메뉴 건너뛰기




Volumn 18, Issue 9, 2011, Pages 1015-1019

Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIN DEPENDENT KINASE 1; DNA TOPOISOMERASE; HELICASE; SERINE; SINGLE STRANDED DNA; THREONINE;

EID: 80052492286     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2105     Document Type: Article
Times cited : (145)

References (46)
  • 1
    • 60749109846 scopus 로고    scopus 로고
    • Cell cycle CDKs and cancer: A changing paradigm
    • Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166 (2009).
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 153-166
    • Malumbres, M.1    Barbacid, M.2
  • 2
    • 77952088459 scopus 로고    scopus 로고
    • An overview of Cdk1-controlled targets and processes
    • Enserink, J.M. & Kolodner, R.D. An overview of Cdk1-controlled targets and processes. Cell Div. 5, 11 (2010).
    • (2010) Cell Div. , vol.5 , Issue.11
    • Enserink, J.M.1    Kolodner, R.D.2
  • 3
    • 77649222970 scopus 로고    scopus 로고
    • Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair
    • Saponaro, M. et al. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 6, e1000858 (2010).
    • (2010) PLoS Genet , vol.6
    • Saponaro, M.1
  • 4
    • 0037093318 scopus 로고    scopus 로고
    • Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III
    • DOI 10.1101/gad.221402
    • Caspari, T., Murray, J.M. & Carr, A.M. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16, 1195-1208 (2002). (Pubitemid 34553101)
    • (2002) Genes and Development , vol.16 , Issue.10 , pp. 1195-1208
    • Caspari, T.1    Murray, J.M.2    Carr, A.M.3
  • 5
    • 77957368466 scopus 로고    scopus 로고
    • Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity
    • e1001047
    • Granata, M. et al. Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet. 6, pii: e1001047 (2010).
    • (2010) PLoS Genet. , vol.6
    • Granata, M.1
  • 6
    • 70450285186 scopus 로고    scopus 로고
    • Saccharomyces CDK1 phosphorylates Rad53 kinase in metaphase, influencing cellular morphogenesis
    • Diani, L. et al. Saccharomyces CDK1 phosphorylates Rad53 kinase in metaphase, influencing cellular morphogenesis. J. Biol. Chem. 284, 32627-32634 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 32627-32634
    • Diani, L.1
  • 7
    • 74949131810 scopus 로고    scopus 로고
    • Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation
    • Schleker, T., Shimada, K., Sack, R., Pike, B.L. & Gasser, S.M. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation. Cell Cycle 9, 350-363 (2010).
    • (2010) Cell Cycle , vol.9 , pp. 350-363
    • Schleker, T.1    Shimada, K.2    Sack, R.3    Pike, B.L.4    Gasser, S.M.5
  • 8
    • 15844373362 scopus 로고    scopus 로고
    • CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair
    • DOI 10.1038/nature03404
    • Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598-604 (2005). (Pubitemid 40488546)
    • (2005) Nature , vol.434 , Issue.7033 , pp. 598-604
    • Esashi, F.1    Christ, N.2    Cannon, J.3    Liu, Y.4    Hunt, T.5    Jasin, M.6    West, S.C.7
  • 9
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • DOI 10.1038/sj.emboj.7600469
    • Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868-4875 (2004). (Pubitemid 40069716)
    • (2004) EMBO Journal , vol.23 , Issue.24 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 11
    • 4444339506 scopus 로고    scopus 로고
    • Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle
    • DOI 10.1101/gad.315804
    • Ferreira, M.G. & Cooper, J.P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev. 18, 2249-2254 (2004). (Pubitemid 39209573)
    • (2004) Genes and Development , vol.18 , Issue.18 , pp. 2249-2254
    • Ferreira, M.G.1    Cooper, J.P.2
  • 13
    • 39549114009 scopus 로고    scopus 로고
    • Differential Regulation of the Cellular Response to DNA Double-Strand Breaks in G1
    • DOI 10.1016/j.molcel.2008.01.016, PII S1097276508001548
    • Barlow, J.H., Lisby, M. & Rothstein, R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30, 73-85 (2008). (Pubitemid 351470149)
    • (2008) Molecular Cell , vol.30 , Issue.1 , pp. 73-85
    • Barlow, J.H.1    Lisby, M.2    Rothstein, R.3
  • 14
    • 77952304644 scopus 로고    scopus 로고
    • A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae
    • Janke, R. et al. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res. 38, 2302-2313 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2302-2313
    • Janke, R.1
  • 15
    • 53349162987 scopus 로고    scopus 로고
    • CDK targets Sae2 to control DNA-end resection and homologous recombination
    • Huertas, P., Cortes-Ledesma, F., Sartori, A.A., Aguilera, A. & Jackson, S.P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689-692 (2008).
