메뉴 건너뛰기




Volumn 9, Issue 3, 2013, Pages

Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes

Author keywords

[No Author keywords available]

Indexed keywords

DNA; HELICASE; MPH1 PROTEIN; SGS1 PROTEIN; SGS2 PROTEIN; UNCLASSIFIED DRUG;

EID: 84875974599     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003340     Document Type: Article
Times cited : (72)

References (59)
  • 1
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques F, Haber JE, (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiology and molecular biology reviews: MMBR 63: 349-404.
    • (1999) Microbiology and Molecular Biology Reviews: MMBR , vol.63 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 3
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • table of contents
    • Symington LS, (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiology and molecular biology reviews: MMBR 66: 630-670, table of contents.
    • (2002) Microbiology and Molecular Biology Reviews: MMBR , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 4
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J, (2011) Double-strand break end resection and repair pathway choice. Annual review of genetics 45: 247-271.
    • (2011) Annual Review of Genetics , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 7
    • 0034551792 scopus 로고    scopus 로고
    • Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae
    • Symington LS, Kang LE, Moreau S, (2000) Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Research 28: 4649-4656.
    • (2000) Nucleic Acids Research , vol.28 , pp. 4649-4656
    • Symington, L.S.1    Kang, L.E.2    Moreau, S.3
  • 8
    • 52049108457 scopus 로고    scopus 로고
    • Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast
    • Welz-Voegele C, Jinks-Robertson S, (2008) Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast. Genetics 179: 1251-1262.
    • (2008) Genetics , vol.179 , pp. 1251-1262
    • Welz-Voegele, C.1    Jinks-Robertson, S.2
  • 9
    • 36249015877 scopus 로고    scopus 로고
    • The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'?
    • Mankouri HW, Hickson ID, (2007) The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'? Trends in biochemical sciences 32: 538-546.
    • (2007) Trends in Biochemical Sciences , vol.32 , pp. 538-546
    • Mankouri, H.W.1    Hickson, I.D.2
  • 10
    • 0028197257 scopus 로고
    • Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair
    • Nassif N, Penney J, Pal S, Engels WR, Gloor GB, (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Molecular and cellular biology 14: 1613-1625.
    • (1994) Molecular and Cellular Biology , vol.14 , pp. 1613-1625
    • Nassif, N.1    Penney, J.2    Pal, S.3    Engels, W.R.4    Gloor, G.B.5
  • 11
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer WD, Ehmsen KT, Liu J, (2010) Regulation of homologous recombination in eukaryotes. Annual review of genetics 44: 113-139.
    • (2010) Annual Review of Genetics , vol.44 , pp. 113-139
    • Heyer, W.D.1    Ehmsen, K.T.2    Liu, J.3
  • 12
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE, (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401-411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 13
    • 58149494717 scopus 로고    scopus 로고
    • Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination
    • Prakash R, Satory D, Dray E, Papusha A, Scheller J, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23: 67-79.
    • (2009) Genes Dev , vol.23 , pp. 67-79
    • Prakash, R.1    Satory, D.2    Dray, E.3    Papusha, A.4    Scheller, J.5
  • 14
    • 0018673170 scopus 로고
    • Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants
    • Lawrence CW, Christensen RB, (1979) Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. Journal of bacteriology 139: 866-876.
    • (1979) Journal of Bacteriology , vol.139 , pp. 866-876
    • Lawrence, C.W.1    Christensen, R.B.2
  • 15
    • 0025232659 scopus 로고
    • The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
    • Schiestl RH, Prakash S, Prakash L, (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124: 817-831.
    • (1990) Genetics , vol.124 , pp. 817-831
    • Schiestl, R.H.1    Prakash, S.2    Prakash, L.3
  • 16
    • 0027465864 scopus 로고
    • Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae
    • Rong L, Klein HL, (1993) Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. The Journal of biological chemistry 268: 1252-1259.
    • (1993) The Journal of Biological Chemistry , vol.268 , pp. 1252-1259
    • Rong, L.1    Klein, H.L.2
  • 17
    • 0024058351 scopus 로고
    • Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations
    • Aguilera A, Klein HL, (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119: 779-790.
    • (1988) Genetics , vol.119 , pp. 779-790
    • Aguilera, A.1    Klein, H.L.2
  • 18
    • 0037673941 scopus 로고    scopus 로고
    • DNA helicase Srs2 disrupts the Rad51 presynaptic filament
    • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, et al. (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423: 305-309.
    • (2003) Nature , vol.423 , pp. 305-309
    • Krejci, L.1    Van Komen, S.2    Li, Y.3    Villemain, J.4    Reddy, M.S.5
  • 19
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, et al. (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5
  • 20
    • 0037317683 scopus 로고    scopus 로고
    • Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae
    • Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M, (2003) Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Molecular and cellular biology 23: 1403-1417.
    • (2003) Molecular and Cellular Biology , vol.23 , pp. 1403-1417
    • Aylon, Y.1    Liefshitz, B.2    Bitan-Banin, G.3    Kupiec, M.4
  • 21
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination
    • Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, et al. (2008) The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol Cell 29: 243-254.
    • (2008) Mol Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Gangloff, S.4    Le Cam, E.5
  • 23
    • 0028033989 scopus 로고
    • The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase
    • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R, (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Molecular and cellular biology 14: 8391-8398.
    • (1994) Molecular and Cellular Biology , vol.14 , pp. 8391-8398
    • Gangloff, S.1    McDonald, J.P.2    Bendixen, C.3    Arthur, L.4    Rothstein, R.5
  • 24
    • 77950900571 scopus 로고    scopus 로고
    • The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions
    • Cejka P, Kowalczykowski SC, (2010) The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. The Journal of biological chemistry 285: 8290-8301.
    • (2010) The Journal of Biological Chemistry , vol.285 , pp. 8290-8301
    • Cejka, P.1    Kowalczykowski, S.C.2
  • 26
    • 68249116573 scopus 로고    scopus 로고
    • DNA end resection: many nucleases make light work
    • Mimitou EP, Symington LS, (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8: 983-995.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 983-995
    • Mimitou, E.P.1    Symington, L.S.2
  • 30
    • 25144449181 scopus 로고    scopus 로고
    • A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M
    • Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, et al. (2005) A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nature genetics 37: 958-963.
    • (2005) Nature Genetics , vol.37 , pp. 958-963
    • Meetei, A.R.1    Medhurst, A.L.2    Ling, C.3    Xue, Y.4    Singh, T.R.5
  • 32
    • 2442572065 scopus 로고    scopus 로고
    • Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair
    • Schurer KA, Rudolph C, Ulrich HD, Kramer W, (2004) Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 166: 1673-1686.
    • (2004) Genetics , vol.166 , pp. 1673-1686
    • Schurer, K.A.1    Rudolph, C.2    Ulrich, H.D.3    Kramer, W.4
  • 33
    • 80053325573 scopus 로고    scopus 로고
    • Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein
    • Zheng XF, Prakash R, Saro D, Longerich S, Niu H, et al. (2011) Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair 10: 1034-1043.
    • (2011) DNA Repair , vol.10 , pp. 1034-1043
    • Zheng, X.F.1    Prakash, R.2    Saro, D.3    Longerich, S.4    Niu, H.5
  • 34
    • 77950895511 scopus 로고    scopus 로고
    • Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair
    • Tay YD, Sidebotham JM, Wu L, (2010) Mph1 requires mismatch repair-independent and-dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Research 38: 1889-1901.
