메뉴 건너뛰기




Volumn 18, Issue 9, 2012, Pages 1266-1291

The challenges involved in modeling toxicity data in silico: A review

Author keywords

Descriptors; In silico modeling; Qsar; Toxicity

Indexed keywords

CYTOCHROME P450; POTASSIUM CHANNEL HERG;

EID: 84857770428     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/138161212799436359     Document Type: Review
Times cited : (80)

References (359)
  • 1
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004; 3: 711-16.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 711-716
    • Kola, I.1    Landis, J.2
  • 2
    • 0036783410 scopus 로고    scopus 로고
    • The Influence of DMPK as an Integrated Partner in Modern Drug Discovery
    • Riley RJ, Martin IJ, Cooper AE. The Influence of DMPK as an Integrated Partner in Modern Drug Discovery. Curr Drug Metab 2002; 3: 527-50
    • (2002) Curr Drug Metab , vol.3 , pp. 527-550
    • Riley, R.J.1    Martin, I.J.2    Cooper, A.E.3
  • 3
    • 60749117886 scopus 로고    scopus 로고
    • High throughput ADME screening: Practical considerations, impact on the portfolio and enabler of in silico ADME models
    • Hop CE, Cole MJ, Davidson RE, et al. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models. Curr Drug Metab 2008; 9: 847-53.
    • (2008) Curr Drug Metab , vol.9 , pp. 847-853
    • Hop, C.E.1    Cole, M.J.2    Davidson, R.E.3
  • 4
    • 34547656228 scopus 로고    scopus 로고
    • The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates
    • Kramer JA, Sagartz JE, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 2007; 6: 636-49.
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 636-649
    • Kramer, J.A.1    Sagartz, J.E.2    Morris, D.L.3
  • 6
    • 62749109092 scopus 로고    scopus 로고
    • Toxicity testing in the 21st century: Implications for human health risk assessment
    • Krewski D, Andersen ME, Mantus E, Zeise L. Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 2009; 29: 474-9.
    • (2009) Risk Anal , vol.29 , pp. 474-479
    • Krewski, D.1    Andersen, M.E.2    Mantus, E.3    Zeise, L.4
  • 7
    • 78649630186 scopus 로고    scopus 로고
    • The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform
    • Shukla SJ, Huang R, Austin CP, Xia M. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 2010; 15: 997-1007.
    • (2010) Drug Discov Today , vol.15 , pp. 997-1007
    • Shukla, S.J.1    Huang, R.2    Austin, C.P.3    Xia, M.4
  • 8
    • 0034693731 scopus 로고    scopus 로고
    • The Ames Salmonella/micro some mutagenicity assay
    • Mortelmans K, Zeiger E. The Ames Salmonella/micro some mutagenicity assay. Mutat Res 2000; 455: 29-60.
    • (2000) Mutat Res , vol.455 , pp. 29-60
    • Mortelmans, K.1    Zeiger, E.2
  • 9
    • 0024989675 scopus 로고
    • Identification of contact allergens using the murine local lymph node assay: Comparisons with the Buehler occluded patch test in guinea pigs
    • Kimber I, Hilton J, Botham PA. Identification of contact allergens using the murine local lymph node assay: comparisons with the Buehler occluded patch test in guinea pigs. J Appl Toxicol 1990; 10: 173-80.
    • (1990) J Appl Toxicol , vol.10 , pp. 173-180
    • Kimber, I.1    Hilton, J.2    Botham, P.A.3
  • 10
    • 0024454110 scopus 로고
    • The murine local lymph node assay for identification of contact allergens: A preliminary evaluation of in situ measurement of lymphocyte proliferation
    • Kimber I, Hilton J, Weisenberger C. The murine local lymph node assay for identification of contact allergens: a preliminary evaluation of in situ measurement of lymphocyte proliferation. Contact Dermatitis 1989; 21: 215-20.
    • (1989) Contact Dermatitis , vol.21 , pp. 215-220
    • Kimber, I.1    Hilton, J.2    Weisenberger, C.3
  • 11
    • 0024356617 scopus 로고
    • A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study
    • Kimber I, Weisenberger C. A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study. Arch Toxicol 1989; 63: 274-82.
    • (1989) Arch Toxicol , vol.63 , pp. 274-282
    • Kimber, I.1    Weisenberger, C.2
  • 12
    • 33747505446 scopus 로고    scopus 로고
    • Medicinal chemistry of hERG optimizations: Highlights and hang-ups
    • Jamieson C, Moir EM, Rankovic Z, Wishart G. Medicinal chemistry of hERG optimizations: Highlights and hang-ups. J Med Chem 2006; 49: 5029-46.
    • (2006) J Med Chem , vol.49 , pp. 5029-5046
    • Jamieson, C.1    Moir, E.M.2    Rankovic, Z.3    Wishart, G.4
  • 13
    • 13944268698 scopus 로고    scopus 로고
    • Greater Than the Sum of Its Parts: Combining Models for Useful ADMET Prediction
    • O'Brien SE, de Groot MJ. Greater Than the Sum of Its Parts: Combining Models for Useful ADMET Prediction. J Med Chem 2005; 48: 1287-91.
