메뉴 건너뛰기




Volumn 6, Issue 11, 2014, Pages 1-14

Recombination and Replication

Author keywords

[No Author keywords available]

Indexed keywords

DNA;

EID: 84905446435     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a016550     Document Type: Article
Times cited : (46)

References (145)
  • 1
    • 39449096135 scopus 로고    scopus 로고
    • Genome instability: A mechanistic view of its causes and consequences
    • Aguilera A, Gomez-Gonzalez B. 2008. Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet 9: 204-217.
    • (2008) Nat Rev Genet , vol.9 , pp. 204-217
    • Aguilera, A.1    Gomez-Gonzalez, B.2
  • 2
    • 21244440716 scopus 로고    scopus 로고
    • Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast
    • Ahn JS, Osman F, Whitby MC. 2005. Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24: 2011-2023.
    • (2005) EMBO J , vol.24 , pp. 2011-2023
    • Ahn, J.S.1    Osman, F.2    Whitby, M.C.3
  • 3
    • 33747332833 scopus 로고    scopus 로고
    • The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision
    • Amado L, Kuzminov A. 2006. The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision. J Biol Chem 281: 22635-22646.
    • (2006) J Biol Chem , vol.281 , pp. 22635-22646
    • Amado, L.1    Kuzminov, A.2
  • 4
    • 67649637509 scopus 로고    scopus 로고
    • Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
    • Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T. 2009. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35: 105-115.
    • (2009) Mol Cell , vol.35 , pp. 105-115
    • Antony, E.1    Tomko, E.J.2    Xiao, Q.3    Krejci, L.4    Lohman, T.M.5    Ellenberger, T.6
  • 5
    • 67649862225 scopus 로고    scopus 로고
    • Replication fork reversal and the maintenance of genome stability
    • Atkinson J, McGlynn P. 2009. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 37: 3475-3492.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3475-3492
    • Atkinson, J.1    McGlynn, P.2
  • 6
  • 8
    • 0025769924 scopus 로고
    • The replication termination signal terB of the Escherichia coli chromosome is a deletion hot spot
    • Bierne H, Ehrlich SD, Michel B. 1991. The replication termination signal terB of the Escherichia coli chromosome is a deletion hot spot. EMBO J 10: 2699-2705.
    • (1991) EMBO J , vol.10 , pp. 2699-2705
    • Bierne, H.1    Ehrlich, S.D.2    Michel, B.3
  • 10
    • 35148847451 scopus 로고    scopus 로고
    • Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
    • Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28: 167-175.
    • (2007) Mol Cell , vol.28 , pp. 167-175
    • Blastyak, A.1    Pinter, L.2    Unk, I.3    Prakash, L.4    Prakash, S.5    Haracska, L.6
  • 11
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow JJ, Ge XQ, Jackson DA. 2011. How dormant origins promote complete genome replication. Trends Biochem Sci 36: 405-414.
    • (2011) Trends Biochem Sci , vol.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 13
    • 28844489365 scopus 로고    scopus 로고
    • PriB stimulates PriA helicase via an interaction with single-stranded DNA
    • Cadman CJ, Lopper M, Moon PB, Keck JL, McGlynn P. 2005. PriB stimulates PriA helicase via an interaction with single-stranded DNA. J Biol Chem 280: 39693-39700.
    • (2005) J Biol Chem , vol.280 , pp. 39693-39700
    • Cadman, C.J.1    Lopper, M.2    Moon, P.B.3    Keck, J.L.4    McGlynn, P.5
  • 14
    • 0016379860 scopus 로고
    • Analysis of the growth of recombination-deficient strains of Escherichia coli K-12
    • Capaldo FN, Ramsey G, Barbour SD. 1974. Analysis of the growth of recombination-deficient strains of Escherichia coli K-12. J Bacteriol 118: 242-249.
    • (1974) J Bacteriol , vol.118 , pp. 242-249
    • Capaldo, F.N.1    Ramsey, G.2    Barbour, S.D.3
  • 15
    • 67349227137 scopus 로고    scopus 로고
    • Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
    • Chan KL, Palmai-Pallag T, Ying S, Hickson ID. 2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11: 753-760.
    • (2009) Nat Cell Biol , vol.11 , pp. 753-760
    • Chan, K.L.1    Palmai-Pallag, T.2    Ying, S.3    Hickson, I.D.4
  • 16
    • 0348047324 scopus 로고    scopus 로고
    • RecA-dependent recovery of arrested DNA replication forks
    • Courcelle J, Hanawalt PC. 2003. RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37: 611-646.
    • (2003) Annu Rev Genet , vol.37 , pp. 611-646
    • Courcelle, J.1    Hanawalt, P.C.2
  • 17
    • 0030890705 scopus 로고    scopus 로고
    • recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli
    • Courcelle J, Carswell-Crumpton C, Hanawalt PC. 1997. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci 94: 3714-3719.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 3714-3719
    • Courcelle, J.1    Carswell-Crumpton, C.2    Hanawalt, P.C.3
  • 18
    • 0037436108 scopus 로고    scopus 로고
    • DNA damage-induced replication fork regression and processing in Escherichia coli
    • Courcelle J, Donaldson JR, Chow KH, Courcelle CT. 2003. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299: 1064-1067.
