-
1
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
[1] Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
2
-
-
33750710080
-
Protein oxidation and aging
-
[2] Stadtman ER. Protein oxidation and aging. Free Radic Res 2006; 40: 1250-8.
-
(2006)
Free Radic Res
, vol.40
, pp. 1250-1258
-
-
Stadtman, E.R.1
-
3
-
-
79960478547
-
Chemistry and biology of reactive oxygen species in signaling or stress responses
-
[3] Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 2011; 7: 504-11.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 504-511
-
-
Dickinson, B.C.1
Chang, C.J.2
-
4
-
-
2542505678
-
Oxidative stress and mitochondrial DNA mutations in human aging
-
[4] Wei YH. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 1998; 217: 53-63.
-
(1998)
Proc Soc Exp Biol Med
, vol.217
, pp. 53-63
-
-
Wei, Y.H.1
-
5
-
-
84867828156
-
Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic
-
[5] Arduino DM, Esteves AR, Cortes L, et al. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum Mol Genet 2012; 21: 4680-702.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 4680-4702
-
-
Arduino, D.M.1
Esteves, A.R.2
Cortes, L.3
-
7
-
-
84875679362
-
Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases
-
[7] Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol Cell Neurosci 2013; 55: 101-14.
-
(2013)
Mol Cell Neurosci
, vol.55
, pp. 101-114
-
-
Chaturvedi, R.K.1
Beal, M.F.2
-
8
-
-
0024390719
-
Deficiency in Parkinson's disease
-
[8] Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1989; 1: 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
Mitochondrial Complex, I.7
-
9
-
-
0025254401
-
Deficiency in Parkinson's disease
-
[9] Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990; 54: 823-7.
-
(1990)
J Neurochem
, vol.54
, pp. 823-827
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
Mitochondrial Complex, I.7
-
10
-
-
0344198025
-
Mechanism of toxicity in rotenone models of Parkinson's disease
-
[10] Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 2003; 23: 10756-64.
-
(2003)
J Neurosci
, vol.23
, pp. 10756-10764
-
-
Sherer, T.B.1
Betarbet, R.2
Testa, C.M.3
-
11
-
-
10044292870
-
Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster
-
[11] Coulom H, Birman S. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 2004; 24: 10993-8.
-
(2004)
J Neurosci
, vol.24
, pp. 10993-10998
-
-
Coulom, H.1
Birman, S.2
-
12
-
-
40449114231
-
Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity
-
[12] Gash DM, Rutland K, Hudson NL, et al. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 2008; 63:184-92.
-
(2008)
Ann Neurol
, vol.63
, pp. 184-192
-
-
Gash, D.M.1
Rutland, K.2
Hudson, N.L.3
-
13
-
-
0033681149
-
Chronic systemic pesticide exposure reproduces features of Parkinson's disease
-
[13] Betarbet R, Sherer TB, Mackenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000; 3: 1301-6.
-
(2000)
Nat Neurosci
, vol.3
, pp. 1301-1306
-
-
Betarbet, R.1
Sherer, T.B.2
Mackenzie, G.3
Garcia-Osuna, M.4
Panov, A.V.5
Greenamyre, J.T.6
-
14
-
-
33847694006
-
Mechanism of toxicity of pesticides acting at complex I: Relevance to environmental etiologies of Parkinson's disease
-
[14] Sherer TB, Richardson JR, Testa CM, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. J Neurochem 2007; 100: 1469-79.
-
(2007)
J Neurochem
, vol.100
, pp. 1469-1479
-
-
Sherer, T.B.1
Richardson, J.R.2
Testa, C.M.3
-
15
-
-
8344265251
-
Iron, brain ageing and neurodegenerative disorders
-
[15] Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5: 863-73.
-
(2004)
Nat Rev Neurosci
, vol.5
, pp. 863-873
-
-
Zecca, L.1
Youdim, M.B.2
Riederer, P.3
Connor, J.R.4
Crichton, R.R.5
-
16
-
-
0028650402
-
Levodopa administration to normal rats: Influence on striatal oxidized glutathione concentration
-
[16] Loeffler DA, Demaggio AJ, Juneau PL, Havaich M, Lewitt PA. Levodopa administration to normal rats: influence on striatal oxidized glutathione concentration. Ann N Y Acad Sci 1994; 738: 421-6.
-
(1994)
Ann N Y Acad Sci
, vol.738
, pp. 421-426
-
-
Loeffler, D.A.1
Demaggio, A.J.2
Juneau, P.L.3
Havaich, M.4
Lewitt, P.A.5
-
17
-
-
0036767723
-
HastingsTG, Perez RG. Increased dopamine turnover after partial loss of dopaminergic neurons: Compensation or toxicity?
-
[17] Zigmond MJ, HastingsTG, Perez RG. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat Disord 2002; 8: 389-93.
-
(2002)
Parkinsonism Relat Disord
, vol.8
, pp. 389-393
-
-
Zigmond, M.J.1
-
18
-
-
0025220976
-
Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain
-
[18] Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39: 151-70.
-
(1990)
Neuroscience
, vol.39
, pp. 151-170
-
-
Lawson, L.J.1
Perry, V.H.2
Dri, P.3
Gordon, S.4
-
19
-
-
77955287517
-
Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins
-
[19] Perier C, Bove J, Dehay B, et al. Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins. Ann Neurol 2010; 68: 184-92.
-
(2010)
Ann Neurol
, vol.68
, pp. 184-192
-
-
Perier, C.1
Bove, J.2
Dehay, B.3
-
20
-
-
34347242465
-
Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain
-
[20] Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 2007; 282: 14186-93.
-
(2007)
J Biol Chem
, vol.282
, pp. 14186-14193
-
-
Castello, P.R.1
Drechsel, D.A.2
Patel, M.3
-
21
-
-
29644447278
-
Rotenone model of Parkinson disease: Multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication
-
[21] Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 2005; 280: 42026-35.
-
(2005)
J Biol Chem
, vol.280
, pp. 42026-42035
-
-
Panov, A.1
Dikalov, S.2
Shalbuyeva, N.3
Taylor, G.4
Sherer, T.5
Greenamyre, J.T.6
-
22
-
-
0344838535
-
Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease
-
[22] Gibson GE, Kingsbury AE, Xu H, et al. Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease. Neurochem Int 2003; 43: 129-35.
-
(2003)
Neurochem Int
, vol.43
, pp. 129-135
-
-
Gibson, G.E.1
Kingsbury, A.E.2
Xu, H.3
-
23
-
-
0028176592
-
An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson's disease
-
[23] Mizuno Y, Matuda S, Yoshino H, Mori H, Hattori N, Ikebe S. An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson's disease. Ann Neurol 1994; 35: 204-10.
-
(1994)
Ann Neurol
, vol.35
, pp. 204-210
-
-
Mizuno, Y.1
Matuda, S.2
Yoshino, H.3
Mori, H.4
Hattori, N.5
Ikebe, S.6
-
24
-
-
79952205241
-
Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients
-
[24] She H, Yang Q, Shepherd K, et al. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J Clin Invest 2011; 121: 930-40.
-
(2011)
J Clin Invest
, vol.121
, pp. 930-940
-
-
She, H.1
Yang, Q.2
Shepherd, K.3
-
25
-
-
0034965086
-
Biochemical analysis of cybrids expressing mitochondrial DNA from Contursi kindred Parkinson's subjects
-
[25] Swerdlow RH, Parks JK, Cassarino DS, et al. Biochemical analysis of cybrids expressing mitochondrial DNA from Contursi kindred Parkinson's subjects. Exp Neurol 2001; 169: 479-85.
-
(2001)
Exp Neurol
, vol.169
, pp. 479-485
-
-
Swerdlow, R.H.1
Parks, J.K.2
Cassarino, D.S.3
-
27
-
-
0029908226
-
Origin and functional consequences of the complex I defect in Parkinson's disease
-
[27] Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 1996; 40: 663-71.
-
(1996)
Ann Neurol
, vol.40
, pp. 663-671
-
-
Swerdlow, R.H.1
Parks, J.K.2
Miller, S.W.3
-
28
-
-
0033546754
-
Characterization of cybrid cell lines containing mtDNA from Huntington's disease patients
-
[28] Swerdlow RH, Parks JK, Cassarino DS, et al. Characterization of cybrid cell lines containing mtDNA from Huntington's disease patients. Biochem Biophys Res Commun1999; 261: 701-4.
-
Biochem Biophys Res Commun1999
, vol.261
, pp. 701-704
-
-
Swerdlow, R.H.1
Parks, J.K.2
Cassarino, D.S.3
-
29
-
-
71549164305
-
Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships
-
[29] Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergguist KE, Bennett JP Jr. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol 2009; 220: 374-82.