    • (2005) J Med Chem , vol.48 , pp. 1287-1291
    • O'Brien, S.E.1    de Groot, M.J.2
  • 14
    • 39749181550 scopus 로고    scopus 로고
    • Generation of a set of simple, interpretable ADMET rules of thumb
    • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 2008; 51: 817-34.
    • (2008) J Med Chem , vol.51 , pp. 817-834
    • Gleeson, M.P.1
  • 15
    • 77949382626 scopus 로고    scopus 로고
    • TOXNET [homepage on the internet], updated 2011 Oct 17; cited 2011 Oct 17
    • [] TOXNET [homepage on the internet]. United States National Library of Medicine; [updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/
    • United States National Library of Medicine
  • 16
    • 84857759046 scopus 로고    scopus 로고
    • LLNA Database [homepage on the internet]
    • ICCVAM, updated 2011 Aug 08; cited 2011 Oct 17
    • [ICCVAM. LLNA Database [homepage on the internet]. National Toxicology Program;[updated 2011 Aug 08; cited 2011 Oct 17]. http://iccvam.niehs.nih.gov/methods/immunotox/rLLNA.htm
    • National Toxicology Program
  • 17
    • 40949161033 scopus 로고    scopus 로고
    • MultiCASE expert systems and the REACH initiative
    • Saiakhov RD, Klopman G. MultiCASE expert systems and the REACH initiative. Toxicol Mechanisms Methods 2008; 18: 159-75.
    • (2008) Toxicol Mechanisms Methods , vol.18 , pp. 159-175
    • Saiakhov, R.D.1    Klopman, G.2
  • 19
    • 42949117040 scopus 로고    scopus 로고
    • Drug-induced Phospholipidosis - Pathological Aspects and Its Prediction
    • Nonoyama T, Fukuda R. Drug-induced Phospholipidosis - Pathological Aspects and Its Prediction. J Toxicol Pathol 2008; 21:9-24.
    • (2008) J Toxicol Pathol , vol.21 , pp. 9-24
    • Nonoyama, T.1    Fukuda, R.2
  • 21
    • 33745741280 scopus 로고    scopus 로고
    • Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs
    • Crivori P, Poggesi I. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem 2006; 41: 795-808.
    • (2006) Eur J Med Chem , vol.41 , pp. 795-808
    • Crivori, P.1    Poggesi, I.2
  • 22
    • 53249095707 scopus 로고    scopus 로고
    • Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction
    • Li H, Sun J, Fan X, et al. Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction. J Comput Aided Mol Des 2008; 22: 843-55.
    • (2008) J Comput Aided Mol Des , vol.22 , pp. 843-855
    • Li, H.1    Sun, J.2    Fan, X.3
  • 23
    • 77954048321 scopus 로고    scopus 로고
    • Pharmaceutical perspectives of nonlinear QSAR strategies
    • Michielan L, Moro S. Pharmaceutical perspectives of nonlinear QSAR strategies. J Chem Inf Model 2010; 50: 961-78.
    • (2010) J Chem Inf Model , vol.50 , pp. 961-978
    • Michielan, L.1    Moro, S.2
  • 24
    • 53849113018 scopus 로고    scopus 로고
    • Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach
    • Enoch SJ, Madden JC, Cronin MT. Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 2008; 19: 555-78.
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 555-578
    • Enoch, S.J.1    Madden, J.C.2    Cronin, M.T.3
  • 25
    • 49849084348 scopus 로고    scopus 로고
    • Structure alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational databases technology
    • Benigni R, Bossa C. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res 2008; 659: 248-61.
    • (2008) Mutat Res , vol.659 , pp. 248-261
    • Benigni, R.1    Bossa, C.2
  • 26
    • 79952527126 scopus 로고    scopus 로고
    • Structural alerts for estimating the carcinogenicity of pesticides and biocides
    • Devillers J, Mombelli E, Samsera R. Structural alerts for estimating the carcinogenicity of pesticides and biocides. SAR QSAR Environ Res 2011; 22: 89-106.
    • (2011) SAR QSAR Environ Res , vol.22 , pp. 89-106
    • Devillers, J.1    Mombelli, E.2    Samsera, R.3
  • 27
    • 84857779218 scopus 로고    scopus 로고
    • European Comission; [updated 2011 Sept 28; cited 2011 Oct 17]
    • [ECB REACH Guidelines [homepage on the internet]. European Comission; [updated 2011 Sept 28; cited 2011 Oct 17].Available from http://ec.europa.eu/environment/chemicals/reach/reviews_en.htm
    • ECB REACH Guidelines [homepage On the Internet]
  • 29
    • 70449528780 scopus 로고    scopus 로고
    • In silico toxicology for the pharmaceutical sciences
    • Valerio LG, Jr. In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 2009; 241: 356-70.
    • (2009) Toxicol Appl Pharmacol , vol.241 , pp. 356-370
    • Valerio Jr., L.G.1
  • 32
    • 77949898228 scopus 로고    scopus 로고
    • The use of computer models in pharmaceutical safety evaluation
    • Boyer S. The use of computer models in pharmaceutical safety evaluation. Altern. Lab. Anim. 2009; 37: 467-75.
    • (2009) Altern. Lab. Anim , vol.37 , pp. 467-475
    • Boyer, S.1
  • 33
    • 77949904078 scopus 로고    scopus 로고
    • In silico toxicology in drug discovery-concepts based on three-dimensional models
    • [Vedani A, Smiesko M. In silico toxicology in drug discovery-concepts based on three-dimensional models. Altern Lab Anim 2009; 37: 477-96.