    • (2003) Science , vol.299 , pp. 1064-1067
    • Courcelle, J.1    Donaldson, J.R.2    Chow, K.H.3    Courcelle, C.T.4
  • 19
    • 26444573211 scopus 로고    scopus 로고
    • Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli
    • Courcelle CT, Belle JJ, Courcelle J. 2005.Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli. J Bacteriol 187: 6953-6961.
    • (2005) J Bacteriol , vol.187 , pp. 6953-6961
    • Courcelle, C.T.1    Belle, J.J.2    Courcelle, J.3
  • 20
    • 33745153750 scopus 로고    scopus 로고
    • Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli
    • Courcelle CT, Chow KH, Casey A, Courcelle J. 2006.Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci 103: 9154-9159.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 9154-9159
    • Courcelle, C.T.1    Chow, K.H.2    Casey, A.3    Courcelle, J.4
  • 21
    • 33847795537 scopus 로고    scopus 로고
    • Regulation of bacterial RecA protein function
    • Cox MM. 2007a. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42: 41-63.
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 41-63
    • Cox, M.M.1
  • 22
    • 33847778234 scopus 로고    scopus 로고
    • Motoring along with the bacterial RecA protein
    • Cox MM. 2007b. Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8: 127-138.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 127-138
    • Cox, M.M.1
  • 24
    • 12844278044 scopus 로고    scopus 로고
    • The oxidative environment and protein damage
    • Davies MJ. 2005. The oxidative environment and protein damage. Biochim Biophys Acta 1703: 93-109.
    • (2005) Biochim Biophys Acta , pp. 93-109
    • Davies, M.J.1
  • 26
    • 0017184685 scopus 로고
    • Inhibition of DNA replication by ultraviolet light
    • Edenberg HJ. 1976. Inhibition of DNA replication by ultraviolet light. Biophys J 16: 849-860.
    • (1976) Biophys J , vol.16 , pp. 849-860
    • Edenberg, H.J.1
  • 27
    • 80052515789 scopus 로고    scopus 로고
    • UV stalled replication forks restart by re-priming in human fibroblasts
    • Elvers I, Johansson F, Groth P, Erixon K, Helleday T. 2011. UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39: 7049-7057.
    • (2011) Nucleic Acids Res , vol.39 , pp. 7049-7057
    • Elvers, I.1    Johansson, F.2    Groth, P.3    Erixon, K.4    Helleday, T.5
  • 29
    • 0035254234 scopus 로고    scopus 로고
    • Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks
    • Flores MJ, Bierne H, Ehrlich SD, Michel B. 2001. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 20: 619-629.
    • (2001) EMBO J , vol.20 , pp. 619-629
    • Flores, M.J.1    Bierne, H.2    Ehrlich, S.D.3    Michel, B.4
  • 30
    • 0038167328 scopus 로고    scopus 로고
    • Slx1-Slx4 is a second structurespecific endonuclease functionally redundant with Sgs1-Top3
    • Fricke WM, Brill SJ. 2003. Slx1-Slx4 is a second structurespecific endonuclease functionally redundant with Sgs1-Top3. Genes Dev 17: 1768-1778.
    • (2003) Genes Dev , vol.17 , pp. 1768-1778
    • Fricke, W.M.1    Brill, S.J.2
  • 31
    • 0017109724 scopus 로고
    • Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: Caffeine sensitive and caffeine resistant mechanisms
    • Fujiwara Y, Tatsumi M. 1976. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: Caffeine sensitive and caffeine resistant mechanisms. Mutat Res 37: 91-110.
    • (1976) Mutat Res , vol.37 , pp. 91-110
    • Fujiwara, Y.1    Tatsumi, M.2
  • 32
    • 0015836893 scopus 로고
    • Genetics and function of DNA ligase in Escherichia coli
    • Gottesman MM, Hicks ML, Gellert M. 1973. Genetics and function of DNA ligase in Escherichia coli. J Mol Biol 77: 531-547.
    • (1973) J Mol Biol , vol.77 , pp. 531-547
    • Gottesman, M.M.1    Hicks, M.L.2    Gellert, M.3
  • 33
    • 0033925785 scopus 로고    scopus 로고
    • Architecture of the replication fork stalled at the 30 end of yeast ribosomal genes
    • Gruber M, Wellinger RE, Sogo JM. 2000. Architecture of the replication fork stalled at the 30 end of yeast ribosomal genes. Mol Cell Biol 20: 5777-5787.
    • (2000) Mol Cell Biol , vol.20 , pp. 5777-5787
    • Gruber, M.1    Wellinger, R.E.2    Sogo, J.M.3
  • 36
    • 33750206776 scopus 로고    scopus 로고
    • The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks
    • Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R. 2006. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25: 4921-4932.
    • (2006) EMBO J , vol.25 , pp. 4921-4932
    • Hanada, K.1    Budzowska, M.2    Modesti, M.3    Maas, A.4    Wyman, C.5    Essers, J.6    Kanaar, R.7
  • 38
    • 0013858652 scopus 로고
    • The U.V. Sensitivity of bacteria: Its relation to the DNA replication cycle
    • Hanawalt PC. 1966. The U.V. sensitivity of bacteria: Its relation to the DNA replication cycle. Photochem Photobiol 5: 1-12.