-
(2009)
Exp Neurol
, vol.220
, pp. 374-382
-
-
Keeney, P.M.1
Dunham, L.D.2
Quigley, C.K.3
Morton, S.L.4
Bergguist, K.E.5
Bennett, J.P.6
-
30
-
-
68949206326
-
Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model
-
[30] Keeney PM, Quigley CK, Dunham LD, et al. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 2009; 20: 897-907.
-
(2009)
Hum Gene Ther
, vol.20
, pp. 897-907
-
-
Keeney, P.M.1
Quigley, C.K.2
Dunham, L.D.3
-
31
-
-
79955894792
-
POLG1-related and other mitochondrial parkinsonism: An overview
-
[31] Orsucci D, Caldarazzo Ienco E, Mancuso M, Siciliano G. POLG1-related and other mitochondrial parkinsonism: an overview. J Mol Neurosci, 2011; 44, 17-24.
-
(2011)
J Mol Neurosci
, vol.44
, pp. 17-24
-
-
Orsucci, D.1
Caldarazzo Ienco, E.2
Mancuso, M.3
Siciliano, G.4
-
32
-
-
63449107606
-
Mitochondrial DNA sequence variation and neurodegeneration
-
[32] Mancuso M, Filosto M, Orsucci D, Siciliano G, et al. Mitochondrial DNA sequence variation and neurodegeneration. Hum Genomics 2008; 3: 71-8.
-
(2008)
Hum Genomics
, vol.3
, pp. 71-78
-
-
Mancuso, M.1
Filosto, M.2
Orsucci, D.3
Siciliano, G.4
-
33
-
-
10744231633
-
Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease
-
[33] Simon DK, Lin MT, Zheng L, et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol Aging 2004; 25: 71-81.
-
(2004)
Neurobiol Aging
, vol.25
, pp. 71-81
-
-
Simon, D.K.1
Lin, M.T.2
Zheng, L.3
-
34
-
-
0036298182
-
Mitochondrial DNA deletions/ rearrangements in parkinson disease and related neurodegenerative disorders
-
[34] Gu G, Reyes PE, Golden GT, et al. Mitochondrial DNA deletions/ rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002; 61: 634-9.
-
(2002)
J Neuropathol Exp Neurol
, vol.61
, pp. 634-639
-
-
Gu, G.1
Reyes, P.E.2
Golden, G.T.3
-
35
-
-
0028854722
-
Point mutations of mitochondrial genome in parkinson’s disease
-
[35] Ikebe S, Tanaka M, Ozawa T. Point mutations of mitochondrial genome in parkinson’s disease. Brain Res Mol Brain Res 1995; 28, 281-95.
-
(1995)
Brain Res Mol Brain Res
, vol.28
, pp. 281-295
-
-
Ikebe, S.1
Tanaka, M.2
Ozawa, T.3
-
36
-
-
84862742683
-
Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease
-
[36] Lin MT, Cantuti-Castelvetri I, Zheng K, et al. Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease. Ann Neurol 2012; 71: 850-4.
-
(2012)
Ann Neurol
, vol.71
, pp. 850-854
-
-
Lin, M.T.1
Cantuti-Castelvetri, I.2
Zheng, K.3
-
37
-
-
78649733457
-
Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease
-
[37] Nishioka K, Vilarino-Guell C, Cobb SA, et al. Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism Relat Disord 2010; 16: 686-7.
-
(2010)
Parkinsonism Relat Disord
, vol.16
, pp. 686-687
-
-
Nishioka, K.1
Vilarino-Guell, C.2
Cobb, S.A.3
-
38
-
-
10444243239
-
Mitochondrial ND5 mutations in idiopathic Parkinson's disease
-
[38] Parker WD, Jr, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson's disease. Biochem Biophys Res Commun 2005; 326: 667-9.
-
(2005)
Biochem Biophys Res Commun
, vol.326
, pp. 667-669
-
-
Parker, W.D.1
Parks, J.K.2
-
39
-
-
4644351698
-
High frequency of mitochondrial complex I mutations in Parkinson's disease and aging
-
[39] Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex I mutations in Parkinson's disease and aging. Neurobiol Aging 2004; 25: 1273-81.
-
(2004)
Neurobiol Aging
, vol.25
, pp. 1273-1281
-
-
Smigrodzki, R.1
Parks, J.2
Parker, W.D.3
-
40
-
-
0034776305
-
Mitochondrial DNA rearrangements in young onset parkinsonism: Two case reports
-
[40] Siciliano G, Mancuso M, Ceravolo R, Lombardi V, Iudice A, Bonuccelli U. Mitochondrial DNA rearrangements in young onset parkinsonism: two case reports. J Neurol Neurosurg Psychiatry 2001; 71: 685-7.
-
(2001)
J Neurol Neurosurg Psychiatry
, vol.71
, pp. 685-687
-
-
Siciliano, G.1
Mancuso, M.2
Ceravolo, R.3
Lombardi, V.4
Iudice, A.5
Bonuccelli, U.6
-
41
-
-
33646375711
-
High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
-
[41] Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515-7.
-
(2006)
Nat Genet
, vol.38
, pp. 515-517
-
-
Bender, A.1
Krishnan, K.J.2
Morris, C.M.3
-
42
-
-
33646351299
-
Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
-
[42] Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006; 38: 518-20.
-
(2006)
Nat Genet
, vol.38
, pp. 518-520
-
-
Kraytsberg, Y.1
Kudryavtseva, E.2
McKee, A.C.3
Geula, C.4
Kowall, N.W.5
Khrapko, K.6
-
43
-
-
60049095102
-
Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions
-
[43] Bender A, Schwarzkopf RM, McMillan A, et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 2008; 255: 1231-5.
-
(2008)
J Neurol
, vol.255
, pp. 1231-1235
-
-
Bender, A.1
Schwarzkopf, R.M.2
McMillan, A.3
-
44
-
-
34948862122
-
Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease
-
[44] Luoma PT, Eerola J, Ahola S, et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 2007; 69: 1152-9.
-
(2007)
Neurology
, vol.69
, pp. 1152-1159
-
-
Luoma, P.T.1
Eerola, J.2
Ahola, S.3
-
45
-
-
33646358693
-
Early-onset familial parkinsonism due to POLG mutations
-
[45] Davidzon G, Greene P, Mancuso M, et al. Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 2006; 59: 859-62.
-
(2006)
Ann Neurol
, vol.59
, pp. 859-862
-
-
Davidzon, G.1
Greene, P.2
Mancuso, M.3
-
46
-
-
33751008071
-
POLG1 in idiopathic Parkinson disease
-
[46] Tiangyou W, Hudson G, Ghezzi D, et al. POLG1 in idiopathic Parkinson disease. Neurology 2006; 67: 1698-700.
-
(2006)
Neurology
, vol.67
, pp. 1698-1700
-
-
Tiangyou, W.1
Hudson, G.2
Ghezzi, D.3
-
47
-
-
0033544323
-
Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation
-
[47] Simon DK, Pulst SM, Sutton JP, Browne SE, Beal MF, Johns DR. Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology 1999; 53: 1787-93.
-
(1999)
Neurology
, vol.53
, pp. 1787-1793
-
-
Simon, D.K.1
Pulst, S.M.2
Sutton, J.P.3
Browne, S.E.4
Beal, M.F.5
Johns, D.R.6
-
48
-
-
33846460819
-
Mitochondria mass is low in mouse substantia nigra dopamine neurons: Implications for Parkinson's disease
-
[48] Liang CL, Wang TT, Luby-Phelps K, German DC. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson's disease. Exp Neurol 2007; 203: 370-80.
-
(2007)
Exp Neurol
, vol.203
, pp. 370-380
-
-
Liang, C.L.1
Wang, T.T.2
Luby-Phelps, K.3
German, D.C.4
-
49
-
-
77958479016
-
Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: Functional impact of disease-related variants on mitochondrial homeostasis
-
[49] Burbulla LF, Schelling C, Kato H, et al. Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum Mol Genet 2010; 19: 4437-52.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4437-4452
-
-
Burbulla, L.F.1
Schelling, C.2
Kato, H.3
-
50
-
-
70349238601
-
Mutational screening of the mortalin gene (HSPA9) in Parkinson's disease
-
[50] De Mena L, Coto E, Sanchez-Ferrero E, et al. Mutational screening of the mortalin gene (HSPA9) in Parkinson's disease. J Neural Transm 2009; 116: 1289-93.