    • (2009) Altern Lab Anim , vol.37 , pp. 477-496
    • Vedani, A.1    Smiesko, M.2
  • 34
    • 13244277456 scopus 로고    scopus 로고
    • In silico prediction of drug safety: Despite progress there is abundant room for improvement
    • Egan WJ, Zlokarnik G, Grootenhuis PDJ. In silico prediction of drug safety: despite progress there is abundant room for improvement. Drug Discov Today: Technologies 2004; 1: 381-7.
    • (2004) Drug Discov Today: Technologies , vol.1 , pp. 381-387
    • Egan, W.J.1    Zlokarnik, G.2    Grootenhuis, P.D.J.3
  • 36
    • 73749087528 scopus 로고    scopus 로고
    • Computational toxicology--a tool for early safety evaluation
    • Merlot C. Computational toxicology--a tool for early safety evaluation. Drug Discov Today 2010; 15: 16-22.
    • (2010) Drug Discov Today , vol.15 , pp. 16-22
    • Merlot, C.1
  • 37
    • 77952638113 scopus 로고    scopus 로고
    • Using In Silico Tools in a Weight of Evidence Approach to Aid Toxicological Assessment
    • Cronin MTD, Ellison CM, Madden JC, Judson P. Using In Silico Tools in a Weight of Evidence Approach to Aid Toxicological Assessment. Mol Informatics 2010; 29: 97-110.
    • (2010) Mol Informatics , vol.29 , pp. 97-110
    • Cronin, M.T.D.1    Ellison, C.M.2    Madden, J.C.3    Judson, P.4
  • 38
    • 12244293377 scopus 로고    scopus 로고
    • In silico predictive toxicology: The state-of-the-art and strategies to predict human health effects
    • Helma C. In silico predictive toxicology: The state-of-the-art and strategies to predict human health effects. CurrOpin Drug Discov Dev 2005; 8: 27-31.
    • (2005) CurrOpin Drug Discov Dev , vol.8 , pp. 27-31
    • Helma, C.1
  • 39
    • 65249092595 scopus 로고    scopus 로고
    • Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis
    • Scheiber J, Chen B, Milik M, et al. Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis. J Chem Inf and Model 2009;49: 308-17.
    • (2009) J Chem Inf and Model , vol.49 , pp. 308-317
    • Scheiber, J.1    Chen, B.2    Milik, M.3
  • 40
    • 65649093070 scopus 로고    scopus 로고
    • Mapping adverse drug reactions in chemical space
    • Scheiber J, Jenkins JL, Sukuru SC, et al. Mapping adverse drug reactions in chemical space. J Med Chem 2009; 52: 3103-7.
    • (2009) J Med Chem , vol.52 , pp. 3103-3107
    • Scheiber, J.1    Jenkins, J.L.2    Sukuru, S.C.3
  • 41
    • 79959434611 scopus 로고    scopus 로고
    • Comparative Evaluation of in Silico Systems for Ames Test Mutagenicity Prediction: Scope and Limitations
    • Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T. Comparative Evaluation of in Silico Systems for Ames Test Mutagenicity Prediction: Scope and Limitations. Chem Res Toxicol 2011.
    • (2011) Chem Res Toxicol
    • Hillebrecht, A.1    Muster, W.2    Brigo, A.3    Kansy, M.4    Weiser, T.5    Singer, T.6
  • 42
    • 40949110149 scopus 로고    scopus 로고
    • Predictivity and reliability of QSAR models: The case of mutagens and carcinogens
    • Benigni R, Bossa C. Predictivity and reliability of QSAR models: The case of mutagens and carcinogens. Toxicol Mech Methods 2008; 18: 137-47.
    • (2008) Toxicol Mech Methods , vol.18 , pp. 137-147
    • Benigni, R.1    Bossa, C.2
  • 43
    • 79954550877 scopus 로고    scopus 로고
    • Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology
    • Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev 2011; 111: 2507-36.
    • (2011) Chem Rev , vol.111 , pp. 2507-2536
    • Benigni, R.1    Bossa, C.2
  • 44
    • 77955902675 scopus 로고    scopus 로고
    • A review of the electrophilic reaction chemistry involved in covalent DNA binding
    • Enoch SJ, Cronin MT. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2010; 40: 728-48.
    • (2010) Crit Rev Toxicol , vol.40 , pp. 728-748
    • Enoch, S.J.1    Cronin, M.T.2
  • 45
    • 79955402142 scopus 로고    scopus 로고
    • Alternative strategies for arcinogenicity assessment: An efficient and simplified approach based on in vitro mutagenicity and cell transformation assays
    • Benigni R, Bossa C. Alternative strategies for arcinogenicity assessment: an efficient and simplified approach based on in vitro mutagenicity and cell transformation assays. Mutagenesis 2011; 3: 455-60.
    • (2011) Mutagenesis , vol.3 , pp. 455-460
    • Benigni, R.1    Bossa, C.2
  • 47
    • 33748640373 scopus 로고    scopus 로고
    • Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: General principles and application to reactive toxicity
    • Aptula AO, Roberts DW. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol 2006; 19: 1097-105.