    • (1966) Photochem Photobiol , vol.5 , pp. 1-12
    • Hanawalt, P.C.1
  • 39
    • 78549251695 scopus 로고    scopus 로고
    • Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
    • Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V. 2010. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17: 1305-1311.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1305-1311
    • Hashimoto, Y.1    Ray Chaudhuri, A.2    Lopes, M.3    Costanzo, V.4
  • 40
    • 84855427966 scopus 로고    scopus 로고
    • RAD51-and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks
    • Hashimoto Y, Puddu F, Costanzo V. 2012. RAD51-and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19: 17-24.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 17-24
    • Hashimoto, Y.1    Puddu, F.2    Costanzo, V.3
  • 41
    • 26644472197 scopus 로고    scopus 로고
    • Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks
    • Heller RC, Marians KJ. 2005a. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J Biol Chem 280: 34143-34151.
    • (2005) J Biol Chem , vol.280 , pp. 34143-34151
    • Heller, R.C.1    Marians, K.J.2
  • 42
    • 14644415982 scopus 로고    scopus 로고
    • The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart
    • Heller RC, Marians KJ. 2005b. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17: 733-743.
    • (2005) Mol Cell , vol.17 , pp. 733-743
    • Heller, R.C.1    Marians, K.J.2
  • 43
    • 33845330910 scopus 로고    scopus 로고
    • Replisome assembly and the direct restart of stalled replication forks
    • Heller RC, Marians KJ. 2006a. Replisome assembly and the direct restart of stalled replication forks. Nat RevMol Cell Biol 7: 932-943.
    • (2006) Nat RevMol Cell Biol , vol.7 , pp. 932-943
    • Heller, R.C.1    Marians, K.J.2
  • 44
    • 31844456472 scopus 로고    scopus 로고
    • Replication fork reactivation downstream of a blocked nascent leading strand
    • Heller RC, Marians KJ. 2006b. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439: 557-562.
    • (2006) Nature , vol.439 , pp. 557-562
    • Heller, R.C.1    Marians, K.J.2
  • 45
    • 0028027784 scopus 로고
    • Tus prevents overreplication of oriC plasmid DNA
    • Hiasa H, Marians KJ. 1994. Tus prevents overreplication of oriC plasmid DNA. J Biol Chem 269: 26959-26968.
    • (1994) J Biol Chem , vol.269 , pp. 26959-26968
    • Hiasa, H.1    Marians, K.J.2
  • 46
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins NP, Kato K, Strauss B. 1976. A model for replication repair in mammalian cells. J Mol Biol 101: 417-425.
    • (1976) J Mol Biol , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 47
    • 0025272784 scopus 로고
    • Escherichia coli Tus protein acts to arrest the progression ofDNA replication forks in vitro
    • Hill TM, Marians KJ. 1990. Escherichia coli Tus protein acts to arrest the progression ofDNA replication forks in vitro. Proc Natl Acad Sci 87: 2481-2485.
    • (1990) Proc Natl Acad Sci , vol.87 , pp. 2481-2485
    • Hill, T.M.1    Marians, K.J.2
  • 48
    • 59049087433 scopus 로고    scopus 로고
    • RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light
    • Hishida T, Kubota Y, Carr AM, Iwasaki H. 2009. RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457: 612-615.
    • (2009) Nature , vol.457 , pp. 612-615
    • Hishida, T.1    Kubota, Y.2    Carr, A.M.3    Iwasaki, H.4
  • 49
    • 0027957144 scopus 로고
    • The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA
    • Horiuchi T, Fujimura Y, Nishitani H, Kobayashi T, Hidaka M. 1994. The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J Bacteriol 176: 4656-4663.
    • (1994) J Bacteriol , vol.176 , pp. 4656-4663
    • Horiuchi, T.1    Fujimura, Y.2    Nishitani, H.3    Kobayashi, T.4    Hidaka, M.5
  • 50
    • 0016371109 scopus 로고
    • Models of genetic recombination
    • Hotchkiss RD. 1974. Models of genetic recombination. Annu Rev Microbiol 28: 445-468.
    • (1974) Annu Rev Microbiol , vol.28 , pp. 445-468
    • Hotchkiss, R.D.1
  • 51
    • 84875823810 scopus 로고    scopus 로고
    • RecA acts as a switch to regulate polymerase occupancy in a moving replication fork
    • Indiani C, Patel M, Goodman MF, O’Donnell ME. 2013. RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proc Natl Acad Sci 110: 5410-5415.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 5410-5415
    • Indiani, C.1    Patel, M.2    Goodman, M.F.3    O’donnell, M.E.4
  • 52
    • 4143084041 scopus 로고    scopus 로고
    • UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro
    • Kadyrov FA, Drake JW. 2004. UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 279: 35735-35740.
    • (2004) J Biol Chem , vol.279 , pp. 35735-35740
    • Kadyrov, F.A.1    Drake, J.W.2
  • 54
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. 1997. Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61: 212-238.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 55
    • 40549129679 scopus 로고    scopus 로고
    • Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks
    • Kouzminova EA, Kuzminov A. 2008. Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol 68: 202-215.
