-
1
-
-
80055082804
-
Parkinson's disease and α-synuclein expression
-
Devine M.J., Gwinn K., Singleton A., Hardy J. Parkinson's disease and α-synuclein expression. Mov. Disord. 2011, 26:2160-2168.
-
(2011)
Mov. Disord.
, vol.26
, pp. 2160-2168
-
-
Devine, M.J.1
Gwinn, K.2
Singleton, A.3
Hardy, J.4
-
2
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti S., Lesage A., Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 2011, 91:1161-1218.
-
(2011)
Physiol. Rev.
, vol.91
, pp. 1161-1218
-
-
Corti, S.1
Lesage, A.2
Brice, A.3
-
3
-
-
79960361814
-
Recent advances in the genetics of Parkinson's disease
-
Martin V.L., Dawson T.M. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 2011, 12:301-325.
-
(2011)
Annu. Rev. Genomics Hum. Genet.
, vol.12
, pp. 301-325
-
-
Martin, V.L.1
Dawson, T.M.2
-
5
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
6
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T., Deng C.X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
9
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
-
Araki T., Sasaki Y., Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-1013.
-
(2004)
Science
, vol.305
, pp. 1010-1013
-
-
Araki, T.1
Sasaki, Y.2
Milbrandt, J.3
-
10
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
Donmez G., Wang D., Cohen D.E., Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010, 142:320-332.
-
(2010)
Cell
, vol.142
, pp. 320-332
-
-
Donmez, G.1
Wang, D.2
Cohen, D.E.3
Guarente, L.4
-
11
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
-
Kim D., Nguyen M.D., Dobbin M.M., et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 2007, 26:3169-3179.
-
(2007)
EMBO J.
, vol.26
, pp. 3169-3179
-
-
Kim, D.1
Nguyen, M.D.2
Dobbin, M.M.3
-
12
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H., Cohen D.E., Cui L., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2011, 18:159-165.
-
(2011)
Nat. Med.
, vol.18
, pp. 159-165
-
-
Jeong, H.1
Cohen, D.E.2
Cui, L.3
-
13
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
-
Jiang M., Wang J., Fu J., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2011, 18:153-158.
-
(2011)
Nat. Med.
, vol.18
, pp. 153-158
-
-
Jiang, M.1
Wang, J.2
Fu, J.3
-
14
-
-
68949206606
-
The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide
-
Albani D., Polito L., Batelli S., et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 2009, 110:1445-1456.
-
(2009)
J. Neurochem.
, vol.110
, pp. 1445-1456
-
-
Albani, D.1
Polito, L.2
Batelli, S.3
-
15
-
-
84855929223
-
SIRT1 protects against α-synuclein aggregation by activating molecular chaperones
-
Donmez G., Arun A., Chung C.Y., McLean P.J., Lindquist S., Guarente L. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J. Neurosci. 2012, 32:124-132.
-
(2012)
J. Neurosci.
, vol.32
, pp. 124-132
-
-
Donmez, G.1
Arun, A.2
Chung, C.Y.3
McLean, P.J.4
Lindquist, S.5
Guarente, L.6
-
16
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng H.L., Mostoslavsky R., Saito S., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 2003, 100:10794-10799.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
-
17
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., Yang X., Jardine K., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
-
18
-
-
84655167647
-
Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity
-
Clark S.J., Falchi M., Olsson B., et al. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity (Silver Spring) 2012, 20:178-185.
-
(2012)
Obesity (Silver Spring)
, vol.20
, pp. 178-185
-
-
Clark, S.J.1
Falchi, M.2
Olsson, B.3
-
19
-
-
82255191744
-
SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians
-
Dong Y., Guo T., Traurig M., et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol. Genet. Metab. 2011, 104:661-665.
-
(2011)
Mol. Genet. Metab.
, vol.104
, pp. 661-665
-
-
Dong, Y.1
Guo, T.2
Traurig, M.3
-
20
-
-
73249152036
-
SIRT1 genetic variation is related to BMI and risk of obesity
-
Zillikens M.C., van Meurs J.B., Rivadeneira F., et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 2009, 58:2828-2834.
-
(2009)
Diabetes
, vol.58
, pp. 2828-2834
-
-
Zillikens, M.C.1
van Meurs, J.B.2
Rivadeneira, F.3
-
21
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
22
-
-
79953761260
-
PARP-2 regulates SIRT1 expression and whole-body energy expenditure
-
Bai P., Canto C., Brunyánszki A., et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell. Metab. 2011, 13:450-460.
-
(2011)
Cell. Metab.