    • (2006) Chem Res Toxicol , vol.19 , pp. 1097-1105
    • Aptula, A.O.1    Roberts, D.W.2
  • 48
    • 79151478391 scopus 로고    scopus 로고
    • Chemical reactivity measurements: Potential for haracterization of respiratory chemical allergens
    • Lalko JF, Kimber I, Dearman RJ, Gerberick GF, Sarlo K, Api AM. Chemical reactivity measurements: potential for haracterization of respiratory chemical allergens. Toxicol In vitro 2011; 25: 433-45.
    • (2011) Toxicol In Vitro , vol.25 , pp. 433-445
    • Lalko, J.F.1    Kimber, I.2    Dearman, R.J.3    Gerberick, G.F.4    Sarlo, K.5    Api, A.M.6
  • 50
    • 79954452584 scopus 로고    scopus 로고
    • Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology
    • Schwo bel JAH, Koleva YK, et al. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Chem Rev 2011; 111: 2562-96.
    • (2011) Chem Rev , vol.111 , pp. 2562-2596
    • Schwo Bel, J.A.H.1    Koleva, Y.K.2
  • 51
    • 70249086620 scopus 로고    scopus 로고
    • Herg-related drug toxicity and models for predicting hERG liability and QT prolongation
    • Raschi E, Ceccarini L, De Ponti F, Recanatini M. Herg-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5: 1005-21.
    • (2009) Expert Opin Drug Metab Toxicol , vol.5 , pp. 1005-1021
    • Raschi, E.1    Ceccarini, L.2    de Ponti, F.3    Recanatini, M.4
  • 52
    • 37849005419 scopus 로고    scopus 로고
    • Ligand structural aspects of hERG channel lockade
    • Aronov AM. Ligand structural aspects of hERG channel lockade. Curr Top Med Chem 2008; 8: 1113-27.
    • (2008) Curr Top Med Chem , vol.8 , pp. 1113-1127
    • Aronov, A.M.1
  • 53
    • 13844254976 scopus 로고    scopus 로고
    • Predictive in silico modeling for hERG channel blockers
    • Aronov AM. Predictive in silico modeling for hERG channel blockers. Drug Discov Today 2005; 10: 149-55.
    • (2005) Drug Discov Today , vol.10 , pp. 149-155
    • Aronov, A.M.1
  • 54
    • 77249175263 scopus 로고    scopus 로고
    • Prediction of drug-related cardiac adverse effects in humans-B: Use of QSAR programs for early detection of drug-induced cardiac toxicities
    • Matthews EJ, Frid AA. Prediction of drug-related cardiac adverse effects in humans-B: Use of QSAR programs for early detection of drug-induced cardiac toxicities. Reg Toxicol and Pharmacol 2010; 56: 276-89.
    • (2010) Reg Toxicol and Pharmacol , vol.56 , pp. 276-289
    • Matthews, E.J.1    Frid, A.A.2
  • 55
  • 57
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010; 26: 246-54.
    • (2010) Bioinformatics , vol.26 , pp. 246-254
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3    Goto, S.4
  • 58
    • 68249162213 scopus 로고    scopus 로고
    • Predicting drug-drug interactions: An FDA perspective
    • Zhang L, Zhang YD, Zhao P, Huang SM. Predicting drug-drug interactions: an FDA perspective. AAPS J 2009; 11: 300-6.
    • (2009) AAPS J , vol.11 , pp. 300-306
    • Zhang, L.1    Zhang, Y.D.2    Zhao, P.3    Huang, S.M.4
  • 59
    • 45949107967 scopus 로고    scopus 로고
    • Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450
    • Stjernschantz E, Vermeulen NP, Oostenbrink C. Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opin Drug Metab Toxicol 2008; 4: 513-27.
    • (2008) Expert Opin Drug Metab Toxicol , vol.4 , pp. 513-527
    • Stjernschantz, E.1    Vermeulen, N.P.2    Oostenbrink, C.3
  • 61
    • 79951899664 scopus 로고    scopus 로고
    • In silico site of metabolism prediction of cytochrome P450-mediated biotransformations
    • Tarcsay A, Keseru GM. In silico site of metabolism prediction of cytochrome P450-mediated biotransformations. Expert Opin Drug Metab Toxicol 2011; 7: 299-312.
    • (2011) Expert Opin Drug Metab Toxicol , vol.7 , pp. 299-312
    • Tarcsay, A.1    Keseru, G.M.2
  • 62
    • 33747868711 scopus 로고    scopus 로고
    • Structure-based methods for the prediction of drug metabolism
    • Madden JC, Cronin MT. Structure-based methods for the prediction of drug metabolism. Expert Opin Drug Metab Toxicol 2006; 2: 545-57.
    • (2006) Expert Opin Drug Metab Toxicol , vol.2 , pp. 545-557
    • Madden, J.C.1    Cronin, M.T.2
  • 64
    • 40949161450 scopus 로고    scopus 로고
    • In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic
    • Marchant CA, Briggs KA, Long A. In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vitic. Toxicol Mech Methods 2008; 18: 177-87.
    • (2008) Toxicol Mech Methods , vol.18 , pp. 177-187
    • Marchant, C.A.1    Briggs, K.A.2    Long, A.3
  • 65
    • 71449103290 scopus 로고    scopus 로고
    • Structure-based drug metabolism predictions for drug design
    • Sun H, Scott DO. Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des 2010; 75: 3-17.