    • (2010) Nucleic Acids Research , vol.38 , pp. 1889-1901
    • Tay, Y.D.1    Sidebotham, J.M.2    Wu, L.3
  • 35
    • 77950876855 scopus 로고    scopus 로고
    • Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination
    • Mitchel K, Zhang H, Welz-Voegele C, Jinks-Robertson S, (2010) Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination. Mol Cell 38: 211-222.
    • (2010) Mol Cell , vol.38 , pp. 211-222
    • Mitchel, K.1    Zhang, H.2    Welz-Voegele, C.3    Jinks-Robertson, S.4
  • 36
    • 73349140234 scopus 로고    scopus 로고
    • Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption
    • Colavito S, Macris-Kiss M, Seong C, Gleeson O, Greene EC, et al. (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic acids research 37: 6754-6764.
    • (2009) Nucleic Acids Research , vol.37 , pp. 6754-6764
    • Colavito, S.1    Macris-Kiss, M.2    Seong, C.3    Gleeson, O.4    Greene, E.C.5
  • 37
    • 53149087431 scopus 로고    scopus 로고
    • The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
    • Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, et al. (2008) The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Molecular cell 32: 118-128.
    • (2008) Molecular Cell , vol.32 , pp. 118-128
    • Sun, W.1    Nandi, S.2    Osman, F.3    Ahn, J.S.4    Jakovleska, J.5
  • 38
    • 79957830017 scopus 로고    scopus 로고
    • Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities
    • Sebesta M, Burkovics P, Haracska L, Krejci L, (2011) Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair 10: 567-576.
    • (2011) DNA Repair , vol.10 , pp. 567-576
    • Sebesta, M.1    Burkovics, P.2    Haracska, L.3    Krejci, L.4
  • 39
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • Gangloff S, Soustelle C, Fabre F, (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature genetics 25: 192-194.
    • (2000) Nature Genetics , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 42
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom's syndrome helicase suppresses crossing over during homologous recombination
    • Wu L, Hickson ID, (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426: 870-874.
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 43
    • 33746600628 scopus 로고    scopus 로고
    • Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration
    • Plank JL, Wu J, Hsieh TS, (2006) Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proceedings of the National Academy of Sciences of the United States of America 103: 11118-11123.
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.103 , pp. 11118-11123
    • Plank, J.L.1    Wu, J.2    Hsieh, T.S.3
  • 44
    • 79957983705 scopus 로고    scopus 로고
    • Meiotic recombination intermediates are resolved with minimal crossover formation during return-to-growth, an analogue of the mitotic cell cycle
    • doi:10.1371/journal.pgen.1002083
    • Dayani Y, Simchen G, Lichten M, (2011) Meiotic recombination intermediates are resolved with minimal crossover formation during return-to-growth, an analogue of the mitotic cell cycle. PLoS Genet 7: e1002083 doi:10.1371/journal.pgen.1002083.
    • (2011) PLoS Genet , vol.7
    • Dayani, Y.1    Simchen, G.2    Lichten, M.3
  • 45
    • 19944432787 scopus 로고    scopus 로고
    • Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase
    • Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, et al. (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes & development 19: 339-350.
    • (2005) Genes & Development , vol.19 , pp. 339-350
    • Liberi, G.1    Maffioletti, G.2    Lucca, C.3    Chiolo, I.4    Baryshnikova, A.5
  • 46
    • 0037428069 scopus 로고    scopus 로고
    • Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing
    • Adams MD, McVey M, Sekelsky JJ, (2003) Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299: 265-267.
    • (2003) Science , vol.299 , pp. 265-267
    • Adams, M.D.1    McVey, M.2    Sekelsky, J.J.3
  • 47
    • 34548449845 scopus 로고    scopus 로고
    • Multiple functions of Drosophila BLM helicase in maintenance of genome stability
    • McVey M, Andersen SL, Broze Y, Sekelsky J, (2007) Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 176: 1979-1992.
    • (2007) Genetics , vol.176 , pp. 1979-1992
    • McVey, M.1    Andersen, S.L.2    Broze, Y.3    Sekelsky, J.4
