메뉴 건너뛰기




Volumn 23, Issue 3, 2009, Pages 291-303

A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair

Author keywords

BIR; Gene conversion; Pol32; Sgs1; SSA

Indexed keywords

DOUBLE STRANDED DNA; GENOMIC DNA; PHOSPHORUS 32; RAD51 PROTEIN; RECQ HELICASE; SGS1 HELICASE; UNCLASSIFIED DRUG;

EID: 59949092789     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.1751209     Document Type: Article
Times cited : (114)

References (58)
  • 1
    • 0037428069 scopus 로고    scopus 로고
    • Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing
    • Adams, M.D., McVey, M., and Sekelsky, J.J. 2003. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299: 265-267.
    • (2003) Science , vol.299 , pp. 265-267
    • Adams, M.D.1    McVey, M.2    Sekelsky, J.J.3
  • 2
    • 43049162175 scopus 로고    scopus 로고
    • RecQ helicases: Guardian angels of the DNA replication fork
    • Bachrati, C.Z. and Hickson, I.D. 2008. RecQ helicases: Guardian angels of the DNA replication fork. Chromosoma 117: 219-233.
    • (2008) Chromosoma , vol.117 , pp. 219-233
    • Bachrati, C.Z.1    Hickson, I.D.2
  • 3
    • 33646843592 scopus 로고    scopus 로고
    • Mobile D- loops are a preferred substrate for the Bloom's syndrome helicase
    • Bachrati, C.Z., Borts, R.H., and Hickson, I.D. 2006. Mobile D- loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res. 34: 2269-2279.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2269-2279
    • Bachrati, C.Z.1    Borts, R.H.2    Hickson, I.D.3
  • 4
    • 46249091062 scopus 로고    scopus 로고
    • Banerjee, S., Smith, S., Oum, J.H., Liaw, H.J., Hwang, J.Y., Sikdar, N.,Motegi, A.,Lee, S.E., andMyung,K. 2008. Mphlppromotes gross chromosomal rearrangement through partial inhibition of homologous recombination. J. Cell Biol. 181: 1083-1093.
    • Banerjee, S., Smith, S., Oum, J.H., Liaw, H.J., Hwang, J.Y., Sikdar, N.,Motegi, A.,Lee, S.E., andMyung,K. 2008. Mphlppromotes gross chromosomal rearrangement through partial inhibition of homologous recombination. J. Cell Biol. 181: 1083-1093.
  • 5
    • 13444283383 scopus 로고    scopus 로고
    • Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance
    • Bjergbaek, L., Cobb, J.A., Tsai-Pflugfelder, M., and Gasser, S.M. 2005. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24: 405-417.
    • (2005) EMBO J , vol.24 , pp. 405-417
    • Bjergbaek, L.1    Cobb, J.A.2    Tsai-Pflugfelder, M.3    Gasser, S.M.4
  • 6
    • 0031737723 scopus 로고    scopus 로고
    • Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture
    • Bosco, G. and Haber, J.E. 1998. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150: 1037-1047.
    • (1998) Genetics , vol.150 , pp. 1037-1047
    • Bosco, G.1    Haber, J.E.2
  • 7
    • 34249946978 scopus 로고    scopus 로고
    • Interplay of replication checkpoints and repair proteins at stalled replication forks
    • Branzei, D. and Foiani, M. 2007a. Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst.) 6: 994-1003.
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 994-1003
    • Branzei, D.1    Foiani, M.2
  • 8
    • 36849052400 scopus 로고    scopus 로고
    • RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination
    • Branzei, D. and Foiani, M. 2007b. RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination. Genes & Dev. 21: 3019-3026.
    • (2007) Genes & Dev , vol.21 , pp. 3019-3026
    • Branzei, D.1    Foiani, M.2
  • 9
    • 0032584599 scopus 로고    scopus 로고
    • Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase δ
    • Burgers, P.M. and Gerik, K.J. 1998. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase δ. J. Biol. Chem. 273: 19756-19762.
    • (1998) J. Biol. Chem , vol.273 , pp. 19756-19762
    • Burgers, P.M.1    Gerik, K.J.2
  • 10
    • 33644691699 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends
    • Clerici, M., Mantiero, D., Lucchini, G., and Longhese, M.P. 2005. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280: 38631-38638.
    • (2005) J. Biol. Chem , vol.280 , pp. 38631-38638
    • Clerici, M.1    Mantiero, D.2    Lucchini, G.3    Longhese, M.P.4
  • 11
    • 0024027329 scopus 로고
    • Physical monitoring of mating type switching in Saccharomyces cerevisiae
    • Connolly, B., White, C.I., and Haber, J.E. 1988. Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2342-2349.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 2342-2349
    • Connolly, B.1    White, C.I.2    Haber, J.E.3
  • 12
    • 1542344337 scopus 로고    scopus 로고
    • RAD51-dependent break- induced replication in yeast
    • Davis, A.P. and Symington, L.S. 2004. RAD51-dependent break- induced replication in yeast. Mol. Cell. Biol. 24: 2344-2351.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 2344-2351
    • Davis, A.P.1    Symington, L.S.2
  • 13
    • 0026583875 scopus 로고
    • Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell, J., Rudin, N., and Haber, J.E. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12: 1292-1303.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 14
    • 0033957793 scopus 로고    scopus 로고
    • The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci
    • Frei, C. and Gasser, S.M. 2000. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes & Dev. 14: 81-96.
    • (2000) Genes & Dev , vol.14 , pp. 81-96
    • Frei, C.1    Gasser, S.M.2
  • 15
    • 0032584658 scopus 로고    scopus 로고
    • Characterization of the two small subunits of Saccharomyces cerevi- siae DNA polymerase δ
    • Gerik, K.J., Li, X., Pautz, A., and Burgers, P.M. 1998. Characterization of the two small subunits of Saccharomyces cerevi- siae DNA polymerase δ. J. Biol. Chem. 273: 19747-19755.
    • (1998) J. Biol. Chem , vol.273 , pp. 19747-19755
    • Gerik, K.J.1    Li, X.2    Pautz, A.3    Burgers, P.M.4
  • 16
    • 53649090109 scopus 로고    scopus 로고
    • DNA helicases Sgs1 and BLM promote DNA double-strand break resection
    • Gravel, S., Chapman, J.R., Magill, C., and Jackson, S.P. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes & Dev. 22: 2767-2772.
    • (2008) Genes & Dev , vol.22 , pp. 2767-2772
    • Gravel, S.1    Chapman, J.R.2    Magill, C.3    Jackson, S.P.4
  • 17
    • 0033168376 scopus 로고    scopus 로고
    • DNA recombination: The replication connection
    • Haber, J.E. 1999. DNA recombination: The replication connection. Trends Biochem. Sci. 24: 271-275.
    • (1999) Trends Biochem. Sci , vol.24 , pp. 271-275
    • Haber, J.E.1
  • 18
    • 0033525095 scopus 로고    scopus 로고
    • Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases
    • Holmes, A.M. and Haber, J.E. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96: 415-424.
    • (1999) Cell , vol.96 , pp. 415-424
    • Holmes, A.M.1    Haber, J.E.2
  • 19
    • 0036723660 scopus 로고    scopus 로고
    • Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences
    • Ira, G. and Haber, J.E. 2002. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22: 6384-6392.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 6384-6392
    • Ira, G.1    Haber, J.E.2
  • 20
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira, G., Malkova, A., Liberi, G., Foiani, M., and Haber, J.E. 2003. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401-411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 21
    • 33845454120 scopus 로고    scopus 로고
    • Conservative inheritance of newly synthesized DNA in double-strand break- induced gene conversion
    • Ira, G., Satory, D., and Haber, J.E. 2006. Conservative inheritance of newly synthesized DNA in double-strand break- induced gene conversion. Mol. Cell. Biol. 26: 9424-9429.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 9424-9429
    • Ira, G.1    Satory, D.2    Haber, J.E.3
  • 22
    • 0030000946 scopus 로고    scopus 로고
    • Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
    • Ivanov, E.L., Sugawara, N., Fishman-Lobell, J., and Haber, J.E. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693-704.
    • (1996) Genetics , vol.142 , pp. 693-704
    • Ivanov, E.L.1    Sugawara, N.2    Fishman-Lobell, J.3    Haber, J.E.4
  • 23
    • 33747859623 scopus 로고    scopus 로고
    • The effect of gap length on double-strand break repair in Drosophila
    • Johnson-Schlitz, D.M. and Engels, W.R. 2006. The effect of gap length on double-strand break repair in Drosophila. Genetics 173: 2033-2038.
    • (2006) Genetics , vol.173 , pp. 2033-2038
    • Johnson-Schlitz, D.M.1    Engels, W.R.2
  • 24
    • 0034458964 scopus 로고    scopus 로고
    • Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae
    • Kang, L.E. and Symington, L.S. 2000. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae. Mol. Cell. Biol. 20: 9162-9172.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 9162-9172
    • Kang, L.E.1    Symington, L.S.2
  • 25
    • 10344225665 scopus 로고    scopus 로고
    • DNA breaks promote genomic instability by impeding proper chromosome segregation
    • Kaye, J.A., Melo, J.A., Cheung, S.K., Vaze, M.B., Haber, J.E., and Toczyski, D.P. 2004. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14: 2096-2106.
    • (2004) Curr. Biol , vol.14 , pp. 2096-2106
    • Kaye, J.A.1    Melo, J.A.2    Cheung, S.K.3    Vaze, M.B.4    Haber, J.E.5    Toczyski, D.P.6
  • 27
    • 0035902459 scopus 로고    scopus 로고
    • Break-induced replication: A review and an example in budding yeast
    • Kraus, E., Leung, W.Y., and Haber, J.E. 2001. Break-induced replication: A review and an example in budding yeast. Proc. Natl. Acad. Sci. 98: 8255-8262.
    • (2001) Proc. Natl. Acad. Sci , vol.98 , pp. 8255-8262
    • Kraus, E.1    Leung, W.Y.2    Haber, J.E.3
  • 28
    • 34247566575 scopus 로고    scopus 로고