    • (2008) Nature , vol.455 , pp. 689-692
    • Huertas, P.1    Cortes-Ledesma, F.2    Sartori, A.A.3    Aguilera, A.4    Jackson, S.P.5
  • 16
    • 66149114020 scopus 로고    scopus 로고
    • Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
    • Huertas, P. & Jackson, S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558-9565 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 9558-9565
    • Huertas, P.1    Jackson, S.P.2
  • 17
    • 67349246802 scopus 로고    scopus 로고
    • CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle
    • Yun, M.H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460-463 (2009).
    • (2009) Nature , vol.459 , pp. 460-463
    • Yun, M.H.1    Hiom, K.2
  • 18
    • 34948872046 scopus 로고    scopus 로고
    • Ctp1 Is a Cell-Cycle-Regulated Protein that Functions with Mre11 Complex to Control Double-Strand Break Repair by Homologous Recombination
    • DOI 10.1016/j.molcel.2007.09.009, PII S1097276507006211
    • Limbo, O. et al. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol. Cell 28, 134-146 (2007). (Pubitemid 47531975)
    • (2007) Molecular Cell , vol.28 , Issue.1 , pp. 134-146
    • Limbo, O.1    Chahwan, C.2    Yamada, Y.3    De Bruin, R.A.M.4    Wittenberg, C.5    Russell, P.6
  • 19
    • 67649653968 scopus 로고    scopus 로고
    • Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres
    • Bonetti, D., Martina, M., Clerici, M., Lucchini, G. & Longhese, M.P. Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol. Cell 35, 70-81 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 70-81
    • Bonetti, D.1    Martina, M.2    Clerici, M.3    Lucchini, G.4    Longhese, M.P.5
  • 20
    • 48649086824 scopus 로고    scopus 로고
    • The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle
    • Clerici, M., Mantiero, D., Guerini, I., Lucchini, G. & Longhese, M.P. The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep. 9, 810-818 (2008).
    • (2008) EMBO Rep. , vol.9 , pp. 810-818
    • Clerici, M.1    Mantiero, D.2    Guerini, I.3    Lucchini, G.4    Longhese, M.P.5
  • 22
    • 46949098616 scopus 로고    scopus 로고
    • Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
    • DOI 10.1038/emboj.2008.111, PII EMBOJ2008111
    • Zierhut, C. & Diffley, J.F. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875-1885 (2008). (Pubitemid 351960208)
    • (2008) EMBO Journal , vol.27 , Issue.13 , pp. 1875-1885
    • Zierhut, C.1    Diffley, J.F.X.2
  • 23
    • 77956325620 scopus 로고    scopus 로고
    • DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
    • Cejka, P. et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467, 112-116 (2010).
    • (2010) Nature , vol.467 , pp. 112-116
    • Cejka, P.1
  • 24
    • 77956302112 scopus 로고    scopus 로고
    • Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
    • Niu, H. et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467, 108-111 (2010).
    • (2010) Nature , vol.467 , pp. 108-111
    • Niu, H.1
  • 25
    • 78649805560 scopus 로고    scopus 로고
    • Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks
    • Nicolette, M.L. et al. Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17, 1478-1485 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1478-1485
    • Nicolette, M.L.1
  • 26
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases dna2 and exo1 resect DNA double-strand break ends
    • Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases dna2 and exo1 resect DNA double-strand break ends. Cell 134, 981-994 (2008).
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 27
    • 0034699382 scopus 로고    scopus 로고
    • A chemical switch for inhibitor-sensitive alleles of any protein kinase
    • Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395-401 (2000).
    • (2000) Nature , vol.407 , pp. 395-401
    • Bishop, A.C.1
  • 28
    • 33645215616 scopus 로고    scopus 로고
    • Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
    • Budd, M.E., Reis, C.C., Smith, S., Myung, K. & Campbell, J.L. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell Biol. 26, 2490-2500 (2006).