    • (2008) Mol Microbiol , vol.68 , pp. 202-215
    • Kouzminova, E.A.1    Kuzminov, A.2
  • 59
    • 0035902585 scopus 로고    scopus 로고
    • Single-strand interruptions in replicating chromosomes cause double-strand breaks
    • Kuzminov A. 2001. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci 98: 8241-8246.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 8241-8246
    • Kuzminov, A.1
  • 60
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. 2005. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121: 689-702.
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 61
    • 0026356063 scopus 로고
    • Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n0 protein
    • Lee EH, Kornberg A. 1991. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n0 protein. Proc Natl Acad Sci 88: 3029-3032.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 3029-3032
    • Lee, E.H.1    Kornberg, A.2
  • 62
    • 0015527017 scopus 로고
    • Postreplication repair of DNA in ultraviolet-irradiated mammalian cells
    • Lehmann AR. 1972. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol 66: 319-337.
    • (1972) J Mol Biol , vol.66 , pp. 319-337
    • Lehmann, A.R.1
  • 64
    • 78649607001 scopus 로고    scopus 로고
    • Assembly and dynamics of the bacteriophage T4 homologous recombination machinery
    • Liu J, Morrical SW. 2010. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 7: 357.
    • (2010) Virol J , vol.7 , pp. 357
    • Liu, J.1    Morrical, S.W.2
  • 65
    • 0033616683 scopus 로고    scopus 로고
    • Replication fork assembly at recombination intermediates is required for bacterial growth
    • Liu J, Xu L, Sandler SJ, Marians KJ. 1999. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc Natl Acad Sci 96: 3552-3555.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 3552-3555
    • Liu, J.1    Xu, L.2    Sandler, S.J.3    Marians, K.J.4
  • 67
    • 42449130956 scopus 로고    scopus 로고
    • Break-induced replication:What is it and what is it for?
    • Llorente B, Smith CE, Symington LS. 2008. Break-induced replication:What is it and what is it for? CellCycle 7: 859-864.
    • (2008) CellCycle , vol.7 , pp. 859-864
    • Llorente, B.1    Smith, C.E.2    Symington, L.S.3
  • 68
    • 44349176520 scopus 로고    scopus 로고
    • Regression supports two mechanisms of fork processing in phage T4
    • Long DT, Kreuzer KN. 2008. Regression supports two mechanisms of fork processing in phage T4. Proc Natl Acad Sci 105: 6852-6857.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 6852-6857
    • Long, D.T.1    Kreuzer, K.N.2
  • 69
    • 67650410035 scopus 로고    scopus 로고
    • Suppression of constitutive SOS expression by recA4162 (I298 V) and recA4164 (L126 V) requires UvrD and RecX in Escherichia coli K-12
    • Long JE, Renzette N, Sandler SJ. 2009. Suppression of constitutive SOS expression by recA4162 (I298 V) and recA4164 (L126 V) requires UvrD and RecX in Escherichia coli K-12. Mol Microbiol 73: 226-239.
    • (2009) Mol Microbiol , vol.73 , pp. 226-239
    • Long, J.E.1    Renzette, N.2    Sandler, S.J.3
  • 71
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes M, Foiani M, Sogo JM. 2006. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27.
    • (2006) Mol Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 72
    • 34250380631 scopus 로고    scopus 로고
    • A hand-off mechanism for primosome assembly in replication restart
    • Lopper M, Boonsombat R, Sandler SJ, Keck JL. 2007. A hand-off mechanism for primosome assembly in replication restart. Mol Cell 26: 781-793.
    • (2007) Mol Cell , vol.26 , pp. 781-793
    • Lopper, M.1    Boonsombat, R.2    Sandler, S.J.3    Keck, J.L.4
  • 73
    • 0026328381 scopus 로고
    • Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome
    • Louarn JM, Louarn J, Francois V, Patte J. 1991. Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome. J Bacteriol 173: 5097-5104.
    • (1991) J Bacteriol , vol.173 , pp. 5097-5104
    • Louarn, J.M.1    Louarn, J.2    Francois, V.3    Patte, J.4
  • 74
    • 0020094781 scopus 로고
    • Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: Priming by RNA polymerase and by recombination
    • Luder A, Mosig G. 1982. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: Priming by RNA polymerase and by recombination. Proc Natl Acad Sci 79: 1101-1105.
    • (1982) Proc Natl Acad Sci , vol.79 , pp. 1101-1105
    • Luder, A.1    Mosig, G.2
  • 75
    • 33751581731 scopus 로고    scopus 로고
    • The Werner and Bloom syndrome proteins catalyze regression of a model replication fork
    • Machwe A, Xiao L, Groden J, Orren DK. 2006. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45: 13939-13946.
    • (2006) Biochemistry , vol.45 , pp. 13939-13946
    • Machwe, A.1    Xiao, L.2    Groden, J.3    Orren, D.K.4
  • 76
    • 84870207299 scopus 로고    scopus 로고
    • Direct observation of stalled fork restart via fork regression in the T4 replication system
    • Manosas M, Perumal SK, Croquette V, Benkovic SJ. 2012. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338: 1217-1220.
    • (2012) Science , vol.338 , pp. 1217-1220
    • Manosas, M.1    Perumal, S.K.2    Croquette, V.3    Benkovic, S.J.4
  • 77
    • 0031892179 scopus 로고    scopus 로고
    • Role of the core DNA polymerase III subunits at the replication fork: A is the only subunit required for processive replication
    • Marians KJ, Hiasa H, Kim DR, McHenry CS. 1998. Role of the core DNA polymerase III subunits at the replication fork: a is the only subunit required for processive replication. J Biol Chem 273: 2452-2457.