    • Mre11 and Ku regulation of double-strand break repair by gene conversion and break- induced replication
    • Krishna, S., Wagener, B.M., Liu, H.P., Lo, Y.C., Sterk, R., Petrini,J.H., and Nickoloff, J.A. 2007. Mre11 and Ku regulation of double-strand break repair by gene conversion and break- induced replication. DNA Repair (Amst.) 6: 797-808.
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 797-808
    • Krishna, S.1    Wagener, B.M.2    Liu, H.P.3    Lo, Y.C.4    Sterk, R.5    Petrini, J.H.6    Nickoloff, J.A.7
  • 29
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh, B.O. and Symington, L.S. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38: 233-271.
    • (2004) Annu. Rev. Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 30
    • 0032959506 scopus 로고    scopus 로고
    • RAD50 and RAD51 define two pathways that collaborate to maintain telomeres inthe absence oftelomerase
    • Le, S., Moore, J.K., Haber, J.E., and Greider, C.W. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres inthe absence oftelomerase. Genetics 152: 143-152.
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.W.4
  • 31
  • 32
    • 10344240414 scopus 로고    scopus 로고
    • Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex
    • Lobachev, K., Vitriol, E., Stemple, J., Resnick, M.A., and Bloom, K. 2004. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14: 2107-2112.
    • (2004) Curr. Biol , vol.14 , pp. 2107-2112
    • Lobachev, K.1    Vitriol, E.2    Stemple, J.3    Resnick, M.A.4    Bloom, K.5
  • 33
    • 0027266758 scopus 로고
    • An alternative pathway for yeast telomere maintenance rescues est1- senescence
    • Lundblad, V. and Blackburn, E.H. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73: 347-360.
    • (1993) Cell , vol.73 , pp. 347-360
    • Lundblad, V.1    Blackburn, E.H.2
  • 34
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard, J.R., Jain, S., Yamaguchi, M., and Haber, J.E. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 35
    • 0029947714 scopus 로고    scopus 로고
    • Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication
    • Malkova, A., Ivanov, E.L., and Haber, J.E. 1996. Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. 93: 7131-7136.
    • (1996) Proc. Natl. Acad. Sci , vol.93 , pp. 7131-7136
    • Malkova, A.1    Ivanov, E.L.2    Haber, J.E.3
  • 36
    • 0035338254 scopus 로고    scopus 로고
    • RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site
    • Malkova, A., Signon, L., Schaefer, C.B., Naylor, M.L., Theis, J.F., Newlon, C.S., and Haber, J.E. 2001. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes & Dev. 15: 1055-1060.
    • (2001) Genes & Dev , vol.15 , pp. 1055-1060
    • Malkova, A.1    Signon, L.2    Schaefer, C.B.3    Naylor, M.L.4    Theis, J.F.5    Newlon, C.S.6    Haber, J.E.7
  • 37
    • 12844289007 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51- mediated gene conversion
    • Malkova, A., Naylor, M.L., Yamaguchi, M., Ira, G., and Haber, J.E. 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51- mediated gene conversion. Mol. Cell. Biol. 25: 933-944.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 933-944
    • Malkova, A.1    Naylor, M.L.2    Yamaguchi, M.3    Ira, G.4    Haber, J.E.5
  • 38
    • 0028321618 scopus 로고
    • Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination
    • McDonald, J.P. and Rothstein, R. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics 137: 393-405.
    • (1994) Genetics , vol.137 , pp. 393-405
    • McDonald, J.P.1    Rothstein, R.2
  • 39
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern, M.J. and Haber, J.E. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75: 111-135.
    • (2006) Annu. Rev. Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 40
    • 8144220041 scopus 로고    scopus 로고
    • Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion
    • McVey, M., Larocque, J.R., Adams, M.D., and Sekelsky, J.J. 2004. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl. Acad. Sci. 101: 15694-15699.
    • (2004) Proc. Natl. Acad. Sci , vol.101 , pp. 15694-15699
    • McVey, M.1    Larocque, J.R.2    Adams, M.D.3    Sekelsky, J.J.4
  • 41
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exol and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou, E.P. and Symington, L.S. 2008. Sae2, Exol and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-774.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 42
    • 0030760609 scopus 로고    scopus 로고
    • Break copy'' duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow, D.M., Connelly, C., and Hieter, P. 1997. ''Break copy'' duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147: 371-382.
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1    Connelly, C.2    Hieter, P.3
  • 43
