S, et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160-1166.
-
(2007)
Science
, vol.316
, pp. 1160-1166
-
-
Matsuoka, S.1
-
47
-
-
53649104599
-
Sae2 Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770-774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
48
-
-
0348184963
-
ATP- driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
-
Mizuguchi G, et al. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343-348.
-
(2004)
Science
, vol.303
, pp. 343-348
-
-
Mizuguchi, G.1
-
49
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164-2173.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
50
-
-
0038312215
-
Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability
-
Myung K, Pennaneach V, Kats ES, Kolodner RD. 2003. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl. Acad. Sci. U. S. A. 100:6640-6645.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 6640-6645
-
-
Myung, K.1
Pennaneach, V.2
Kats, E.S.3
Kolodner, R.D.4
-
51
-
-
77949493612
-
The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci
-
doi:10.1371/journal.pone.0008111
-
Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P. 2009. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. PLoS One 4:e8111. doi:10.1371/journal.pone.0008111.
-
(2009)
PLoS One
, vol.4
-
-
Neves-Costa, A.1
Will, W.R.2
Vetter, A.T.3
Miller, J.R.4
Varga-Weisz, P.5
-
52
-
-
80053615138
-
RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks
-
Oum JH, et al. 2011. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol. Cell. Biol. 31:3924-3937.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3924-3937
-
-
Oum, J.H.1
-
53
-
-
33748272677
-
Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage
-
Papamichos-Chronakis M, Krebs JE, Peterson CL. 2006. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20:2437-2449.
-
(2006)
Genes Dev
, vol.20
, pp. 2437-2449
-
-
Papamichos-Chronakis, M.1
Krebs, J.E.2
Peterson, C.L.3
-
54
-
-
0035105240
-
Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
-
Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7:293-300.
-
(2001)
Mol. Cell
, vol.7
, pp. 293-300
-
-
Pellicioli, A.1
Lee, S.E.2
Lucca, C.3
Foiani, M.4
Haber, J.E.5
-
55
-
-
79955507553
-
Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1
-
Rowbotham SP, et al. 2011. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42:285-296.
-
(2011)
Mol. Cell
, vol.42
, pp. 285-296
-
-
Rowbotham, S.P.1
-
56
-
-
18144423533
-
The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA doublestrand breaks
-
Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. 2005. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA doublestrand breaks. Mol. Cell. Biol. 25:3934-3944.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 3934-3944
-
-
Shim, E.Y.1
Ma, J.L.2
Oum, J.H.3
Yanez, Y.4
Lee, S.E.5
-
57
-
-
4644257681
-
Distribution and dynamics of chromatin modification induced by a definedDNAdouble-strand break
-
Shroff R, et al. 2004. Distribution and dynamics of chromatin modification induced by a definedDNAdouble-strand break. Curr. Biol. 14:1703-1711.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1703-1711
-
-
Shroff, R.1
-
58
-
-
79953741267
-
The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation
-
Stralfors A, Walfridsson J, Bhuiyan H, Ekwall K. 2011. The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet. 7:e1001334.
-
(2011)
PLoS Genet
, vol.7
-
-
Stralfors, A.1
Walfridsson, J.2
Bhuiyan, H.3
Ekwall, K.4
-
59
-
-
10944232673
-
Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
-
Strom L, Lindroos HB, Shirahige K, Sjogren C. 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16:1003-1015.
-
(2004)
Mol. Cell
, vol.16
, pp. 1003-1015
-
-
Strom, L.1
Lindroos, H.B.2
Shirahige, K.3
Sjogren, C.4
-
60
-
-
0041903834
-
In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
-
Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12:209-219.
-
(2003)
Mol. Cell
, vol.12
, pp. 209-219
-
-
Sugawara, N.1
Wang, X.2
Haber, J.E.3
-
61
-
-
0027955138
-
Specific repression of the yeast silent mating locusHMRby an adjacent telomere
-
Thompson JS, Johnson LM, Grunstein M. 1994. Specific repression of the yeast silent mating locusHMRby an adjacent telomere. Mol. Cell. Biol. 14:446-455.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 446-455
-
-
Thompson, J.S.1
Johnson, L.M.2
Grunstein, M.3
-
62
-
-
0030885666
-
CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
-
Toczyski DP, Galgoczy DJ, Hartwell LH. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097-1106.
-
(1997)
Cell
, vol.90
, pp. 1097-1106
-
-
Toczyski, D.P.1
Galgoczy, D.J.2
Hartwell, L.H.3
-
63
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
-
Unal E, et al. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16:991-1002.
-
(2004)
Mol. Cell
, vol.16
, pp. 991-1002
-
-
Unal, E.1
-
64
-
-
0034964498
-
A DNA damage response pathway controlled by Tel1 and the Mre11 complex
-
Usui T, Ogawa H, Petrini JH. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7:1255-1266.
-
(2001)
Mol. Cell
, vol.7
, pp. 1255-1266
-
-
Usui, T.1
Ogawa, H.2
Petrini, J.H.3
-
65
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase
-
Vaze M, et al. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires srs2 helicase. Mol. Cell 10:373.
-
(2002)
Mol. Cell
, vol.10
, pp. 373
-
-
Vaze, M.1
-
66
-
-
0028676232
-
New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae
-
Wach A, Brachat A, Pohlmann R, Philippsen P. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793-1808.
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pohlmann, R.3
Philippsen, P.4
-
67
-
-
28544442465
-
Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange
-
Wu WH, et al. 2005. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12:1064-1071.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1064-1071
-
-
Wu, W.H.1
-
68
-
-
82555165921
-
Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin
-
Yeung M, Durocher D. 2011. Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin. DNA Repair 10:1213-1222.
-
(2011)
DNA Repair
, vol.10
, pp. 1213-1222
-
-
Yeung, M.1
Durocher, D.2
-
69
-
-
79954580913
-
Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure
-
Yu Q, Zhang X, Bi X. 2011. Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J. Biol. Chem. 286:14659-14669.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14659-14669
-
-
Yu, Q.1
Zhang, X.2
Bi, X.3
-
70
-
-
77955841541
-
Focus on histone variant H2AX: to be or not to be
-
Yuan J, Adamski R, Chen J. 2010. Focus on histone variant H2AX: to be or not to be. FEBS Lett. 584:3717-3724.
-
(2010)
FEBS Lett
, vol.584
, pp. 3717-3724
-
-
Yuan, J.1
Adamski, R.2
Chen, J.3
-
71
-
-
0034604503
-
Pif1p helicase, a catalytic inhibitor of telomerase in yeast
-
Zhou J, Monson EK, Teng S, Schulz VP, Zakian VA. 2000. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289:771-774.
-
(2000)
Science
, vol.289
, pp. 771-774
-
-
Zhou, J.1
Monson, E.K.2
Teng, S.3
Schulz, V.P.4
Zakian, V.A.5
-
72
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
|