, vol.13
, pp. 450-460
-
-
Bai, P.1
Canto, C.2
Brunyánszki, A.3
-
23
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen W.Y., Wang D.H., Yen R.C., Luo J., Gu W., Baylin S.B. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
-
(2005)
Cell
, vol.123
, pp. 437-448
-
-
Chen, W.Y.1
Wang, D.H.2
Yen, R.C.3
Luo, J.4
Gu, W.5
Baylin, S.B.6
-
24
-
-
78649852533
-
SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence
-
Han L., Zhou R., Niu J., McNutt M.A., Wang P., Tong T. SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 2010, 38:7458-7471.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7458-7471
-
-
Han, L.1
Zhou, R.2
Niu, J.3
McNutt, M.A.4
Wang, P.5
Tong, T.6
-
25
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
-
Nemoto S., Fergusson M.M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
26
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega L.G., Feige J.N., Canto C., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
Feige, J.N.2
Canto, C.3
-
27
-
-
45849121349
-
Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
-
Pallàs M., Pizarro J.G., Gutierrez-Cuesta J., et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008, 154:1388-1397.
-
(2008)
Neuroscience
, vol.154
, pp. 1388-1397
-
-
Pallàs, M.1
Pizarro, J.G.2
Gutierrez-Cuesta, J.3
-
28
-
-
11244309014
-
Proteolysis: from the lysosome to ubiquitin and the proteasome
-
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell. Biol. 2005, 6:79-87.
-
(2005)
Nat. Rev. Mol. Cell. Biol.
, vol.6
, pp. 79-87
-
-
Ciechanover, A.1
-
29
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar S., Sarkar J.E., Davies, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 2010, 90:1383-1435.
-
(2010)
Physiol. Rev.
, vol.90
, pp. 1383-1435
-
-
Ravikumar, S.1
Sarkar, J.E.D.2
-
30
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
31
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature 2011, 469:323-335.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
32
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
33
-
-
78149471570
-
Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications
-
Banerjee R., Beal M.F., Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci. 2010, 33:541-549.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 541-549
-
-
Banerjee, R.1
Beal, M.F.2
Thomas, B.3
-
34
-
-
77954116814
-
Autophagy gone awry in neurodegenerative diseases
-
Wong E., Cuervo A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010, 13:805-811.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 805-811
-
-
Wong, E.1
Cuervo, A.M.2
-
35
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
Lee I.H., Cao L., Mostoslavsky R., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 2008, 105:3374-3379.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
-
36
-
-
79953043473
-
Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy
-
Morselli E., Maiuri M.C., Markaki M., et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell. Death. Dis. 2010, 1:e10.
-
(2010)
Cell. Death. Dis.
, vol.1
-
-
Morselli, E.1
Maiuri, M.C.2
Markaki, M.3
-
37
-
-
80052359850
-
Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
-
Wu Y., Li X., Zhu J.X., et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 2011, 19:163-174.
-
(2011)
Neurosignals
, vol.19
, pp. 163-174
-
-
Wu, Y.1
Li, X.2
Zhu, J.X.3
-
38
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
39
-
-
84860163119
-
P53/HMGB1 complexes regulate autophagy and apoptosis
-
Livesey K.M., Kang R., Vernon P., et al. P53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 2012, 72:1996-2005.
-
(2012)
Cancer Res.
, vol.72
, pp. 1996-2005
-
-
Livesey, K.M.1
Kang, R.2
Vernon, P.3
-
41
-
-
33745885329
-
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
-
Crighton D., Wilkinson S., O'Prey J., et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126:121-134.
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
Wilkinson, S.2
O'Prey, J.3
-
42
-
-
67650267785
-
An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity
-
Du Y., Yang D., Li L., et al. An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 2009, 5:663-675.
-
(2009)
Autophagy
, vol.5
, pp. 663-675
-
-
Du, Y.1
Yang, D.2
Li, L.3
-
43
-
-
77952559255
-
The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis
-
Barré B., Perkins N.D. The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol. Cell 2010, 38:524-538.
-
(2010)
Mol. Cell
, vol.38
, pp. 524-538
-
-
Barré, B.1
Perkins, N.D.2
-
44
-
-
33750071414
-
NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy
-
Djavaheri-Mergny M., Amelotti M., Mathieu J., et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 2006, 281:30373-30382.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 30373-30382
-
-
Djavaheri-Mergny, M.1
Amelotti, M.2
Mathieu, J.3
-
45
-
-
69449084241
-
Autophagy activation by NFkappaB is essential for cell survival after heat shock
-
Nivon M., Richet E., Codogno P., Arrigo A.P., Kretz-Remy C. Autophagy activation by NFkappaB is essential for cell survival after heat shock. Autophagy 2009, 5:766-783.
-
(2009)
Autophagy
, vol.5
, pp. 766-783
-
-
Nivon, M.1
Richet, E.2
Codogno, P.3
Arrigo, A.P.4
Kretz-Remy, C.5
-
46
-
-
84859159081
-
Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease
-
Mudò G., Mäkelä J., Di Liberto V., et al. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell. Mol. Life Sci. 2012, 69:1153-1165.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 1153-1165
-
-
Mudò, G.1
Mäkelä, J.2
Di Liberto, V.3
-
47
-
-
53249121556
-
Sirtuins-novel therapeutic targets to treat age-associated diseases
-
Lavu S., Boss O., Elliott P.J., Lambert P.D. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 2008, 7:841-853.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 841-853
-
-
Lavu, S.1
Boss, O.2
Elliott, P.J.3
Lambert, P.D.4
|