    • (1998) J Biol Chem , vol.273 , pp. 2452-2457
    • Marians, K.J.1    Hiasa, H.2    Kim, D.R.3    McHenry, C.S.4
  • 78
    • 80053544629 scopus 로고    scopus 로고
    • Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis
    • Matos J, Blanco MG, Maslen S, Skehel JM, West SC. 2011. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147: 158-172.
    • (2011) Cell , vol.147 , pp. 158-172
    • Matos, J.1    Blanco, M.G.2    Maslen, S.3    Skehel, J.M.4    West, S.C.5
  • 79
    • 84873692452 scopus 로고    scopus 로고
    • Helicases at the replication fork
    • McGlynn P. 2013. Helicases at the replication fork. Adv Exp Med Biol 767: 97-121.
    • (2013) Adv Exp Med Biol , vol.767 , pp. 97-121
    • McGlynn, P.1
  • 80
    • 47049124441 scopus 로고    scopus 로고
    • Replication forks blocked by protein-DNA complexes have limited stability in vitro
    • McGlynn P, Guy CP. 2008. Replication forks blocked by protein-DNA complexes have limited stability in vitro. J Mol Biol 381: 249-255.
    • (2008) J Mol Biol , vol.381 , pp. 249-255
    • McGlynn, P.1    Guy, C.P.2
  • 81
    • 0034737294 scopus 로고    scopus 로고
    • Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression
    • McGlynn P, Lloyd RG. 2000. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101: 35-45.
    • (2000) Cell , vol.101 , pp. 35-45
    • McGlynn, P.1    Lloyd, R.G.2
  • 82
    • 0035834755 scopus 로고    scopus 로고
    • Action of RuvAB at replication fork structures
    • McGlynn P, Lloyd RG. 2001. Action of RuvAB at replication fork structures. J Biol Chem 276: 41938-41944.
    • (2001) J Biol Chem , vol.276 , pp. 41938-41944
    • McGlynn, P.1    Lloyd, R.G.2
  • 83
    • 0036844340 scopus 로고    scopus 로고
    • Recombinational repair and restart of damaged replication forks
    • McGlynn P, Lloyd RG. 2002. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3: 859-870.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 859-870
    • McGlynn, P.1    Lloyd, R.G.2
  • 84
    • 0030852247 scopus 로고    scopus 로고
    • The DNA replication protein PriA and the recombination protein RecG bind D-loops
    • McGlynn P, Al-Deib AA, Liu J, Marians KJ, Lloyd RG. 1997. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270: 212-221.
    • (1997) J Mol Biol , vol.270 , pp. 212-221
    • McGlynn, P.1    Al-Deib, A.A.2    Liu, J.3    Marians, K.J.4    Lloyd, R.G.5
  • 85
    • 0035902573 scopus 로고    scopus 로고
    • Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled
    • McGlynn P, Lloyd RG, Marians KJ. 2001. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci 98: 8235-8240.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 8235-8240
    • McGlynn, P.1    Lloyd, R.G.2    Marians, K.J.3
  • 86
    • 84862763199 scopus 로고    scopus 로고
    • The conflict between DNA replication and transcription
    • McGlynn P, Savery NJ, Dillingham MS. 2012. The conflict between DNA replication and transcription. Mol Microbiol 85: 12-20.
    • (2012) Mol Microbiol , vol.85 , pp. 12-20
    • McGlynn, P.1    Savery, N.J.2    Dillingham, M.S.3
  • 87
    • 34548507222 scopus 로고    scopus 로고
    • Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins
    • McInerney P, O’Donnell M. 2007. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 282: 25903-25916.
    • (2007) J Biol Chem , vol.282 , pp. 25903-25916
    • McInerney, P.1    O’donnell, M.2
  • 88
    • 84903757525 scopus 로고    scopus 로고
    • Sources of DNA doublestrand breaks and models for recombinational DNA repair
    • doi
    • Mehta A, Haber JE. 2014. Sources of DNA doublestrand breaks and models for recombinational DNA repair. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016428.
    • (2014) Cold Spring Harb Perspect Biol
    • Mehta, A.1    Haber, J.E.2
  • 90
    • 84872138637 scopus 로고    scopus 로고
    • Recombination-restarted replication makes inverted chromosome fusions at inverted repeats
    • Mizuno K, Miyabe I, Schalbetter SA, Carr AM, Murray JM. 2012. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 493: 246-249.
    • (2012) Nature , vol.493 , pp. 246-249
    • Mizuno, K.1    Miyabe, I.2    Schalbetter, S.A.3    Carr, A.M.4    Murray, J.M.5
  • 91
    • 0037415736 scopus 로고    scopus 로고
    • The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA
    • Moore T, McGlynn P, Ngo HP, Sharples GJ, Lloyd RG. 2003. The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO J 22: 735-745.
    • (2003) EMBO J , vol.22 , pp. 735-745
    • Moore, T.1    McGlynn, P.2    Ngo, H.P.3    Sharples, G.J.4    Lloyd, R.G.5
  • 92
    • 77649264634 scopus 로고    scopus 로고
    • A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51-or Pol32-mediated restart mechanisms
    • Moriel-Carretero M, Aguilera A. 2010. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51-or Pol32-mediated restart mechanisms. Mol Cell 37: 690-701.