  • 48
    • 0034727684 scopus 로고    scopus 로고
    • Binding and melting of D-loops by the Bloom syndrome helicase
    • van Brabant AJ, Ye T, Sanz M, German IJ, Ellis NA, et al. (2000) Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39: 14617-14625.
    • (2000) Biochemistry , vol.39 , pp. 14617-14625
    • van Brabant, A.J.1    Ye, T.2    Sanz, M.3    German, I.J.4    Ellis, N.A.5
  • 49
    • 33646843592 scopus 로고    scopus 로고
    • Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase
    • Bachrati CZ, Borts RH, Hickson ID, (2006) Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic acids research 34: 2269-2279.
    • (2006) Nucleic Acids Research , vol.34 , pp. 2269-2279
    • Bachrati, C.Z.1    Borts, R.H.2    Hickson, I.D.3
  • 50
    • 77952583242 scopus 로고    scopus 로고
    • An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs
    • Chen CF, Brill SJ, (2010) An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs. The EMBO journal 29: 1713-1725.
    • (2010) The EMBO Journal , vol.29 , pp. 1713-1725
    • Chen, C.F.1    Brill, S.J.2
  • 51
    • 84859699244 scopus 로고    scopus 로고
    • BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism
    • De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, et al. (2012) BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Molecular cell 46: 43-53.
    • (2012) Molecular Cell , vol.46 , pp. 43-53
    • De Muyt, A.1    Jessop, L.2    Kolar, E.3    Sourirajan, A.4    Chen, J.5
  • 52
    • 84859714621 scopus 로고    scopus 로고
    • Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase
    • Zakharyevich K, Tang S, Ma Y, Hunter N, (2012) Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149: 334-347.
    • (2012) Cell , vol.149 , pp. 334-347
    • Zakharyevich, K.1    Tang, S.2    Ma, Y.3    Hunter, N.4
  • 53
    • 33745541640 scopus 로고    scopus 로고
    • Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover
    • Robert T, Dervins D, Fabre F, Gangloff S, (2006) Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. The EMBO journal 25: 2837-2846.
    • (2006) The EMBO Journal , vol.25 , pp. 2837-2846
    • Robert, T.1    Dervins, D.2    Fabre, F.3    Gangloff, S.4
  • 54
    • 75349098893 scopus 로고    scopus 로고
    • A SRS2 homolog from Arabidopsis thaliana disrupts recombinogenic DNA intermediates and facilitates single strand annealing
    • Blanck S, Kobbe D, Hartung F, Fengler K, Focke M, et al. (2009) A SRS2 homolog from Arabidopsis thaliana disrupts recombinogenic DNA intermediates and facilitates single strand annealing. Nucleic acids research 37: 7163-7176.
    • (2009) Nucleic Acids Research , vol.37 , pp. 7163-7176
    • Blanck, S.1    Kobbe, D.2    Hartung, F.3    Fengler, K.4    Focke, M.5
  • 55
    • 2642614786 scopus 로고    scopus 로고
    • Expansions and contractions in a tandem repeat induced by double-strand break repair
    • Paques F, Leung WY, Haber JE, (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Molecular and cellular biology 18: 2045-2054.
    • (1998) Molecular and Cellular Biology , vol.18 , pp. 2045-2054
    • Paques, F.1    Leung, W.Y.2    Haber, J.E.3
  • 56
    • 84860551748 scopus 로고    scopus 로고
    • Homologous recombination via synthesis-dependent strand annealing in yeast requires the Irc20 and Srs2 DNA helicases
    • Miura T, Yamana Y, Usui T, Ogawa HI, Yamamoto MT, et al. (2012) Homologous recombination via synthesis-dependent strand annealing in yeast requires the Irc20 and Srs2 DNA helicases. Genetics 191: 65-78.
    • (2012) Genetics , vol.191 , pp. 65-78
    • Miura, T.1    Yamana, Y.2    Usui, T.3    Ogawa, H.I.4    Yamamoto, M.T.5
  • 57
    • 0034613170 scopus 로고    scopus 로고
    • The relationship between homology length and crossing over during the repair of a broken chromosome
    • Inbar O, Liefshitz B, Bitan G, Kupiec M, (2000) The relationship between homology length and crossing over during the repair of a broken chromosome. The Journal of biological chemistry 275: 30833-30838.
    • (2000) The Journal of Biological Chemistry , vol.275 , pp. 30833-30838
    • Inbar, O.1    Liefshitz, B.2    Bitan, G.3    Kupiec, M.4
  • 59
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P, (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.