    • (2010) Chem Biol Drug Des , vol.75 , pp. 3-17
    • Sun, H.1    Scott, D.O.2
  • 66
    • 33645471252 scopus 로고    scopus 로고
    • Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction
    • Furge LL, Guengerich FP. Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem Mol Biol Educ 2006; 34: 66-74.
    • (2006) Biochem Mol Biol Educ , vol.34 , pp. 66-74
    • Furge, L.L.1    Guengerich, F.P.2
  • 67
    • 38949094492 scopus 로고    scopus 로고
    • Cytochrome p450 and chemical toxicology
    • Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008; 21: 70-83.
    • (2008) Chem Res Toxicol , vol.21 , pp. 70-83
    • Guengerich, F.P.1
  • 68
    • 0036589487 scopus 로고    scopus 로고
    • New methods in predictive metabolism
    • Boyer S, Zamora I. New methods in predictive metabolism. J Comput Aided Mol Des 2002; 16: 403-13.
    • (2002) J Comput Aided Mol Des , vol.16 , pp. 403-413
    • Boyer, S.1    Zamora, I.2
  • 70
    • 77954088460 scopus 로고    scopus 로고
    • Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity
    • Hewitt M, Ellison CM, Enoch SJ, Madden JC, Cronin MT.Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity. Reprod Toxicol 2010; 30: 147-60.
    • (2010) Reprod Toxicol , vol.30 , pp. 147-160
    • Hewitt, M.1    Ellison, C.M.2    Enoch, S.J.3    Madden, J.C.4    Cronin, M.T.5
  • 71
    • 44649084910 scopus 로고    scopus 로고
    • The challenge of reproductive and developmental toxicology under REACH
    • Scialli AR. The challenge of reproductive and developmental toxicology under REACH. Regul Toxicol Pharmacol 2008; 51: 244-50.
    • (2008) Regul Toxicol Pharmacol , vol.51 , pp. 244-250
    • Scialli, A.R.1
  • 72
    • 77949814178 scopus 로고    scopus 로고
    • Building a Tiered Approach to In vitro Predictive Toxicity Screening: A Focus on Assays with In vivo Relevance
    • McKim JM. Building a Tiered Approach to In vitro Predictive Toxicity Screening: A Focus on Assays with In vivo Relevance. Comb Chem & High Throughput Screen 2010; 13: 188-206.
    • (2010) Comb Chem & High Throughput Screen , vol.13 , pp. 188-206
    • McKim, J.M.1
  • 73
    • 0011678159 scopus 로고    scopus 로고
    • Can Drug-Drug Interactions Be Predicted from In vitro Studies?
    • Kremers P. Can Drug-Drug Interactions Be Predicted from In vitro Studies?. The Scientific World Journal 2002; 2: 751-66.
    • (2002) The Scientific World Journal , vol.2 , pp. 751-766
    • Kremers, P.1
  • 74
    • 79956348442 scopus 로고    scopus 로고
    • Alternative (non-animal) methods for cosmetics testing: Current status and future prospects-2010
    • Adler S, Basketter D, Creton S, et al. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85: 367-485.
    • (2011) Arch Toxicol , vol.85 , pp. 367-485
    • Adler, S.1    Basketter, D.2    Creton, S.3
  • 75
    • 52949143487 scopus 로고    scopus 로고
    • The hERG channel and risk of drug-acquired cardiac arrhythmia: An overview
    • Lagrutta AA, Trepakova ES, Salata JJ. The hERG channel and risk of drug-acquired cardiac arrhythmia: an overview. Curr Top Med Chem 2008; 8: 1102-12.
    • (2008) Curr Top Med Chem , vol.8 , pp. 1102-1112
    • Lagrutta, A.A.1    Trepakova, E.S.2    Salata, J.J.3
  • 76
    • 70350273017 scopus 로고    scopus 로고
    • Structural Alerts, Reactive Metabolites, and Protein Covalent Binding: How Reliable Are These Attributes as Predictors of Drug Toxicity?
    • Kalgutkar AS, Didiuk MT. Structural Alerts, Reactive Metabolites, and Protein Covalent Binding: How Reliable Are These Attributes as Predictors of Drug Toxicity? Chem Biodiversity 2009; 6: 2115-37.
    • (2009) Chem Biodiversity , vol.6 , pp. 2115-2137
    • Kalgutkar, A.S.1    Didiuk, M.T.2
  • 78
    • 79958047253 scopus 로고    scopus 로고
    • Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development
    • Thompson RA, Isin EM, Li Y, et al. Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development. Chem Biol Interact 2011; 192: 65-71.
    • (2011) Chem Biol Interact , vol.192 , pp. 65-71
    • Thompson, R.A.1    Isin, E.M.2    Li, Y.3
  • 79
    • 12244311205 scopus 로고    scopus 로고
    • Idiosyncratic toxicity: Mechanistic insights gained from analysis of prior compounds
    • Waring JF, Anderson MG. Idiosyncratic toxicity: mechanistic insights gained from analysis of prior compounds. Curr Opin Drug Discov Devel 2005; 8: 59-65.