    • (2010) Mol Cell , vol.37 , pp. 690-701
    • Moriel-Carretero, M.1    Aguilera, A.2
  • 93
    • 0038392868 scopus 로고    scopus 로고
    • RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair
    • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol Cell 11: 1337-1347.
    • (2003) Mol Cell , vol.11 , pp. 1337-1347
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 94
    • 0034681291 scopus 로고    scopus 로고
    • Bacteriophage T4 gene 59 helicase assembly protein binds replication forkDNA. The 1.45Å resolution crystal structure reveals a novel a-helical two-domain fold
    • Mueser TC, Jones CE, Nossal NG, Hyde CC. 2000. Bacteriophage T4 gene 59 helicase assembly protein binds replication forkDNA. The 1.45Å resolution crystal structure reveals a novel a-helical two-domain fold. JMol Biol 296: 597-612.
    • (2000) JMol Biol , vol.296 , pp. 597-612
    • Mueser, T.C.1    Jones, C.E.2    Nossal, N.G.3    Hyde, C.C.4
  • 95
    • 38549138271 scopus 로고    scopus 로고
    • Smc5/6: A link between DNA repair and unidirectional replication?
    • Murray JM, Carr AM. 2008. Smc5/6: A link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 9: 177-182.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 177-182
    • Murray, J.M.1    Carr, A.M.2
  • 96
    • 0025836589 scopus 로고
    • Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response
    • Nurse P, Zavitz KH, Marians KJ. 1991. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol 173: 6686-6693.
    • (1991) J Bacteriol , vol.173 , pp. 6686-6693
    • Nurse, P.1    Zavitz, K.H.2    Marians, K.J.3
  • 97
    • 34249942213 scopus 로고    scopus 로고
    • Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks
    • Osman F, Whitby MC. 2007. Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks. DNA Repair (Amst) 6: 1004-1017.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 1004-1017
    • Osman, F.1    Whitby, M.C.2
  • 98
    • 79959885574 scopus 로고    scopus 로고
    • Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites
    • Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, KeremB. 2011. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43: 122-131.
    • (2011) Mol Cell , vol.43 , pp. 122-131
    • Ozeri-Galai, E.1    Lebofsky, R.2    Rahat, A.3    Bester, A.C.4    Bensimon, A.5
  • 99
    • 0037799191 scopus 로고    scopus 로고
    • Uncoupling of leading-and lagging-strand DNA replication during lesion bypass in vivo
    • Pagès V, Fuchs RP. 2003. Uncoupling of leading-and lagging-strand DNA replication during lesion bypass in vivo. Science 300: 1300-1303.
    • (2003) Science , vol.300 , pp. 1300-1303
    • Pagès, V.1    Fuchs, R.P.2
  • 101
    • 77957123627 scopus 로고    scopus 로고
    • Pathways of mammalian replication fork restart
    • Petermann E, Helleday T. 2010. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11: 683-687.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 683-687
    • Petermann, E.1    Helleday, T.2
  • 102
    • 76849109722 scopus 로고    scopus 로고
    • Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair
    • Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. 2010. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37: 492-502.
    • (2010) Mol Cell , vol.37 , pp. 492-502
    • Petermann, E.1    Orta, M.L.2    Issaeva, N.3    Schultz, N.4    Helleday, T.5
  • 103
    • 33745184666 scopus 로고    scopus 로고
    • Formation and processing of stalled replication forks—Utility of two-dimensional agarose gels
    • Pohlhaus JR, Kreuzer KN. 2006. Formation and processing of stalled replication forks—Utility of two-dimensional agarose gels. Methods Enzymol 409: 477-493.
    • (2006) Methods Enzymol , vol.409 , pp. 477-493
    • Pohlhaus, J.R.1    Kreuzer, K.N.2
  • 104
    • 75749150810 scopus 로고    scopus 로고
    • Direct restart of a replication fork stalled by a head-on RNA polymerase
    • Pomerantz RT, O’Donnell M. 2010. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327: 590-592.
    • (2010) Science , vol.327 , pp. 590-592
    • Pomerantz, R.T.1    O’donnell, M.2
  • 105
    • 84872547120 scopus 로고    scopus 로고
    • Drugging topoisomerases: Lessons and challenges
    • Pommier Y. 2013. Drugging topoisomerases: Lessons and challenges. ACS Chem Biol 8: 82-95.
    • (2013) ACS Chem Biol , vol.8 , pp. 82-95
    • Pommier, Y.1
  • 106
    • 0032189683 scopus 로고    scopus 로고
    • Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme
    • Pommier Y, Pourquier P, Fan Y, Strumberg D. 1998. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400: 83-105.
    • (1998) Biochim Biophys Acta , vol.1400 , pp. 83-105
    • Pommier, Y.1    Pourquier, P.2    Fan, Y.3    Strumberg, D.4
  • 108
    • 33747352774 scopus 로고    scopus 로고
    • The Bloom’s syndrome helicase can promote the regression of a model replication fork
    • Ralf C, Hickson ID, Wu L. 2006. The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem 281: 22839-22846.