-
(2009)
J Neural Transm
, vol.116
, pp. 1289-1293
-
-
De Mena, L.1
Coto, E.2
Sanchez-Ferrero, E.3
-
51
-
-
33846636481
-
Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons
-
[51] Ekstrand MI, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 2007; 104: 1325-30.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 1325-1330
-
-
Ekstrand, M.I.1
Terzioglu, M.2
Galter, D.3
-
52
-
-
37349004102
-
Parkinson's disease
-
[52] Thomas B, Beal MF. Parkinson's disease. Hum Mol Genet 2007;16 Spec No. 2: R183-94.
-
(2007)
Hum Mol Genet
, vol.16
, Issue.2
, pp. 94-183
-
-
Thomas, B.1
Beal, M.F.2
-
53
-
-
0141741347
-
Parkinson's disease: Mechanisms and models
-
[53] Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003; 39: 889-909.
-
(2003)
Neuron
, vol.39
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
54
-
-
33745028132
-
The role of mitochondria in inherited neurodegenerative diseases
-
[54] Kwong JQ, Beal MF, Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 2006; 97(6): 1659-75.
-
(2006)
J Neurochem
, vol.97
, Issue.6
, pp. 1659-1675
-
-
Kwong, J.Q.1
Beal, M.F.2
Manfredi, G.3
-
55
-
-
33750347347
-
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
-
[55] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-95.
-
(2006)
Nature
, vol.443
, pp. 787-795
-
-
Lin, M.T.1
Beal, M.F.2
-
57
-
-
33644543761
-
Expanding insights of mitochondrial dysfunction in Parkinson's disease
-
[57] Abou-Sleiman PM, Muqit, MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 2006; 7: 207-19.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 207-219
-
-
Abou-Sleiman, P.M.1
Muqit, M.M.2
Wood, N.W.3
-
58
-
-
0037428241
-
Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism
-
[58] Bonifati V, Rizzu P, Van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299: 256-9.
-
(2003)
Science
, vol.299
, pp. 256-259
-
-
Bonifati, V.1
Rizzu, P.2
Van Baren, M.J.3
-
59
-
-
77956522541
-
Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics
-
[59] Irrcher I, Aleyasin H, Seifert EL, et al. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 2010; 19: 3734-46.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3734-3746
-
-
Irrcher, I.1
Aleyasin, H.2
Seifert, E.L.3
-
60
-
-
34548021452
-
Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits
-
[60] Lavara-Culebras E, Paricio N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene 2007; 400: 158-65.
-
(2007)
Gene
, vol.400
, pp. 158-165
-
-
Lavara-Culebras, E.1
Paricio, N.2
-
61
-
-
20144389422
-
Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress
-
[61] Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 2005; 102: 5215-20.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 5215-5220
-
-
Kim, R.H.1
Smith, P.D.2
Aleyasin, H.3
-
62
-
-
35748954034
-
Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice
-
[62] Yang W, Chen L, Ding Y, Zhuang X, Kang UJ. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum Mol Genet 2007; 16: 2900-10.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 2900-2910
-
-
Yang, W.1
Chen, L.2
Ding, Y.3
Zhuang, X.4
Kang, U.J.5
-
63
-
-
77649266193
-
DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway
-
[63] Aleyasin H, Rousseaux MW, Marcogliese PC, et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci USA 2010;107: 3186-91.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 3186-3191
-
-
Aleyasin, H.1
Rousseaux, M.W.2
Marcogliese, P.C.3
-
64
-
-
33750052885
-
DJ-1, a cancer-and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2
-
[64] Clements CM, McNally RS, Conti BJ, Mark TW, Ting JP. DJ-1, a cancer-and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA 2006; 103: 15091-6.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 15091-15096
-
-
Clements, C.M.1
McNally, R.S.2
Conti, B.J.3
Mark, T.W.4
Ting, J.P.5
-
65
-
-
77949623516
-
Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1
-
[65] Krebiehl G, Ruckerbauer S, Burbulla LF, et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS One 2010; 5: e9367.
-
(2010)
Plos One
, vol.5
, pp. 9367
-
-
Krebiehl, G.1
Ruckerbauer, S.2
Burbulla, L.F.3
-
66
-
-
37849012348
-
Alpha-Synuclein gene duplication is present in sporadic Parkinson disease
-
[66] Ahn TB, Kim SY, Kim JY, et al. Alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 2008; 70: 43-9.
-
(2008)
Neurology
, vol.70
, pp. 43-49
-
-
Ahn, T.B.1
Kim, S.Y.2
Kim, J.Y.3
-
67
-
-
42249115274
-
Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia
-
[67] Ikeuchi T, Kakita A, Shiga A, et al. Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia. Arch Neurol 2008; 65: 514-9.
-
(2008)
Arch Neurol
, vol.65
, pp. 514-519
-
-
Ikeuchi, T.1
Kakita, A.2
Shiga, A.3
-
68
-
-
46749144187
-
Genomic investigation of alpha-synuclein multiplication and parkinsonism
-
[68] Ross OA, Braithwaite AT, Skipper LM, et al. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 2008; 63: 743-50.
-
(2008)
Ann Neurol
, vol.63
, pp. 743-750
-
-
Ross, O.A.1
Braithwaite, A.T.2
Skipper, L.M.3
-
69
-
-
44649150145
-
Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells
-
[69] Shavali S, Brown-Borg HM, Ebadi M, Porter J. Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 2008; 439: 125-8.
-
(2008)
Neurosci Lett
, vol.439
, pp. 125-128
-
-
Shavali, S.1
Brown-Borg, H.M.2
Ebadi, M.3
Porter, J.4
-
70
-
-
78049383132
-
Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo
-
[70] Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 2010; 486: 235-9.
-
(2010)
Neurosci Lett
, vol.486
, pp. 235-239
-
-
Chinta, S.J.1
Mallajosyula, J.K.2
Rane, A.3
Ersen, J.K.4
-
71
-
-
44049099669
-
Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain
-
[71] Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008; 283: 9089-100.
-
(2008)
J Biol Chem
, vol.283
, pp. 9089-9100
-
-
Devi, L.1
Raghavendran, V.2
Prabhu, B.M.3
Avadhani, N.G.4
Anandatheerthavarada, H.K.5
-
72
-
-
42449095464
-
Mitochondrial association of alpha-synuclein causes oxidative stress
-
[72] Parihar MS, Parihar A, Fujita M, Hashimota M, Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 2008; 65: 1272-84.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 1272-1284
-
-
Parihar, M.S.1
Parihar, A.2
Fujita, M.3
Hashimota, M.4
Ghafourifar, P.5
-
73
-
-
79957974579
-
Direct membrane association drives mitochondrial fission by the Parkinson diseaseassociated protein alpha-synuclein
-
[73] Nakamura K, Nemani VM, Azarbal F, et al. Direct membrane association drives mitochondrial fission by the Parkinson diseaseassociated protein alpha-synuclein. J Biol Chem 2011; 286: 20710-26.
-
(2011)
J Biol Chem
, vol.286
, pp. 20710-20726
-
-
Nakamura, K.1
Nemani, V.M.2
Azarbal, F.3
-
74
-
-
0033890821
-
Alpha-synuclein promotes mitochondrial deficit and oxidative stress
-
[74] Hsu LJ, Sagara Y, Arroyo A, et al. Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 2000; 157: 401-10.
-
(2000)
Am J Pathol
, vol.157
, pp. 401-410
-
-
Hsu, L.J.1
Sagara, Y.2
Arroyo, A.3
-
75
-
-
1542617769
-
Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP
-
[75] Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 2004; 186: 158-72.
-
(2004)
Exp Neurol
, vol.186
, pp. 158-172
-
-
Song, D.D.1
Shults, C.W.2
Sisk, A.3
Rockenstein, E.4
Masliah, E.5
-
76
-
-
79953202481
-
Mutant A53T alphasynuclein induces neuronal death by increasing mitochondrial autophagy
-
[76] Choubey V, Safiulina D, Vaarmann A, et al. Mutant A53T alphasynuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 2011; 286: 10814-24.
-
(2011)
J Biol Chem
, vol.286
, pp. 10814-10824
-
-
Choubey, V.1
Safiulina, D.2
Vaarmann, A.3
-
77
-
-
0037195109
-
Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP
-
[77] Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 2002; 99: 14524-9.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 14524-14529
-
-
Dauer, W.1
Kholodilov, N.2
Vila, M.3
-
78
-
-
33244460534
-
Mice lacking alphasynuclein are resistant to mitochondrial toxins
-
[78] Klivenyi P, Siwek D, Gardian G, et al. Mice lacking alphasynuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006; 21: 541-8.