    • (2005) Curr Opin Drug Discov Devel , vol.8 , pp. 59-65
    • Waring, J.F.1    Anderson, M.G.2
  • 80
    • 33845965001 scopus 로고    scopus 로고
    • ADMET Property Prediction: The State of the Art and Current Challenges
    • Gola J, Obrezanova O, Champness E, Segall M. ADMET Property Prediction: The State of the Art and Current Challenges. QSAR Comb Sci 2006; 25: 1172-80.
    • (2006) QSAR Comb Sci , vol.25 , pp. 1172-1180
    • Gola, J.1    Obrezanova, O.2    Champness, E.3    Segall, M.4
  • 81
    • 24944522804 scopus 로고    scopus 로고
    • Computational prediction of genotoxicity: Room for improvement
    • Snyder RD, Smith MD. Computational prediction of genotoxicity: room for improvement. Drug Discov Today 2005; 10: 1119-24.
    • (2005) Drug Discov Today , vol.10 , pp. 1119-1124
    • Snyder, R.D.1    Smith, M.D.2
  • 82
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • Kazius J, McGuire R, Bursi R. Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 2005; 48: 312-20.
    • (2005) J Med Chem , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 83
    • 77953926461 scopus 로고    scopus 로고
    • Alternatives to the carcinogenicity bioassay: In silico methods, and the in vitro and in vivo mutagenicity assays
    • Benigni R, Bossa C, Tcheremenskaia O, Giuliani A. Alternatives to the carcinogenicity bioassay: in silico methods, and the in vitro and in vivo mutagenicity assays. Expert Opin Drug Metabol Toxicol 2010; 6: 809-19.
    • (2010) Expert Opin Drug Metabol Toxicol , vol.6 , pp. 809-819
    • Benigni, R.1    Bossa, C.2    Tcheremenskaia, O.3    Giuliani, A.4
  • 84
    • 0026665595 scopus 로고
    • Detection of contact sensitivity of metal salts using the murine local lymph node assay
    • Ikarashi Y, Tsuchiya T, Nakamura A. Detection of contact sensitivity of metal salts using the murine local lymph node assay. Toxicol Lett 1992; 62: 53-61.
    • (1992) Toxicol Lett , vol.62 , pp. 53-61
    • Ikarashi, Y.1    Tsuchiya, T.2    Nakamura, A.3
  • 85
    • 77955443847 scopus 로고    scopus 로고
    • Skin sensitization, false positives and false negatives: Experience with guinea pig assays
    • Basketter DA, Kimber I. Skin sensitization, false positives and false negatives: experience with guinea pig assays. J Applied Toxicol 2010; 30: 381-86.
    • (2010) J Applied Toxicol , vol.30 , pp. 381-386
    • Basketter, D.A.1    Kimber, I.2
  • 86
    • 77952545106 scopus 로고    scopus 로고
    • Apparent activity in high-throughput screening: Origins of compound-dependent assay interference
    • Thorne N, Auld DS, Inglese J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 2010; 14: 315-24.
    • (2010) Curr Opin Chem Biol , vol.14 , pp. 315-324
    • Thorne, N.1    Auld, D.S.2    Inglese, J.3
  • 87
    • 33646115186 scopus 로고    scopus 로고
    • Biological assay challenges from compound solubility: Strategies for bioassay optimization
    • Di L, Kerns EH. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov Today 2006; 11: 446-51.
    • (2006) Drug Discov Today , vol.11 , pp. 446-451
    • Di, L.1    Kerns, E.H.2
  • 90
    • 78049349961 scopus 로고    scopus 로고
    • Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research
    • Fourches D, Muratov E, Tropsha A. Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. J Chem Inf and Model 2010; 50:1189-204.
    • (2010) J Chem Inf and Model , vol.50 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 91
    • 58149293575 scopus 로고    scopus 로고
    • Read-across to rank skin sensitization potential: Subcategories for the Michael acceptor domain
    • Schultz TW, Rogers K, Aptula AO. Read-across to rank skin sensitization potential: subcategories for the Michael acceptor domain. Contact Dermatitis 2009; 60: 21-31.
    • (2009) Contact Dermatitis , vol.60 , pp. 21-31
    • Schultz, T.W.1    Rogers, K.2    Aptula, A.O.3
  • 92
    • 34249709530 scopus 로고    scopus 로고
    • TIMES-SS-A promising tool for the assessment of skin sensitization hazard
    • A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity
    • Patlewicz G, Dimitrov SD, Low LK, et al. TIMES-SS-A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Reg Toxicol Pharmacol 2007; 48: 225-39.
    • (2007) Reg Toxicol Pharmacol , vol.48 , pp. 225-239
    • Patlewicz, G.1    Dimitrov, S.D.2    Low, L.K.3
  • 93
    • 58149161538 scopus 로고    scopus 로고
    • QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9
    • Bathelt CM, Mulholland AJ, Harvey JN. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A 2008; 112: 13149-56.
    • (2008) J Phys Chem A , vol.112 , pp. 13149-56
    • Bathelt, C.M.1    Mulholland, A.J.2    Harvey, J.N.3
  • 94
    • 33749260698 scopus 로고    scopus 로고
    • A critical assessment of docking programs and scoring functions
    • Warren GL, Andrews CW, Capelli AM, et al. A critical assessment of docking programs and scoring functions. J Med Chem 2006; 49:5912-31.