    • (2006) Mol. Cell Biol. , vol.26 , pp. 2490-2500
    • Budd, M.E.1    Reis, C.C.2    Smith, S.3    Myung, K.4    Campbell, J.L.5
  • 29
    • 77957805302 scopus 로고    scopus 로고
    • Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2
    • Mimitou, E.P. & Symington, L.S. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J. 29, 3358-3369 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3358-3369
    • Mimitou, E.P.1    Symington, L.S.2
  • 30
    • 77957786786 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks
    • Shim, E.Y. et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J. 29, 3370-3380 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3370-3380
    • Shim, E.Y.1
  • 32
    • 67649845784 scopus 로고    scopus 로고
    • Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs
    • Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA 106, 10171-10176 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 10171-10176
    • Kosugi, S.1    Hasebe, M.2    Tomita, M.3    Yanagawa, H.4
  • 33
    • 0025365192 scopus 로고
    • Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells
    • Din, S., Brill, S.J., Fairman, M.P. & Stillman, B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968-977 (1990).
    • (1990) Genes Dev. , vol.4 , pp. 968-977
    • Din, S.1    Brill, S.J.2    Fairman, M.P.3    Stillman, B.4
  • 34
    • 53649104599 scopus 로고    scopus 로고
    • Sae2 Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770-774 (2008).
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 35
    • 53649090109 scopus 로고    scopus 로고
    • DNA helicases Sgs1 and BLM promote DNA double-strand break resection
    • Gravel, S., Chapman, J.R., Magill, C. & Jackson, S.P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22, 2767-2772 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 2767-2772
    • Gravel, S.1    Chapman, J.R.2    Magill, C.3    Jackson, S.P.4
  • 36
    • 79951688343 scopus 로고    scopus 로고
    • BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
    • Nimonkar, A.V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350-362 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 350-362
    • Nimonkar, A.V.1
  • 37
    • 79451469234 scopus 로고    scopus 로고
    • Mre11 and Exo1 contribute to the initiation and processivity of resection at meiotic double-strand breaks made independently of Spo11
    • Hodgson, A. et al. Mre11 and Exo1 contribute to the initiation and processivity of resection at meiotic double-strand breaks made independently of Spo11. DNA Repair (Amst.) 10, 138-148 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 138-148
    • Hodgson, A.1
  • 38
    • 79451474739 scopus 로고    scopus 로고
    • Separable roles for Exonuclease i in meiotic DNA double-strand break repair
    • Keelagher, R.E., Cotton, V.E., Goldman, A.S. & Borts, R.H. Separable roles for Exonuclease I in meiotic DNA double-strand break repair. DNA Repair (Amst.) 10, 126-137 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 126-137
    • Keelagher, R.E.1    Cotton, V.E.2    Goldman, A.S.3    Borts, R.H.4
  • 39
    • 78650241015 scopus 로고    scopus 로고
    • Temporally and biochemically distinct activities of Exo1 during meiosis: Double-strand break resection and resolution of double Holliday junctions
    • Zakharyevich, K. et al. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40, 1001-1015 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 1001-1015
    • Zakharyevich, K.1
  • 40
    • 77957375149 scopus 로고    scopus 로고
    • Exo1 competes with repair synthesis converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation
    • Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50-62 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 50-62
    • Giannattasio, M.1
  • 41
    • 11344268431 scopus 로고    scopus 로고
    • Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
    • DOI 10.1016/j.molcel.2004.11.032, PII S109727650400718X
    • Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153-159 (2005). (Pubitemid 40075374)
    • (2005) Molecular Cell , vol.17 , Issue.1 , pp. 153-159
    • Cotta-Ramusino, C.1    Fachinetti, D.2    Lucca, C.3    Doksani, Y.4    Lopes, M.5    Sogo, J.6    Foiani, M.7
  • 42
    • 33749603235 scopus 로고    scopus 로고
    • A Network of multi-tasking proteins at the dna replication fork preserves genome stability
    • Budd, M.E. et al. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability. PLoS Genet. 1, e61 (2005).
    • (2005) PLoS Genet. , vol.1
    • Budd, M.E.1
  • 44
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast
    • DOI 10.1016/S0092-8674(03)00886-9
    • Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411 (2003). (Pubitemid 37456803)
    • (2003) Cell , vol.115 , Issue.4 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 45
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • DOI 10.1016/S1097-2765(03)00269-7
    • Sugawara, N., Wang, X. & Haber, J.E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209-219 (2003). (Pubitemid 36945046)
    • (2003) Molecular Cell , vol.12 , Issue.1 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 46
    • 14544270984 scopus 로고    scopus 로고
    • Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates
    • DOI 10.1038/nature03329
    • Loog, M. & Morgan, D.O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104-108 (2005). (Pubitemid 40349393)
    • (2005) Nature , vol.434 , Issue.7029 , pp. 104-108
    • Loog, M.1    Morgan, D.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.