    • (2006) J Biol Chem , vol.281 , pp. 22839-22846
    • Ralf, C.1    Hickson, I.D.2    Wu, L.3
  • 110
    • 84889088229 scopus 로고    scopus 로고
    • Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes
    • Rass U. 2013. Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes. Chromosoma 122: 499-515.
    • (2013) Chromosoma , vol.122 , pp. 499-515
    • Rass, U.1
  • 111
    • 0035902453 scopus 로고    scopus 로고
    • RecA protein promotes the regression of stalled replication forks in vitro
    • Robu ME, Inman RB, Cox MM. 2001. RecA protein promotes the regression of stalled replication forks in vitro. Proc Natl Acad Sci 98: 8211-8218.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 8211-8218
    • Robu, M.E.1    Inman, R.B.2    Cox, M.M.3
  • 112
    • 33947327048 scopus 로고    scopus 로고
    • Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli
    • Rudolph CJ, Upton AL, Lloyd RG. 2007. Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev 21: 668-681.
    • (2007) Genes Dev , vol.21 , pp. 668-681
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 113
    • 48149112447 scopus 로고    scopus 로고
    • Maintaining replication fork integrity in UV-irradiated Escherichia coli cells
    • Rudolph CJ, Upton AL, Lloyd RG. 2008. Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA Repair (Amst) 7: 1589-1602.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 1589-1602
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 114
    • 67651205866 scopus 로고    scopus 로고
    • Pathological replication in cells lacking RecG DNA translocase
    • Rudolph CJ, Upton AL, Harris L, Lloyd RG. 2009a. Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol 73: 352-366.
    • (2009) Mol Microbiol , vol.73 , pp. 352-366
    • Rudolph, C.J.1    Upton, A.L.2    Harris, L.3    Lloyd, R.G.4
  • 115
    • 70449560624 scopus 로고    scopus 로고
    • Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase
    • Rudolph CJ, Upton AL, Lloyd RG. 2009b. Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Mol Microbiol 74: 940-955.
    • (2009) Mol Microbiol , vol.74 , pp. 940-955
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 116
    • 78951475725 scopus 로고    scopus 로고
    • RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli
    • Rudolph CJ, Mahdi AA, Upton AL, Lloyd RG. 2010. RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics 186: 473-492.
    • (2010) Genetics , vol.186 , pp. 473-492
    • Rudolph, C.J.1    Mahdi, A.A.2    Upton, A.L.3    Lloyd, R.G.4
  • 118
    • 0014432520 scopus 로고
    • Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
    • Rupp WD, Howard-Flanders P. 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304.
    • (1968) J Mol Biol , vol.31 , pp. 291-304
    • Rupp, W.D.1    Howard-Flanders, P.2
  • 119
    • 0015223483 scopus 로고
    • Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli
    • Rupp WD, Wilde CE III, Reno DL, Howard-Flanders P. 1971. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61: 25-44.
    • (1971) J Mol Biol , vol.61 , pp. 25-44
    • Rupp, W.D.1    Wilde, C.I.2    Reno, D.L.3    Howard-Flanders, P.4
  • 120
    • 0034123356 scopus 로고    scopus 로고
    • Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12
    • Sandler SJ. 2000. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155: 487-497.
    • (2000) Genetics , vol.155 , pp. 487-497
    • Sandler, S.J.1
  • 121
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, Klein H. 2008.Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 122
    • 33747862944 scopus 로고    scopus 로고
    • RecA acts in trans to allow replication of damaged DNA by DNA polymerase V
    • Schlacher K, Cox MM, Woodgate R, Goodman MF. 2006. RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442: 883-887.
    • (2006) Nature , vol.442 , pp. 883-887
    • Schlacher, K.1    Cox, M.M.2    Woodgate, R.3    Goodman, M.F.4
  • 123
    • 79955799175 scopus 로고    scopus 로고
    • Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
    • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145: 529-542.
    • (2011) Cell , vol.145 , pp. 529-542
    • Schlacher, K.1    Christ, N.2    Siaud, N.3    Egashira, A.4    Wu, H.5    Jasin, M.6
  • 124
    • 79955522790 scopus 로고    scopus 로고
    • Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
    • Schwartz EK, Heyer WD. 2011. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120: 109-127.
    • (2011) Chromosoma , vol.120 , pp. 109-127
    • Schwartz, E.K.1    Heyer, W.D.2
  • 126
    • 0033710452 scopus 로고    scopus 로고
    • RuvABC-dependent double-strand breaks in dnaBts mutants require recA
    • Seigneur M, Ehrlich SD, Michel B. 2000. RuvABC-dependent double-strand breaks in dnaBts mutants require recA. Mol Microbiol 38: 565-574.
    • (2000) Mol Microbiol , vol.38 , pp. 565-574
    • Seigneur, M.1    Ehrlich, S.D.2    Michel, B.3
  • 127
    • 0000620633 scopus 로고
    • Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells
    • Setlow RB, Swenson PA, Carrier WL. 1963. Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 142: 1464-1466.