    • (2006) J Med Chem , vol.49 , pp. 5912-5931
    • Warren, G.L.1    Andrews, C.W.2    Capelli, A.M.3
  • 95
    • 33749245117 scopus 로고    scopus 로고
    • Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps
    • Leach AR, Shoichet BK, Peishoff CE. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 2006; 49: 5851-5.
    • (2006) J Med Chem , vol.49 , pp. 5851-5855
    • Leach, A.R.1    Shoichet, B.K.2    Peishoff, C.E.3
  • 96
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988; 110: 5959-67.
    • (1988) J Am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 97
    • 0003684989 scopus 로고    scopus 로고
    • Principles and Applications. Harlow: Longman
    • Leach AR. Molecular Modelling. Principles and Applications. Harlow: Longman 1996.
    • (1996) Molecular Modelling
    • Leach, A.R.1
  • 98
    • 77349115125 scopus 로고    scopus 로고
    • P450 enzymes: Their structure, reactivity, and selectivity-modeled by QM/MM calculations
    • Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chemrev 2010; 110: 949-1017.
    • (2010) Chemrev , vol.110 , pp. 949-1017
    • Shaik, S.1    Cohen, S.2    Wang, Y.3    Chen, H.4    Kumar, D.5    Thiel, W.6
  • 99
    • 0032619762 scopus 로고    scopus 로고
    • Knowledge-Based Expert Systems for Toxicity and Metabolism Prediction: DEREK, StAR and METEOR
    • Greene N, Judson PN, Langowski JJ, Marchant CA. Knowledge-Based Expert Systems for Toxicity and Metabolism Prediction: DEREK, StAR and METEOR. SAR QSAR Env Res 1999; 10:299-314.
    • (1999) SAR QSAR Env Res , vol.10 , pp. 299-314
    • Greene, N.1    Judson, P.N.2    Langowski, J.J.3    Marchant, C.A.4
  • 100
    • 78049415439 scopus 로고    scopus 로고
    • Chemical Substitutions That Introduce Activity Cliffs Across Different Compound Classes and Biological Targets
    • Wassermann AM, Bajorath Jr. Chemical Substitutions That Introduce Activity Cliffs Across Different Compound Classes and Biological Targets. J Chem Inf Mod 2010; 50: 1248-56.
    • (2010) J Chem Inf Mod , vol.50 , pp. 1248-1256
    • Wassermann, A.M.1    Bajorath2
  • 101
    • 27444434892 scopus 로고    scopus 로고
    • MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist
    • Cruciani G, Carosati E, De Boeck B, et al. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med ChemMed Chem 2005; 48: 6970-9.
    • (2005) J Med ChemMed Chem , vol.48 , pp. 6970-6979
    • Cruciani, G.1    Carosati, E.2    de Boeck, B.3
  • 103
    • 0033779243 scopus 로고    scopus 로고
    • Molecular Descriptors in Chemoinformatics, Computational Combinatorial Chemistry, and Virtual Screening
    • Xue L, Bajorath J. Molecular Descriptors in Chemoinformatics, Computational Combinatorial Chemistry, and Virtual Screening. Comb Chem & High Throughput Screen 2000; 3: 363-72.
    • (2000) Comb Chem & High Throughput Screen , vol.3 , pp. 363-372
    • Xue, L.1    Bajorath, J.2
  • 104
    • 0034351504 scopus 로고    scopus 로고
    • A widely applicable set of descriptors
    • Labute P. A widely applicable set of descriptors. J Mol Graph Model 2000; 18: 464-77.
    • (2000) J Mol Graph Model , vol.18 , pp. 464-477
    • Labute, P.1
  • 105
    • 49449098592 scopus 로고    scopus 로고
    • Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
    • Hong H, Xie Q, Ge W, et al. Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 2008; 48: 1337-44.
    • (2008) J Chem Inf Model , vol.48 , pp. 1337-1344
    • Hong, H.1    Xie, Q.2    Ge, W.3
  • 106
    • 0035353644 scopus 로고    scopus 로고
    • Novel shape descriptors for molecular graphs
    • Randic M. Novel shape descriptors for molecular graphs. J Chem Inf Comput Sci 2001; 41: 607-13.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 607-613
    • Randic, M.1
  • 107
    • 0036489457 scopus 로고    scopus 로고
    • A new class of molecular shape descriptors. 1. Theory and properties
    • Mansfield ML, Covell DG, Jernigan RL. A new class of molecular shape descriptors. 1. Theory and properties. J Chem Inf Comput Sci 2002; 42: 259-73.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 259-273
    • Mansfield, M.L.1    Covell, D.G.2    Jernigan, R.L.3
  • 110
    • 84984376233 scopus 로고
    • New molecular descriptors for 2D and 3D structures
    • Todeschini R, Lasagni M, Marengo E. New molecular descriptors for 2D and 3D structures. J. Chemom. 1994; 8: 263-72.
    • (1994) J. Chemom , vol.8 , pp. 263-272
    • Todeschini, R.1    Lasagni, M.2    Marengo, E.3
  • 111
    • 0033779243 scopus 로고    scopus 로고
    • Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening
    • Xue L, Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb. Chem. High-Throughput Screen. 2000; 3: 363-72.