-
(2006)
Neurobiol Dis
, vol.21
, pp. 541-548
-
-
Klivenyi, P.1
Siwek, D.2
Gardian, G.3
-
79
-
-
34250372427
-
Deciphering the role of heterozygous mutations in genes associated with parkinsonism
-
[79] Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang, AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol 2007; 6: 652-62.
-
(2007)
Lancet Neurol
, vol.6
, pp. 652-662
-
-
Klein, C.1
Lohmann-Hedrich, K.2
Rogaeva, E.3
Schlossmacher, M.G.4
Lang, A.E.5
-
80
-
-
68649108355
-
ThomasB. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis
-
[80] Banerjee R, Starkov AA, Beal MF, ThomasB. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. Biochim Biophys Acta 2009; 1792: 651-63.
-
(2009)
Biochim Biophys Acta
, vol.1792
, pp. 651-663
-
-
Banerjee, R.1
Starkov, A.A.2
Beal, M.F.3
-
81
-
-
83255180034
-
Phase analysis identifies compound heterozygous deletions of the PARK2 gene in patients with early-onset Parkinson disease
-
[81] Kim SY, Seong MW, Jeon BS, et al. Phase analysis identifies compound heterozygous deletions of the PARK2 gene in patients with early-onset Parkinson disease. Clin Genet 2012; 82: 77-82.
-
(2012)
Clin Genet
, vol.82
, pp. 77-82
-
-
Kim, S.Y.1
Seong, M.W.2
Jeon, B.S.3
-
82
-
-
0037108727
-
Functional association of the parkin gene promoter with idiopathic Parkinson's disease
-
[82] West AB, Maraganore D, Crook J, et al. Functional association of the parkin gene promoter with idiopathic Parkinson's disease. Hum Mol Genet 2002; 11: 2787-92.
-
(2002)
Hum Mol Genet
, vol.11
, pp. 2787-2792
-
-
West, A.B.1
Maraganore, D.2
Crook, J.3
-
83
-
-
0034515773
-
Parkin expression in the adult mouse brain
-
[83] Stichel CC, Augustin M, Kuhn K, et al. Parkin expression in the adult mouse brain. Eur J Neurosci 2000; 12: 4181-94.
-
(2000)
Eur J Neurosci
, vol.12
, pp. 4181-4194
-
-
Stichel, C.C.1
Augustin, M.2
Kuhn, K.3
-
84
-
-
60849106352
-
Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alphasynuclein
-
[84] Lu XH, Fleming SM, Meurers B, et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alphasynuclein. J Neurosci 2009; 29: 1962-76.
-
(2009)
J Neurosci
, vol.29
, pp. 1962-1976
-
-
Lu, X.H.1
Fleming, S.M.2
Meurers, B.3
-
85
-
-
2442481789
-
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice
-
[85] Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279: 18614-22.
-
(2004)
J Biol Chem
, vol.279
, pp. 18614-18622
-
-
Palacino, J.J.1
Sagi, D.2
Goldberg, M.S.3
-
86
-
-
33646114508
-
Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline
-
[86] Casarejos MJ, Menendez J, Solano RM, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 2006; 97: 934-46.
-
(2006)
J Neurochem
, vol.97
, pp. 934-946
-
-
Casarejos, M.J.1
Menendez, J.2
Solano, R.M.3
Rodriguez-Navarro, J.A.4
De Garcia Yebenes, J.5
Mena, M.A.6
-
87
-
-
67650243261
-
Parkin-induced mitophagy in the pathogenesis of Parkinson disease
-
[87] Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 2009; 5: 706-8.
-
(2009)
Autophagy
, vol.5
, pp. 706-708
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
88
-
-
4544326057
-
Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations
-
[88] Muftuoglu M, Elibol B, Dalmizrak O, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004;19: 544-8.
-
(2004)
Mov Disord
, vol.19
, pp. 544-548
-
-
Muftuoglu, M.1
Elibol, B.2
Dalmizrak, O.3
-
89
-
-
77952326081
-
Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
[89] Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 2010; 189: 671-9.
-
(2010)
J Cell Biol
, vol.189
, pp. 671-679
-
-
Lee, J.Y.1
Nagano, Y.2
Taylor, J.P.3
Lim, K.L.4
Yao, T.P.5
-
90
-
-
2442668926
-
Hereditary earlyonset Parkinson's disease caused by mutations in PINK1
-
[90] Valente, EM, Abou-Sleiman PM, Caputo V, et al. Hereditary earlyonset Parkinson's disease caused by mutations in PINK1. Science 2004; 304: 1158-60.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
-
91
-
-
73049092587
-
PINK1 mutations and differential effects on mitochondrial function
-
[91] Tan EK. PINK1 mutations and differential effects on mitochondrial function. Exp Neurol 2010; 221: 10-2.
-
(2010)
Exp Neurol
, vol.221
, pp. 10-12
-
-
Tan, E.K.1
-
92
-
-
66749163493
-
Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration
-
[92] Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 2009; 4: e5777.
-
(2009)
Plos One
, vol.4
, pp. 5777
-
-
Gispert, S.1
Ricciardi, F.2
Kurz, A.3
-
93
-
-
33745087689
-
PINK1 protein in normal human brain and Parkinson's disease
-
[93] Gandhi S, Muqit MM, Stanyer L, et al. PINK1 protein in normal human brain and Parkinson's disease. Brain 2006; 129: 1720-31.
-
(2006)
Brain
, vol.129
, pp. 1720-1731
-
-
Gandhi, S.1
Muqit, M.M.2
Stanyer, L.3
-
94
-
-
27944444154
-
Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism
-
[94] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 2005; 14: 3477-92.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 3477-3492
-
-
Silvestri, L.1
Caputo, V.2
Bellacchio, E.3
-
95
-
-
34547127902
-
PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1
-
[95] Pridgeon JW, Olzmann JA, Chin LS. Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007; 5: e172.
-
(2007)
Plos Biol
, vol.5
, pp. 172
-
-
Pridgeon, J.W.1
Olzmann, J.A.2
Chin, L.S.3
Li, L.4
-
96
-
-
84864278260
-
PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease
-
[96] Liu W, Vives-Bauza C, Acin-Perez R, et al. PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease. PLoS One 2009; 4: e4597.
-
(2009)
Plos One
, vol.4
, pp. 4597
-
-
Liu, W.1
Vives-Bauza, C.2
Acin-Perez, R.3
-
97
-
-
33847019962
-
Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease
-
[97] Abahuni N, Gispert S, Bauer P, et al. Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease. Neurosci Lett 2007; 414: 126-9.
-
(2007)
Neurosci Lett
, vol.414
, pp. 126-129
-
-
Abahuni, N.1
Gispert, S.2
Bauer, P.3
-
98
-
-
79954616687
-
PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons
-
[98] Wang HL, Chou AH, Wu AS, et al. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta 2011; 1812: 674-84.
-
(2011)
Biochim Biophys Acta
, vol.1812
, pp. 674-684
-
-
Wang, H.L.1
Chou, A.H.2
Wu, A.S.3
-
99
-
-
35349030746
-
PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c
-
[99] Wang HL, Chou AH, Yeh TH, et al. PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c. Neurobiol Dis 2007; 28: 216-26.
-
(2007)
Neurobiol Dis
, vol.28
, pp. 216-226
-
-
Wang, H.L.1
Chou, A.H.2
Yeh, T.H.3
-
100
-
-
61349156769
-
Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux
-
[100] Marongiu R, Spencer B, Crews L, et al. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. J Neurochem 2009; 108: 1561-74.
-
(2009)
J Neurochem
, vol.108
, pp. 1561-1574
-
-
Marongiu, R.1
Spencer, B.2
Crews, L.3
-
101
-
-
39449098267
-
Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
-
[101] Haque ME, Thomas KJ, D'Souza C, et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA, 2008; 105: 1716-21.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 1716-1721
-
-
Haque, M.E.1
Thomas, K.J.2
D'souza, C.3
-
102
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
[102] Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006; 441: 1162-6.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
-
103
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
[103] Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 2006; 441: 1157-61.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
-
104
-
-
49649097747
-
Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
-
[104] Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress, Proc Natl Acad Sci USA, 2008; 105: 11364-9.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 11364-11369
-
-
Gautier, C.A.1
Kitada, T.2
Shen, J.3
-
105
-
-
25444498785
-
Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease
-
[105] Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet, 2005; 14: 2099-111.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2099-2111
-
-
Strauss, K.M.1
Martins, L.M.2
Plun-Favreau, H.3
-
107
-
-
7644230386
-
Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice
-
[107] Martins LM, Morrison A, Klupsch K, et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol, 2004; 24: 9848-62.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9848-9862
-
-
Martins, L.M.1
Morrison, A.2
Klupsch, K.3
-
108
-
-
77950616071
-
Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1
-
[108] Kieper N, Holmstrom KM, Ciceri D, et al. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res, 2010; 316: 1213-24.
