메뉴 건너뛰기




Volumn 422, Issue 4, 2012, Pages 693-696

Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease

Author keywords

Parkinson's disease; Promoter; Sequence variant; SIRT1

Indexed keywords

SIRTUIN 1;

EID: 84862300236     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2012.05.059     Document Type: Article
Times cited : (43)

References (47)
  • 1
    • 80055082804 scopus 로고    scopus 로고
    • Parkinson's disease and α-synuclein expression
    • Devine M.J., Gwinn K., Singleton A., Hardy J. Parkinson's disease and α-synuclein expression. Mov. Disord. 2011, 26:2160-2168.
    • (2011) Mov. Disord. , vol.26 , pp. 2160-2168
    • Devine, M.J.1    Gwinn, K.2    Singleton, A.3    Hardy, J.4
  • 2
    • 80054787664 scopus 로고    scopus 로고
    • What genetics tells us about the causes and mechanisms of Parkinson's disease
    • Corti S., Lesage A., Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 2011, 91:1161-1218.
    • (2011) Physiol. Rev. , vol.91 , pp. 1161-1218
    • Corti, S.1    Lesage, A.2    Brice, A.3
  • 3
    • 79960361814 scopus 로고    scopus 로고
    • Recent advances in the genetics of Parkinson's disease
    • Martin V.L., Dawson T.M. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 2011, 12:301-325.
    • (2011) Annu. Rev. Genomics Hum. Genet. , vol.12 , pp. 301-325
    • Martin, V.L.1    Dawson, T.M.2
  • 5
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 6
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T., Deng C.X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 9
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    • Araki T., Sasaki Y., Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-1013.
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1    Sasaki, Y.2    Milbrandt, J.3
  • 10
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • Donmez G., Wang D., Cohen D.E., Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010, 142:320-332.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 11
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
    • Kim D., Nguyen M.D., Dobbin M.M., et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 2007, 26:3169-3179.
    • (2007) EMBO J. , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 12
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
    • Jeong H., Cohen D.E., Cui L., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2011, 18:159-165.
    • (2011) Nat. Med. , vol.18 , pp. 159-165
    • Jeong, H.1    Cohen, D.E.2    Cui, L.3
  • 13
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
    • Jiang M., Wang J., Fu J., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2011, 18:153-158.
    • (2011) Nat. Med. , vol.18 , pp. 153-158
    • Jiang, M.1    Wang, J.2    Fu, J.3
  • 14
    • 68949206606 scopus 로고    scopus 로고
    • The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide
    • Albani D., Polito L., Batelli S., et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 2009, 110:1445-1456.
    • (2009) J. Neurochem. , vol.110 , pp. 1445-1456
    • Albani, D.1    Polito, L.2    Batelli, S.3
  • 15
    • 84855929223 scopus 로고    scopus 로고
    • SIRT1 protects against α-synuclein aggregation by activating molecular chaperones
    • Donmez G., Arun A., Chung C.Y., McLean P.J., Lindquist S., Guarente L. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J. Neurosci. 2012, 32:124-132.
    • (2012) J. Neurosci. , vol.32 , pp. 124-132
    • Donmez, G.1    Arun, A.2    Chung, C.Y.3    McLean, P.J.4    Lindquist, S.5    Guarente, L.6
  • 16
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng H.L., Mostoslavsky R., Saito S., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 2003, 100:10794-10799.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 17
    • 0037207475 scopus 로고    scopus 로고
    • The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
    • McBurney M.W., Yang X., Jardine K., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 38-54
    • McBurney, M.W.1    Yang, X.2    Jardine, K.3
  • 18
    • 84655167647 scopus 로고    scopus 로고
    • Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity
    • Clark S.J., Falchi M., Olsson B., et al. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity (Silver Spring) 2012, 20:178-185.