    • 0034089029 scopus 로고    scopus 로고
    • Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae
    • Mullen, J.R., Kaliraman, V., and Brill, S.J. 2000. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 154: 1101-1114.
    • (2000) Genetics , vol.154 , pp. 1101-1114
    • Mullen, J.R.1    Kaliraman, V.2    Brill, S.J.3
  • 44
    • 59949090294 scopus 로고    scopus 로고
    • Nickoloff, J.A. and Haber, J.E. 2001. Mating-type control of DNA repair and recombination in Saccharomyces cerevisiae.ln DNA damage and repair: Advances from phage to humans, 3 (eds. J.A. Nickoloff and M.F. Hoekstra), pp. 107-124. Humana Press, Totowa, NJ.
    • Nickoloff, J.A. and Haber, J.E. 2001. Mating-type control of DNA repair and recombination in Saccharomyces cerevisiae.ln DNA damage and repair: Advances from phage to humans, Vol. 3 (eds. J.A. Nickoloff and M.F. Hoekstra), pp. 107-124. Humana Press, Totowa, NJ.
  • 45
    • 34447536139 scopus 로고    scopus 로고
    • BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules
    • Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. 2007. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130: 259-272.
    • (2007) Cell , vol.130 , pp. 259-272
    • Oh, S.D.1    Lao, J.P.2    Hwang, P.Y.3    Taylor, A.F.4    Smith, G.R.5    Hunter, N.6
  • 46
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques, F. and Haber, J.E. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 349-404.
    • (1999) Microbiol. Mol. Biol. Rev , vol.63 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 47
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R.S. and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 48
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith, C.E., Llorente, B., and Symington, L.S. 2007. Template switching during break-induced replication. Nature 447: 102-105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 49
    • 0026530911 scopus 로고
    • Characterization of double-strand break-induced recombination: Homology requirements and single-stranded DNA formation
    • Sugawara, N. and Haber, J.E. 1992. Characterization of double-strand break-induced recombination: Homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12: 563-575.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 563-575
    • Sugawara, N.1    Haber, J.E.2
  • 50
    • 0033946617 scopus 로고    scopus 로고
    • DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair
    • Sugawara, N., Ira, G., and Haber, J.E. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20: 5300-5309.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 5300-5309
    • Sugawara, N.1    Ira, G.2    Haber, J.E.3
  • 51
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara, N., Wang, X., and Haber, J.E. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12: 209-219.
    • (2003) Mol. Cell , vol.12 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 52
    • 0033636907 scopus 로고    scopus 로고
    • Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process
    • Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6: 947-952.
    • (2000) Mol. Cell , vol.6 , pp. 947-952
    • Teng, S.C.1    Chang, J.2    McCowan, B.3    Zakian, V.A.4
  • 54
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
    • Vaze, M.B., Pellicioli, A., Lee, S.E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M., and Haber, J.E. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10: 373-385.
    • (2002) Mol. Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1    Pellicioli, A.2    Lee, S.E.3    Ira, G.4    Liberi, G.5    Arbel-Eden, A.6    Foiani, M.7    Haber, J.E.8
  • 55
    • 0025630657 scopus 로고
    • Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous
    • Voelkel-Meiman, K. and Roeder, G.S. 1990. Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics 126: 851-867.
    • (1990) Genetics , vol.126 , pp. 851-867
    • Voelkel-Meiman, K.1    Roeder, G.S.2
  • 56
    • 3543045545 scopus 로고    scopus 로고
    • Role of DNA replication proteins in double- strand break-induced recombination in Saccharomyces cerevisiae
    • Wang, X., Ira, G., Tercero, J.A., Holmes, A.M., Diffley, J.F., and Haber, J.E. 2004. Role of DNA replication proteins in double- strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 24: 6891-6899.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 6891-6899
    • Wang, X.1    Ira, G.2    Tercero, J.A.3    Holmes, A.M.4    Diffley, J.F.5    Haber, J.E.6
  • 57
    • 0025020278 scopus 로고
    • Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
    • White, C.I. and Haber, J.E. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663-673.
    • (1990) EMBO J , vol.9 , pp. 663-673
    • White, C.I.1    Haber, J.E.2
  • 58
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E., and Ira, G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.