-
(2010)
Exp Cell Res
, vol.316
, pp. 1213-1224
-
-
Kieper, N.1
Holmstrom, K.M.2
Ciceri, D.3
-
109
-
-
55749090654
-
The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila
-
[109] Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA, 2008, 105, 14503-8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14503-14508
-
-
Deng, H.1
Dodson, M.W.2
Huang, H.3
Guo, M.4
-
110
-
-
44349195101
-
Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
-
[110] Yang Y, Ouyang Y, Yang L et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA, 2008; 105: 7070-5.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7070-7075
-
-
Yang, Y.1
Ouyang, Y.2
Yang, L.3
-
111
-
-
28044464937
-
Leucine-rich repeat kinase 2: A new player with a familiar theme for Parkinson's disease pathogenesis
-
[111] Li C, Beal MF. Leucine-rich repeat kinase 2: a new player with a familiar theme for Parkinson's disease pathogenesis. Proc Natl Acad Sci USA, 2005, 102, 16535-6.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 16535-16536
-
-
Li, C.1
Beal, M.F.2
-
112
-
-
67649813448
-
Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease
-
[112] Li Y, Liu W, Oo TF, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci, 2009; 12: 826-8.
-
(2009)
Nat Neurosci
, vol.12
, pp. 826-828
-
-
Li, Y.1
Liu, W.2
Oo, T.F.3
-
113
-
-
40649108102
-
A Drosophila model for LRRK2-linked parkinsonism
-
[113] Liu Z, Wang X, Yu Y, et al. A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA, 2008; 105: 2693-8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 2693-2698
-
-
Liu, Z.1
Wang, X.2
Yu, Y.3
-
114
-
-
78649389313
-
The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease
-
[114] Cookson M R The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci, 2010; 11: 791-7.
-
(2010)
Nat Rev Neurosci
, vol.11
, pp. 791-797
-
-
Cookson, M.R.1
-
115
-
-
78650025189
-
Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2
-
[115] Mortiboys H, Johansen KK, Aasly JO, Bandmann O. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology, 2010; 75: 2017-20.
-
(2010)
Neurology
, vol.75
, pp. 2017-2020
-
-
Mortiboys, H.1
Johansen, K.K.2
Aasly, J.O.3
Bandmann, O.4
-
116
-
-
79952172335
-
LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress
-
[116] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 2011; 8: 267-80.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 267-280
-
-
Nguyen, H.N.1
Byers, B.2
Cord, B.3
-
117
-
-
67651171368
-
LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans
-
[117] Saha S, Guillily MD, Ferree A, et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci, 2009; 29: 9210-8.
-
(2009)
J Neurosci
, vol.29
, pp. 9210-9218
-
-
Saha, S.1
Guillily, M.D.2
Ferree, A.3
-
119
-
-
84861695750
-
Mitochondrial dynamics and neuronal fate in Parkinson's disease
-
[119] Santos D, Cardoso SM. Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion, 2012; 12: 428-437.
-
(2012)
Mitochondrion
, vol.12
, pp. 428-437
-
-
Santos, D.1
Cardoso, S.M.2
-
120
-
-
84875679362
-
Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases
-
[120] Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol Cell Neurosci, 2013; 55:101-14
-
(2013)
Mol Cell Neurosci
, vol.55
, pp. 101-114
-
-
Chaturvedi, R.K.1
Beal, M.F.2
-
121
-
-
84863728713
-
Leucine-Rich Repeat Kinase 2 (LRRK2) Disturbs Mitochondrial Dynamics via Dynamin-Like Protein (DLP1)
-
[121] Niu J, Yu M, Wang C, Xu Z. Leucine-Rich Repeat Kinase 2 (LRRK2) Disturbs Mitochondrial Dynamics via Dynamin-Like Protein (DLP1). J Neurochem, 2012;122:650-8.
-
(2012)
J Neurochem
, vol.122
, pp. 650-658
-
-
Niu, J.1
Yu, M.2
Wang, C.3
Xu, Z.4
-
122
-
-
84863325404
-
Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease
-
[122] Xie W, Chung K K. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease. J Neurochem, 2012;122:404-14.
-
(2012)
J Neurochem
, vol.122
, pp. 404-414
-
-
Xie, W.1
Chung, K.K.2
-
123
-
-
84859259002
-
LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1
-
[123] Wang X, Yan MH, Fujioka H, et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 2012; 21: 1931-44.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1931-1944
-
-
Wang, X.1
Yan, M.H.2
Fujioka, H.3
-
124
-
-
84860539187
-
Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction
-
[124] Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X. Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem, 2012; 121: 830-839.
-
(2012)
J Neurochem
, vol.121
, pp. 830-839
-
-
Wang, X.1
Petrie, T.G.2
Liu, Y.3
Liu, J.4
Fujioka, H.5
Zhu, X.6
-
125
-
-
84859237566
-
Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
-
[125] Liu S, Sawada T, Lee S, et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet, 2012; 8, e1002537.
-
(2012)
Plos Genet
, vol.8
-
-
Liu, S.1
Sawada, T.2
Lee, S.3
-
126
-
-
84860539187
-
Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction
-
[126] Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X. Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem, 2012; 121: 830-9.
-
(2012)
J Neurochem
, vol.121
, pp. 830-839
-
-
Wang, X.1
Petrie, T.G.2
Liu, Y.3
Liu, J.4
Fujioka, H.5
Zhu, X.6
-
127
-
-
79960826207
-
The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons
-
[127] Yu W, Sun Y, Guo S, Lu B. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet, 2011; 20: 3227-40.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 3227-3240
-
-
Yu, W.1
Sun, Y.2
Guo, S.3
Lu, B.4
-
128
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
[128] Narendra, D. P.; Jin, S. M.; Tanaka, A.; Suen, D. F.; Gautier, C. A.; Shen, J.; Cookson, M. R.; Youle, R. J. "PINK1 is selectively stabilized on impaired mitochondria to activate Parkin." PLoS Biol, 2010, 8, e1000298.
-
(2010)
Plos Biol
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
129
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
[129] Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA, 2010; 107: 5018-23.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
130
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
[130] Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet, 2010; 19: 4861-70.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
131
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
[131] Geisler S, Holmstrom KM, Skujat D et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010; 12: 119-31.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
-
132
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
[132] Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 2010; 6: 1090-106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
133
-
-
84870013071
-
Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy
-
[133] Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem, 2012; 287: 40652-60.
-
(2012)
J Biol Chem
, vol.287
, pp. 40652-40660
-
-
Sun, Y.1
Vashisht, A.A.2
Tchieu, J.3
Wohlschlegel, J.A.4
Dreier, L.5
-
134
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
[134] Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 2011; 147: 893-906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
-
135
-
-
84858794256
-
Trouble in the cell's powerhouse
-
[135] Narendra DP, Youle RJ. Neurodegeneration: Trouble in the cell's powerhouse. Nature, 2012; 483: 418-9.
-
(2012)
Nature
, vol.483
, pp. 418-419
-
-
Narendra, D.P.1
Neurodegeneration, Y.R.2
-
136
-
-
79954577302
-
Targeting mitochondrial dysfunction: Role for PINK1 and Parkin in mitochondrial quality control
-
[136] Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal, 2011; 14: 1929-38.
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 1929-1938
-
-
Narendra, D.P.1
Youle, R.J.2
-
137
-
-
57649171115
-
Beal MF. Mitochondrial approaches for neuroprotection
-
[137] Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection." Ann N Y Acad Sci, 2008; 1147: 395-412.
-
(2008)
Ann N Y Acad Sci
, vol.1147
, pp. 395-412
-
-
Chaturvedi, R.K.1
-
138
-
-
0032914740
-
Creatine and cyclocreatine attenuate MPTP neurotoxicity
-
[138] Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol, 1999; 157: 142-9.
-
(1999)
Exp Neurol
, vol.157
, pp. 142-149
-
-
Matthews, R.T.1
Ferrante, R.J.2
Klivenyi, P.3
-
139
-
-
4344680646
-
Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease
-
[139] Klivenyi P, Gardian G, Calingasan NY, Yang L, Beal MF. Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Mol Neurosci, 2003; 21: 191-8.