    • (2012) Obesity (Silver Spring) , vol.20 , pp. 178-185
    • Clark, S.J.1    Falchi, M.2    Olsson, B.3
  • 19
    • 82255191744 scopus 로고    scopus 로고
    • SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians
    • Dong Y., Guo T., Traurig M., et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol. Genet. Metab. 2011, 104:661-665.
    • (2011) Mol. Genet. Metab. , vol.104 , pp. 661-665
    • Dong, Y.1    Guo, T.2    Traurig, M.3
  • 20
    • 73249152036 scopus 로고    scopus 로고
    • SIRT1 genetic variation is related to BMI and risk of obesity
    • Zillikens M.C., van Meurs J.B., Rivadeneira F., et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 2009, 58:2828-2834.
    • (2009) Diabetes , vol.58 , pp. 2828-2834
    • Zillikens, M.C.1    van Meurs, J.B.2    Rivadeneira, F.3
  • 21
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
    • (1999) Biochem. Biophys. Res. Commun. , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 22
    • 79953761260 scopus 로고    scopus 로고
    • PARP-2 regulates SIRT1 expression and whole-body energy expenditure
    • Bai P., Canto C., Brunyánszki A., et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell. Metab. 2011, 13:450-460.
    • (2011) Cell. Metab. , vol.13 , pp. 450-460
    • Bai, P.1    Canto, C.2    Brunyánszki, A.3
  • 23
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen W.Y., Wang D.H., Yen R.C., Luo J., Gu W., Baylin S.B. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
    • (2005) Cell , vol.123 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.C.3    Luo, J.4    Gu, W.5    Baylin, S.B.6
  • 24
    • 78649852533 scopus 로고    scopus 로고
    • SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence
    • Han L., Zhou R., Niu J., McNutt M.A., Wang P., Tong T. SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 2010, 38:7458-7471.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7458-7471
    • Han, L.1    Zhou, R.2    Niu, J.3    McNutt, M.A.4    Wang, P.5    Tong, T.6
  • 25
    • 10844236451 scopus 로고    scopus 로고
    • Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
    • Nemoto S., Fergusson M.M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
    • (2004) Science , vol.306 , pp. 2105-2108
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 26
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • Noriega L.G., Feige J.N., Canto C., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
    • (2011) EMBO Rep. , vol.12 , pp. 1069-1076
    • Noriega, L.G.1    Feige, J.N.2    Canto, C.3
  • 27
    • 45849121349 scopus 로고    scopus 로고
    • Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
    • Pallàs M., Pizarro J.G., Gutierrez-Cuesta J., et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008, 154:1388-1397.
    • (2008) Neuroscience , vol.154 , pp. 1388-1397
    • Pallàs, M.1    Pizarro, J.G.2    Gutierrez-Cuesta, J.3
  • 28
    • 11244309014 scopus 로고    scopus 로고
    • Proteolysis: from the lysosome to ubiquitin and the proteasome
    • Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell. Biol. 2005, 6:79-87.
    • (2005) Nat. Rev. Mol. Cell. Biol. , vol.6 , pp. 79-87
    • Ciechanover, A.1
  • 29
    • 78149475088 scopus 로고    scopus 로고
    • Regulation of mammalian autophagy in physiology and pathophysiology
    • Ravikumar S., Sarkar J.E., Davies, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 2010, 90:1383-1435.
    • (2010) Physiol. Rev. , vol.90 , pp. 1383-1435
    • Ravikumar, S.1    Sarkar, J.E.D.2
  • 30
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 31
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature 2011, 469:323-335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 32
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 33
    • 78149471570 scopus 로고    scopus 로고
    • Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications
    • Banerjee R., Beal M.F., Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci. 2010, 33:541-549.
    • (2010) Trends Neurosci. , vol.33 , pp. 541-549
    • Banerjee, R.1    Beal, M.F.2    Thomas, B.3
  • 34
    • 77954116814 scopus 로고    scopus 로고
    • Autophagy gone awry in neurodegenerative diseases