    • (1963) Science , vol.142 , pp. 1464-1466
    • Setlow, R.B.1    Swenson, P.A.2    Carrier, W.L.3
  • 128
    • 0002050661 scopus 로고
    • A replicator’s view of recombination (and repair)
    • (ed. Grell RF, Plenum, New York
    • Skalka A. 1974. A replicator’s view of recombination (and repair). In Mechanisms in recombination (ed. Grell RF), pp. 421-432. Plenum, New York
    • (1974) Mechanisms in recombination , pp. 421-432
    • Skalka, A.1
  • 129
    • 10844254730 scopus 로고    scopus 로고
    • Recombinational DNA repair: The ignored repair systems
    • Smith KC. 2004. Recombinational DNA repair: The ignored repair systems. Bioessays 26: 1322-1326.
    • (2004) Bioessays , vol.26 , pp. 1322-1326
    • Smith, K.C.1
  • 130
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo JM, Lopes M, Foiani M. 2002. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297: 599-602.
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 131
    • 84876838614 scopus 로고    scopus 로고
    • High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV
    • St Charles J, Petes TD. 2013. High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV. PLoS Genet 9: e1003434.
    • (2013) PLoS Genet , vol.9
    • St Charles, J.1    Petes, T.D.2
  • 132
    • 0029586324 scopus 로고
    • Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: Fork uncoupling or gap formation
    • Svoboda DL, Vos JM. 1995. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: Fork uncoupling or gap formation. Proc Natl Acad Sci 92: 11975-11979.
    • (1995) Proc Natl Acad Sci , vol.92 , pp. 11975-11979
    • Svoboda, D.L.1    Vos, J.M.2
  • 133
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247-271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 134
    • 24044463869 scopus 로고    scopus 로고
    • Mrc1 is required for normal progression of replication forks throughout chromatin in S. Cerevisiae
    • Szyjka SJ, Viggiani CJ, Aparicio OM. 2005. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19: 691-697.
    • (2005) Mol Cell , vol.19 , pp. 691-697
    • Szyjka, S.J.1    Viggiani, C.J.2    Aparicio, O.M.3
  • 135
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
    • Tercero JA, Diffley JF. 2001. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412: 553-557.
    • (2001) Nature , vol.412 , pp. 553-557
    • Tercero, J.A.1    Diffley, J.F.2
  • 136
    • 67349167663 scopus 로고    scopus 로고
    • The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress
    • Tittel-Elmer M, Alabert C, Pasero P, Cobb JA. 2009. The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28: 1142-1156.
    • (2009) EMBO J , vol.28 , pp. 1142-1156
    • Tittel-Elmer, M.1    Alabert, C.2    Pasero, P.3    Cobb, J.A.4
  • 137
    • 22544464455 scopus 로고    scopus 로고
    • RNA polymerase modulators andDNA repair activities resolve conflicts between DNA replication and transcription
    • Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. 2005.RNA polymerase modulators andDNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19: 247-258.
    • (2005) Mol Cell , vol.19 , pp. 247-258
    • Trautinger, B.W.1    Jaktaji, R.P.2    Rusakova, E.3    Lloyd, R.G.4
  • 139
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 140
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180-189.
    • (2005) EMBO J , vol.24 , pp. 180-189
    • Veaute, X.1    Delmas, S.2    Selva, M.3    Jeusset, J.4    Le Cam, E.5    Matic, I.6    Fabre, F.7    Petit, M.A.8
  • 141
    • 36348937182 scopus 로고    scopus 로고
    • The phage T4 protein UvsW drives Holliday junction branch migration
    • Webb MR, Plank JL, Long DT, Hsieh TS, Kreuzer KN. 2007. The phage T4 protein UvsW drives Holliday junction branch migration. J Biol Chem 282: 34401-34411.
    • (2007) J Biol Chem , vol.282 , pp. 34401-34411
    • Webb, M.R.1    Plank, J.L.2    Long, D.T.3    Hsieh, T.S.4    Kreuzer, K.N.5
  • 142
    • 0037352498 scopus 로고    scopus 로고
    • PriA mediates DNA replication pathway choice at recombination intermediates
    • Xu L, Marians KJ. 2003. PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11: 817-826.
    • (2003) Mol Cell , vol.11 , pp. 817-826
    • Xu, L.1    Marians, K.J.2
  • 143
    • 80054091679 scopus 로고    scopus 로고
    • The Escherichia coli replisome is inherently DNA damage tolerant
    • Yeeles JT, Marians KJ. 2011. The Escherichia coli replisome is inherently DNA damage tolerant. Science 334: 235-238.
    • (2011) Science , vol.334 , pp. 235-238
    • Yeeles, J.T.1    Marians, K.J.2
  • 144
    • 84891075042 scopus 로고    scopus 로고
    • Dynamics of leading-strand lesion skipping by the replisome
    • Yeeles JT, Marians KJ. 2013. Dynamics of leading-strand lesion skipping by the replisome. Mol Cell 52: 855-865.
    • (2013) Mol Cell , vol.52 , pp. 855-865
    • Yeeles, J.T.1    Marians, K.J.2
  • 145
    • 0842332845 scopus 로고    scopus 로고
    • p53 inhibits strand exchange and replication fork regression promoted by human Rad51
    • Yoon D, Wang Y, Stapleford K, Wiesmuller L, Chen J. 2004. p53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 336: 639-654.
    • (2004) J Mol Biol , vol.336 , pp. 639-654
    • Yoon, D.1    Wang, Y.2    Stapleford, K.3    Wiesmuller, L.4    Chen, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.