-
(2003)
J Mol Neurosci
, vol.21
, pp. 191-198
-
-
Klivenyi, P.1
Gardian, G.2
Calingasan, N.Y.3
Yang, L.4
Beal, M.F.5
-
140
-
-
65549091910
-
Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases
-
[140] Yang L, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem, 2009; 109: 1427-39.
-
(2009)
J Neurochem
, vol.109
, pp. 1427-1439
-
-
Yang, L.1
Calingasan, N.Y.2
Wille, E.J.3
-
141
-
-
33847000236
-
Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders
-
[141] Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve, 2007; 35: 235-42.
-
(2007)
Muscle Nerve
, vol.35
, pp. 235-242
-
-
Rodriguez, M.C.1
Macdonald, J.R.2
Mahoney, D.J.3
Parise, G.4
Beal, M.F.5
Tarnopolsky, M.A.6
-
142
-
-
33749835508
-
Creatine supplementation in Parkinson disease: A placebo-controlled randomized pilot trial
-
[142] Bender A, Koch W, Elstner M, et al. Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology, 2006; 67: 1262-4.
-
(2006)
Neurology
, vol.67
, pp. 1262-1264
-
-
Bender, A.1
Koch, W.2
Elstner, M.3
-
143
-
-
41349108666
-
Long-term creatine supplementation is safe in aged patients with Parkinson disease
-
[143] Bender, A, Samtleben W, Elstner M, Klopstock T. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res, 2008; 28: 172-8.
-
(2008)
Nutr Res
, vol.28
, pp. 172-178
-
-
Bender, A.1
Samtleben, W.2
Elstner, M.3
Klopstock, T.4
-
144
-
-
33846948238
-
Juncos JL. Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: A randomized trial
-
[144] Hass CJ, Collins MA, Juncos JL. Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: a randomized trial." Neurorehabil Neural Repair, 2007; 21: 107-15.
-
(2007)
Neurorehabil Neural Repair
, vol.21
, pp. 107-115
-
-
Hass, C.J.1
Collins, M.A.2
-
145
-
-
33645894705
-
A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease
-
NINDS NET-PD
-
[145] NINDS NET-PD, A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology, 2006; 66: 664-7.
-
(2006)
Neurology
, vol.66
, pp. 664-667
-
-
-
146
-
-
44649153832
-
A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results
-
[146] Investigators NP. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol, 2008; 31: 141-50.
-
(2008)
Clin Neuropharmacol
, vol.31
, pp. 141-150
-
-
Investigators, N.P.1
-
147
-
-
34147177574
-
Clinical research. Testing a novel strategy against Parkinson's disease
-
[147] Couzin J. Clinical research. Testing a novel strategy against Parkinson's disease. Science, 2007; 315: 1778.
-
(2007)
Science
, vol.315
, pp. 1778
-
-
Couzin, J.1
-
148
-
-
80052809265
-
Neuroprotective effects of creatine
-
[148] Beal MF. Neuroprotective effects of creatine. Amino Acids, 2011; 40: 1305-13.
-
(2011)
Amino Acids
, vol.40
, pp. 1305-1313
-
-
Beal, M.F.1
-
149
-
-
0037379314
-
Bioenergetic approaches for neuroprotection in Parkinson's disease
-
[149] Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol, 2003; 53 Suppl 3, S39-47.
-
(2003)
Ann Neurol
, vol.53
, Issue.3
, pp. 39-47
-
-
Beal, M.F.1
-
150
-
-
0028978106
-
Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity
-
[150] Schulz, JB, Henshaw DR, Matthews RT, Beal MF. Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Exp Neurol, 1995; 132: 279-83.
-
(1995)
Exp Neurol
, vol.132
, pp. 279-283
-
-
Schulz, J.B.1
Henshaw, D.R.2
Matthews, R.T.3
Beal, M.F.4
-
151
-
-
0031594295
-
Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice
-
[151] Beal MF, Matthews RT, Tieleman A, Shults CW. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res, 1998; 783: 109-14.
-
(1998)
Brain Res
, vol.783
, pp. 109-114
-
-
Beal, M.F.1
Matthews, R.T.2
Tieleman, A.3
Shults, C.W.4
-
152
-
-
39849084236
-
Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism
-
[152] Cleren C, Yang L, Lorenzo B, et al. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem, 2008; 104: 1613-21.
-
(2008)
J Neurochem
, vol.104
, pp. 1613-1621
-
-
Cleren, C.1
Yang, L.2
Lorenzo, B.3
-
153
-
-
68949203496
-
Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10
-
[153] Somayajulu-Nitu M, Sandhu J K, Cohen J, et al. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci, 2009; 10: 88.
-
(2009)
BMC Neurosci
, vol.10
, pp. 88
-
-
Somayajulu-Nitu, M.1
Sandhu, J.K.2
Cohen, J.3
-
154
-
-
84858257130
-
A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells
-
[154] Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R. A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells. PLoS One, 2012; 7: e33712.
-
(2012)
Plos One
, vol.7
-
-
Bergamini, C.1
Moruzzi, N.2
Sblendido, A.3
Lenaz, G.4
Fato, R.5
-
155
-
-
33745851187
-
Water-soluble formulation of Coenzyme Q10 inhibits Bax-induced destabilization of mitochondria in mammalian cells
-
[155] Naderi J, Somayajulu-Nitu M, Mukerji A. et al. Water-soluble formulation of Coenzyme Q10 inhibits Bax-induced destabilization of mitochondria in mammalian cells. Apoptosis, 2006; 11: 1359-69.
-
(2006)
Apoptosis
, vol.11
, pp. 1359-1369
-
-
Naderi, J.1
Somayajulu-Nitu, M.2
Mukerji, A.3
-
157
-
-
0345451597
-
Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients
-
[157] Shults CW, Beal MF, Fontaine D, Nakano K, Haas RH. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology, 1998; 50:793-5.
-
(1998)
Neurology
, vol.50
, pp. 793-795
-
-
Shults, C.W.1
Beal, M.F.2
Fontaine, D.3
Nakano, K.4
Haas, R.H.5
-
158
-
-
0036771852
-
Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline
-
[158] Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol, 2002; 59: 1541-50.
-
(2002)
Arch Neurol
, vol.59
, pp. 1541-1550
-
-
Shults, C.W.1
Oakes, D.2
Kieburtz, K.3
-
159
-
-
0037426566
-
Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson's disease
-
[159] Muller T, Buttner T, Gholipour AF, Kuhn W. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson's disease. Neurosci Lett, 2003; 341: 201-4.
-
(2003)
Neurosci Lett
, vol.341
, pp. 201-204
-
-
Muller, T.1
Buttner, T.2
Gholipour, A.F.3
Kuhn, W.4
-
160
-
-
0041783516
-
The effect of coenzyme Q10 therapy in Parkinson disease could be symptomatic
-
[160] Horstink MW, van Engelen BG. The effect of coenzyme Q10 therapy in Parkinson disease could be symptomatic. Arch Neurol, 2003; 60: 1170-2.
-
(2003)
Arch Neurol
, vol.60
, pp. 1170-1172
-
-
Horstink, M.W.1
Van Engelen, B.G.2
-
162
-
-
34447252358
-
Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease
-
[162] Storch A, Jost WH, Vieregge P, et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol, 2007; 64: 938-44.
-
(2007)
Arch Neurol
, vol.64
, pp. 938-944
-
-
Storch, A.1
Jost, W.H.2
Vieregge, P.3
-
163
-
-
3042717908
-
Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease
-
[163] Shults CW, Beal MF, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp Neurol, 2004; 188: 491-4.
-
(2004)
Exp Neurol
, vol.188
, pp. 491-494
-
-
Shults, C.W.1
Beal, M.F.2
Song, D.3
Fontaine, D.4
-
164
-
-
33846115045
-
A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease
-
NINDS-NETPD
-
[164] NINDS-NETPD. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology, 2007; 68: 20-8.
-
(2007)
Neurology
, vol.68
, pp. 20-28
-
-
-
165
-
-
38349057828
-
Mitochondria-Directed Therapeutics
-
[165] Armstrong JS. Mitochondria-Directed Therapeutics. Antioxid Redox Signal, 2008; 10:575-8.
-
(2008)
Antioxid Redox Signal
, vol.10
, pp. 575-578
-
-
Armstrong, J.S.1
-
166
-
-
77956207531
-
Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons
-
[166] Manczak M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons. J Alzheimers Dis, 2010; 20: S609-31.