    • Wong E., Cuervo A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010, 13:805-811.
    • (2010) Nat. Neurosci. , vol.13 , pp. 805-811
    • Wong, E.1    Cuervo, A.M.2
  • 35
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • Lee I.H., Cao L., Mostoslavsky R., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 2008, 105:3374-3379.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 36
    • 79953043473 scopus 로고    scopus 로고
    • Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy
    • Morselli E., Maiuri M.C., Markaki M., et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell. Death. Dis. 2010, 1:e10.
    • (2010) Cell. Death. Dis. , vol.1
    • Morselli, E.1    Maiuri, M.C.2    Markaki, M.3
  • 37
    • 80052359850 scopus 로고    scopus 로고
    • Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
    • Wu Y., Li X., Zhu J.X., et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 2011, 19:163-174.
    • (2011) Neurosignals , vol.19 , pp. 163-174
    • Wu, Y.1    Li, X.2    Zhu, J.X.3
  • 38
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 39
    • 84860163119 scopus 로고    scopus 로고
    • P53/HMGB1 complexes regulate autophagy and apoptosis
    • Livesey K.M., Kang R., Vernon P., et al. P53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 2012, 72:1996-2005.
    • (2012) Cancer Res. , vol.72 , pp. 1996-2005
    • Livesey, K.M.1    Kang, R.2    Vernon, P.3
  • 40
    • 44649141966 scopus 로고    scopus 로고
    • Regulation of autophagy by cytoplasmic p53
    • Tasdemir E., Maiuri M.C., Galluzzi L., et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell. Biol. 2008, 10:676-687.
    • (2008) Nat. Cell. Biol. , vol.10 , pp. 676-687
    • Tasdemir, E.1    Maiuri, M.C.2    Galluzzi, L.3
  • 41
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton D., Wilkinson S., O'Prey J., et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126:121-134.
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1    Wilkinson, S.2    O'Prey, J.3
  • 42
    • 67650267785 scopus 로고    scopus 로고
    • An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity
    • Du Y., Yang D., Li L., et al. An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 2009, 5:663-675.
    • (2009) Autophagy , vol.5 , pp. 663-675
    • Du, Y.1    Yang, D.2    Li, L.3
  • 43
    • 77952559255 scopus 로고    scopus 로고
    • The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis
    • Barré B., Perkins N.D. The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol. Cell 2010, 38:524-538.
    • (2010) Mol. Cell , vol.38 , pp. 524-538
    • Barré, B.1    Perkins, N.D.2
  • 44
    • 33750071414 scopus 로고    scopus 로고
    • NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy
    • Djavaheri-Mergny M., Amelotti M., Mathieu J., et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 2006, 281:30373-30382.
    • (2006) J. Biol. Chem. , vol.281 , pp. 30373-30382
    • Djavaheri-Mergny, M.1    Amelotti, M.2    Mathieu, J.3
  • 45
    • 69449084241 scopus 로고    scopus 로고
    • Autophagy activation by NFkappaB is essential for cell survival after heat shock
    • Nivon M., Richet E., Codogno P., Arrigo A.P., Kretz-Remy C. Autophagy activation by NFkappaB is essential for cell survival after heat shock. Autophagy 2009, 5:766-783.
    • (2009) Autophagy , vol.5 , pp. 766-783
    • Nivon, M.1    Richet, E.2    Codogno, P.3    Arrigo, A.P.4    Kretz-Remy, C.5
  • 46
    • 84859159081 scopus 로고    scopus 로고
    • Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease
    • Mudò G., Mäkelä J., Di Liberto V., et al. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell. Mol. Life Sci. 2012, 69:1153-1165.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 1153-1165
    • Mudò, G.1    Mäkelä, J.2    Di Liberto, V.3
  • 47
    • 53249121556 scopus 로고    scopus 로고
    • Sirtuins-novel therapeutic targets to treat age-associated diseases
    • Lavu S., Boss O., Elliott P.J., Lambert P.D. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 2008, 7:841-853.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 841-853
    • Lavu, S.1    Boss, O.2    Elliott, P.J.3    Lambert, P.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.