-
(2010)
J Alzheimers Dis
, vol.20
, pp. 31-609
-
-
Manczak, M.1
Mao, P.2
Calkins, M.J.3
-
167
-
-
21744450416
-
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
-
[167] Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Faseb J, 2005; 19: 1088-95.
-
(2005)
Faseb J
, vol.19
, pp. 1088-1095
-
-
Adlam, V.J.1
Harrison, J.C.2
Porteous, C.M.3
-
168
-
-
84868574626
-
The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease
-
[168] Solesio ME, Prime TA, Logan A, et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease. Biochim Biophys Acta, 2013; 1832: 174-82.
-
(2013)
Biochim Biophys Acta
, vol.1832
, pp. 174-182
-
-
Solesio, M.E.1
Prime, T.A.2
Logan, A.3
-
169
-
-
78049357951
-
Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model
-
[169] Ghosh A, Chandran K, Kalivendi SV, et al. Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model. Free Radic Biol Med, 2010; 49: 1674-84.
-
(2010)
Free Radic Biol Med
, vol.49
, pp. 1674-1684
-
-
Ghosh, A.1
Chandran, K.2
Kalivendi, S.V.3
-
170
-
-
77955792985
-
A double-blind, placebocontrolled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease
-
[170] Snow BJ, Rolfe FL, Lockhart MM, et al. A double-blind, placebocontrolled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord, 2010; 25: 1670-4.
-
(2010)
Mov Disord
, vol.25
, pp. 1670-1674
-
-
Snow, B.J.1
Rolfe, F.L.2
Lockhart, M.M.3
-
171
-
-
38349010993
-
Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury
-
[171] Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal, 2008; 10: 601-19.
-
(2008)
Antioxid Redox Signal
, vol.10
, pp. 601-619
-
-
Szeto, H.H.1
-
172
-
-
4544370680
-
Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury
-
[172] Zhao K, Zhao GM, Wu, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem, 2004; 279: 34682-90.
-
(2004)
J Biol Chem
, vol.279
, pp. 34682-34690
-
-
Zhao, K.1
Zhao, Wu, G.M.2
-
173
-
-
33746397617
-
Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis
-
[173] Petri S, Kiaei M, Damiano M, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem, 2006; 98: 1141-8.
-
(2006)
J Neurochem
, vol.98
, pp. 1141-1148
-
-
Petri, S.1
Kiaei, M.2
Damiano, M.3
-
174
-
-
33750462349
-
PGC-1alpha, a new therapeutic target in Huntington's disease?
-
[174] McGill JK, Beal MF. PGC-1alpha, a new therapeutic target in Huntington's disease? Cell, 2006; 127: 465-8.
-
(2006)
Cell
, vol.127
, pp. 465-468
-
-
McGill, J.K.1
Beal, M.F.2
-
175
-
-
5444264003
-
Biological control through regulated transcriptional coactivators
-
[175] Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell, 2004; 119: 157-67.
-
(2004)
Cell
, vol.119
, pp. 157-167
-
-
Spiegelman, B.M.1
Heinrich, R.2
-
176
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
[176] Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 2002; 418: 797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
-
177
-
-
33646124709
-
Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation
-
[177] Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab, 2006; 3: 333-41.
-
(2006)
Cell Metab
, vol.3
, pp. 333-341
-
-
Uldry, M.1
Yang, W.2
St-Pierre, J.3
Lin, J.4
Seale, P.5
Spiegelman, B.M.6
-
178
-
-
33845596500
-
Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
-
[178] Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev, 2006; 27: 728-35.
-
(2006)
Endocr Rev
, vol.27
, pp. 728-735
-
-
Handschin, C.1
Spiegelman, B.M.2
-
179
-
-
38449092832
-
Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators
-
[179] Spiegelman B M. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 2007; 287: 60-3.
-
(2007)
Novartis Found Symp
, vol.287
, pp. 60-63
-
-
Spiegelman, B.M.1
-
180
-
-
33749042331
-
Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
[180] Cu L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006; 127: 59-69.
-
(2006)
Cell
, vol.127
, pp. 59-69
-
-
Cu, L.1
Jeong, H.2
Borovecki, F.3
Parkhurst, C.N.4
Tanese, N.5
Krainc, D.6
-
181
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration
-
[181] Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab, 2006; 4: 349-62.
-
(2006)
Cell Metab
, vol.4
, pp. 349-362
-
-
Weydt, P.1
Pineda, V.V.2
Torrence, A.E.3
-
182
-
-
67650061723
-
Impaired PGC-1alpha function in muscle in Huntington's disease
-
[182] Chaturvedi RK, Adhihett P, Shukla S, et al. Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet, 2009; 18: 3048-65.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 3048-3065
-
-
Chaturvedi, R.K.1
Adhihett, P.2
Shukla, S.3
-
183
-
-
77955017449
-
Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation
-
[183] Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet, 2010; 19: 3190-205.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3190-3205
-
-
Chaturvedi, R.K.1
Calingasan, N.Y.2
Yang, L.3
Hennessey, T.4
Johri, A.5
Beal, M.F.6
-
184
-
-
85027951142
-
Truncated peroxisome proliferator-activated receptor-gamma coactivator 1alpha splice variant is severely altered in Huntington's disease
-
[184] Johri A, Starkov AA, Chandra, et al. Truncated peroxisome proliferator-activated receptor-gamma coactivator 1alpha splice variant is severely altered in Huntington's disease. Neurodegener Dis, 2011; 8: 496-503.
-
(2011)
Neurodegener Dis
, vol.8
, pp. 496-503
-
-
Johri, A.1
Starkov, Chandra, A.A.2
-
185
-
-
21144446106
-
PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
[185] Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol, 2005; 3: e101.
-
(2005)
Plos Biol
, vol.3
, pp. 101
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
-
186
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
[186] Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 2004; 119: 121-35.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
187
-
-
77958072667
-
PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease
-
Zheng B, Liao Z, Locascio JJ, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med, 2010; 2: 52-73.
-
(2010)
Sci Transl Med
, vol.2
, pp. 52-73
-
-
Zheng, B.1
Liao, Z.2
Locascio, J.J.3
-
188
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
[188] St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006; 127: 397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
-
189
-
-
84859159081
-
Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease
-
[189] Mudo G, Makela J, Di Liberto V, et al. Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci, 2012; 69: 1153-65.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 1153-1165
-
-
Mudo, G.1
Makela, J.2
Di Liberto, V.3
-
190
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
[190] Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell, 2011; 144: 689-702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
-
191
-
-
84859242538
-
Sustained expression of PGC-1alpha in the rat nigrostriatal system selectively impairs dopaminergic function
-
[191] Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider BL. Sustained expression of PGC-1alpha in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet, 2012; 21: 1861-76.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1861-1876
-
-
Ciron, C.1
Lengacher, S.2
Dusonchet, J.3
Aebischer, P.4
Schneider, B.L.5
-
192
-
-
79955994007
-
Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease
-
[192] Clark J, Reddy S, Zheng K, Betensky RA, Simon DK. Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC Med Genet, 2011; 12: 69.
-
(2011)
BMC Med Genet
, vol.12
, pp. 69
-
-
Clark, J.1
Reddy, S.2
Zheng, K.3
Betensky, R.A.4
Simon, D.K.5
-
193
-
-
84865187620
-
Mitochondrial dysfunction in neurodegenerative diseases
-
[193] Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther, 2012; 342: 619-30.
-
(2012)
J Pharmacol Exp Ther
, vol.342
, pp. 619-630
-
-
Johri, A.1
Beal, M.F.2
-
194
-
-
58849090439
-
Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease
-
[194] Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal, 2009; 11: 509-28.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 509-528
-
-
Clark, J.1
Simon, D.K.2
-
195
-
-
84864506840
-
Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease
-
[195] Chaturvedi RK, Hennessey T, Johri A, et al. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease. Hum Mol Genet, 2012; 21: 3474-88.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 3474-3488
-
-
Chaturvedi, R.K.1
Hennessey, T.2
Johri, A.3
-
196
-
-
0033305213
-
Peroxisome proliferator-activated receptors: Nuclear control of metabolism
-
[196] Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 1999; 20: 649-88.
-
(1999)
Endocr Rev
, vol.20
, pp. 649-688
-
-
Desvergne, B.1
Wahli, W.2
-
197
-
-
0035053973
-
Cyclopentenone prostaglandins: New insights on biological activities and cellular targets
-
[197] Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev, 2001; 21: 185-210.
-
(2001)
Med Res Rev
, vol.21
, pp. 185-210
-
-
Straus, D.S.1
Glass, C.K.2
-
198
-
-
0036183630
-
The mechanisms of action of PPARs
-
[198] Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med, 2002; 53: 409-35.
-
(2002)
Annu Rev Med
, vol.53
, pp. 409-435
-
-
Berger, J.1
Moller, D.E.2
-
199
-
-
8444233254
-
Nuclear receptors in macrophage biology: At the crossroads of lipid metabolism and inflammation
-
[199] Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol, 2004; 20: 455-80.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 455-480
-
-
Castrillo, A.1
Tontonoz, P.2
-
200
-
-
0032505096
-
Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor-gamma
-
[200] Nolte RT, Wisely GB, Westin S, et al. Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor-gamma. Nature, 1998; 395: 137-43.
-
(1998)
Nature
, vol.395
, pp. 137-143
-
-
Nolte, R.T.1
Wisely, G.B.2
Westin, S.3
-
201
-
-
51649110738
-
PPAR: A therapeutic target in Parkinson's disease
-
[201] Chaturvedi RK, Beal MF. PPAR: a therapeutic target in Parkinson's disease. J Neurochem, 2008; 106: 506-18.
-
(2008)
J Neurochem
, vol.106
, pp. 506-518
-
-
Chaturvedi, R.K.1
Beal, M.F.2
-
202
-
-
84868706935
-
Pgc-1alpha overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf
-
[202] Clark J, Silvaggi JM, Kiselak T, et al. Pgc-1alpha overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One, 2012; 7: e48925.
-
(2012)
Plos One
, vol.7
-
-
Clark, J.1
Silvaggi, J.M.2
Kiselak, T.3
-
203
-
-
84862300236
-
Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease
-
[203] Zhang A, Wang H, Qin X, Pang S, Yan B. Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease." Biochem Biophys Res Commun, 2012; 422: 693-6.
-
(2012)
Biochem Biophys Res Commun
, vol.422
, pp. 693-696
-
-
Zhang, A.1
Wang, H.2
Qin, X.3
Pang, S.4
Yan, B.5
-
204
-
-
84855929223
-
SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
-
[204] Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci, 2012; 32: 124-32.
-
(2012)
J Neurosci
, vol.32
, pp. 124-132
-
-
Donmez, G.1
Arun, A.2
Chung, C.Y.3
McLean, P.J.4
Lindquist, S.5
Guarente, L.6
-
205
-
-
84878014110
-
Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins
-
[205] Wu PF, Xie N, Zhang JJ, et al. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins. J Nutr Biochem, 2013; 24: 1070-7.
-
(2013)
J Nutr Biochem
, vol.24
, pp. 1070-1077
-
-
Wu, P.F.1
Xie, N.2
Zhang, J.J.3
-
206
-
-
80052359850
-
Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
-
[206] Wu Y, Li X, Zhu JX, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals, 2011; 19: 163-74.
-
(2011)
Neurosignals
, vol.19
, pp. 163-174
-
-
Wu, Y.1
Li, X.2
Zhu, J.X.3
-
207
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
[207] Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006; 127: 1109-22.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
-
208
-
-
84862760344
-
Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1alpha signaling pathway
-
[208] Ye Q, Ye L, Xu X, et al. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1alpha signaling pathway. BMC Complement Altern Med, 2012; 12: 82.
-
(2012)
BMC Complement Altern Med
, vol.12
, pp. 82
-
-
Ye, Q.1
Ye, L.2
Xu, X.3
-
209
-
-
84867269951
-
AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease
-
[209] Ng CH, Guan MS, Koh C, et al AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J Neurosci, 2012; 32: 14311-7.
-
(2012)
J Neurosci
, vol.32
, pp. 14311-14317
-
-
Ng, C.H.1
Guan, M.S.2
Koh, C.3
-
210
-
-
72949122084
-
AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
[210] Choi JS, Park C, Jeong JW. AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun, 2010; 391: 147-51.
-
(2010)
Biochem Biophys Res Commun
, vol.391
, pp. 147-151
-
-
Choi, J.S.1
Park, C.2
Jeong, J.W.3
-
211
-
-
21144431523
-
The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling
-
[211] Liby K, Hock T, Yore, et al. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res, 2005; 65: 4789-98.
-
(2005)
Cancer Res
, vol.65
, pp. 4789-4798
-
-
Liby, K.1
Hock, Yore, T.2
-
212
-
-
33846786713
-
Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes
-
[212] Yates MS, Tauchi M, Katsuoka F, et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther, 2007; 6: 154-62.
-
(2007)
Mol Cancer Ther
, vol.6
, pp. 154-162
-
-
Yates, M.S.1
Tauchi, M.2
Katsuoka, F.3
-
213
-
-
0141621061
-
NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons
-
[213] Lee JM, Shih AY, Murphy TH, Johnson JA. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem, 2003; 278: 37948-56.
-
(2003)
J Biol Chem
, vol.278
, pp. 37948-37956
-
-
Lee, J.M.1
Shih, A.Y.2
Murphy, T.H.3
Johnson, J.A.4
-
214
-
-
68949213947
-
Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity
-
[214] Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal, 2009; 11: 2095-104.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 2095-2104
-
-
Yang, L.1
Zhao, K.2
Calingasan, N.Y.3
Luo, G.4
Szeto, H.H.5
Beal, M.F.6
-
215
-
-
84870493304
-
Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease
-
[215] Kaidery NA, Banerjee R, Yang L, et al. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease. Antioxid Redox Signal, 2013; 18: 139-57.
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 139-157
-
-
Kaidery, N.A.1
Banerjee, R.2
Yang, L.3
-
216
-
-
66749132810
-
Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription
-
[216] Yan L, Calingasan NY, Thomas B, et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One, 2009; 4: e5757.
-
(2009)
Plos One
, vol.4
, pp. 5757
-
-
Yan, L.1
Calingasan, N.Y.2
Thomas, B.3
-
217
-
-
84868089556
-
Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson's disease
-
[217] Castro-Caldas M, Carvalho AN, Rodrigues E, et al. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson's disease. J. Mol Neurobiol, 2012; 46: 475-86.
-
(2012)
J. Mol Neurobiol
, vol.46
, pp. 475-486
-
-
Castro-Caldas, M.1
Carvalho, A.N.2
Rodrigues, E.3
-
218
-
-
84555195332
-
Standardized extracts of Bacopa monniera protect against MPP+-and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways
-
[218] Singh M, Murthy V, Ramassamy C. Standardized extracts of Bacopa monniera protect against MPP+-and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways. Toxicol Sci, 2012; 125: 219-32.
-
(2012)
Toxicol Sci
, vol.125
, pp. 219-232
-
-
Singh, M.1
Murthy, V.2
Ramassamy, C.3
-
219
-
-
80053943300
-
Acetyl-L-carnitine and alpha-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy
-
[219] Zaitone SA, Abo-Elmatty DM, Shaalan AA. Acetyl-L-carnitine and alpha-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy. Pharmacol Biochem Behav, 2012; 100: 347-60.
-
(2012)
Pharmacol Biochem Behav
, vol.100
, pp. 347-360
-
-
Zaitone, S.A.1
Abo-Elmatty, D.M.2
Shaalan, A.A.3
-
220
-
-
81055140360
-
Intervention of mitochondrial dysfunctionoxidative stress-dependent apoptosis as a possible neuroprotective mechanism of alpha-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity
-
[220] Abdin AA, Sarhan NI. Intervention of mitochondrial dysfunctionoxidative stress-dependent apoptosis as a possible neuroprotective mechanism of alpha-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity. Neurosci Res, 2011; 71: 387-95.
-
(2011)
Neurosci Res
, vol.71
, pp. 387-395
-
-
Abdin, A.A.1
Sarhan, N.I.2
-
221
-
-
79961207215
-
The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1-and DJ-1-deficiency in dopaminergic neuronal cells
-
[221] Shim JH, Yoon SH, Kim KH, et al. The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1-and DJ-1-deficiency in dopaminergic neuronal cells. Mitochondrion, 2011; 11: 707-15.
-
(2011)
Mitochondrion
, vol.11
, pp. 707-715
-
-
Shim, J.H.1
Yoon, S.H.2
Kim, K.H.3
-
222
-
-
84874663567
-
Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease through suppressing mitochondria dysfunction
-
[222] Pan J, Li H, Ma JF, et al. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease through suppressing mitochondria dysfunction. Transl Neurodegener, 2012; 1: 16.
-
(2012)
Transl Neurodegener
, vol.1
, pp. 16
-
-
Pan, J.1
Li, H.2
Ma, J.F.3
|