    • (2000) Comb. Chem. High-Throughput Screen , vol.3 , pp. 363-372
    • Xue, L.1    Bajorath, J.2
  • 112
    • 49449098592 scopus 로고    scopus 로고
    • Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
    • Hong H, Xie Q, Ge W, et al. Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J. Chem Inf. Model. 2008; 48: 1337-44.
    • (2008) J. Chem Inf. Model , vol.48 , pp. 1337-1344
    • Hong, H.1    Xie, Q.2    Ge, W.3
  • 113
    • 10344230435 scopus 로고    scopus 로고
    • Molecular similarity: A key technique in molecular informatics
    • Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004; 2: 3204-18.
    • (2004) Org Biomol Chem , vol.2 , pp. 3204-3218
    • Bender, A.1    Glen, R.C.2
  • 117
    • 0032811868 scopus 로고    scopus 로고
    • Prediction of blood-brain barrier penetration
    • Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2
    • Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 1999; 88: 815-21.
    • (1999) J Pharm Sci , vol.88 , pp. 815-821
    • Clark, D.E.1
  • 118
    • 12144289984 scopus 로고    scopus 로고
    • Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
    • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47: 1739-49.
    • (2004) J Med Chem , vol.47 , pp. 1739-1749
    • Friesner, R.A.1    Banks, J.L.2    Murphy, R.B.3
  • 119
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267: 727-48.
    • (1997) J Mol Biol , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 120
    • 61949166066 scopus 로고    scopus 로고
    • How similar are similarity searching methods? A principal component analysis of molecular descriptor space
    • Bender A, Jenkins JL, Scheiber J, Sukuru SC, Glick M, Davies JW. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 2009; 49: 108-19.
    • (2009) J Chem Inf Model , vol.49 , pp. 108-119
    • Bender, A.1    Jenkins, J.L.2    Scheiber, J.3    Sukuru, S.C.4    Glick, M.5    Davies, J.W.6
  • 121
    • 0028258799 scopus 로고
    • Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties
    • Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 1994; 87: 151-74.
    • (1994) Toxicology , vol.87 , pp. 151-174
    • Maget-Dana, R.1    Peypoux, F.2
  • 122
    • 84857770727 scopus 로고    scopus 로고
    • Two personal perspectives on a key issue in contemporary 3D QSAR
    • doi: 10.1002/wcms.69
    • Clark RD, Norinder U. Two personal perspectives on a key issue in contemporary 3D QSAR. WIREs Comput Mol Sci 2011: doi: 10.1002/wcms.69.
    • (2011) WIREs Comput Mol Sci
    • Clark, R.D.1    Norinder, U.2
  • 123
    • 77952716960 scopus 로고    scopus 로고
    • Molecular shape and medicinal chemistry: A perspective
    • Nicholls A, McGaughey GB, Sheridan RP, et al. Molecular shape and medicinal chemistry: a perspective. J Med Chem 2010; 53: 3862-86.
    • (2010) J Med Chem , vol.53 , pp. 3862-3886
    • Nicholls, A.1    McGaughey, G.B.2    Sheridan, R.P.3
  • 124
    • 34447275949 scopus 로고    scopus 로고
    • Ligand docking and structure-based virtual screening in drug discovery
    • Cavasotto CN, Orry AJ. Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 2007; 7: 1006-14.
    • (2007) Curr Top Med Chem , vol.7 , pp. 1006-1014
    • Cavasotto, C.N.1    Orry, A.J.2
  • 125
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
    • Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 2007; 12: 225-33.
    • (2007) Drug Discov Today , vol.12 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 126
    • 33744551693 scopus 로고    scopus 로고
    • Structure-based virtual screening of chemical libraries for drug discovery
    • Ghosh S, Nie A, An J, Huang Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 2006; 10: 194-202.
    • (2006) Curr Opin Chem Biol , vol.10 , pp. 194-202
    • Ghosh, S.1    Nie, A.2    An, J.3    Huang, Z.4
  • 127
    • 40049100210 scopus 로고    scopus 로고
    • Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-Target Effects from Chemical Structure
    • Bender A, Scheiber J, Glick M, et al. Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-Target Effects from Chemical Structure Chem Med Chem 2007; 2: 861-73.
    • (2007) Chem Med Chem , vol.2 , pp. 861-873
    • Bender, A.1    Scheiber, J.2    Glick, M.3
  • 128
    • 77950571108 scopus 로고    scopus 로고
    • New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
    • Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010;53: 2719-40.
    • (2010) J Med Chem , vol.53 , pp. 2719-2740
    • Baell, J.B.1    Holloway, G.A.2
  • 129
    • 77958518144 scopus 로고    scopus 로고
    • Lead optimization using matched molecular pairs: Inclusion of contextual information for enhanced prediction of HERG inhibition, solubility, and lipophilicity
    • Papadatos G, Alkarouri M, Gillet VJ, et al. Lead optimization using matched molecular pairs: inclusion of contextual information for enhanced prediction of HERG inhibition, solubility, and lipophilicity. J Chem Inf Model 2010; 50: 1872-86.
    • (2010) J Chem Inf Model , vol.50 , pp. 1872-1886
    • Papadatos, G.1    Alkarouri, M.2    Gillet, V.J.3
  • 130
    • 47349112107 scopus 로고    scopus 로고
    • Toxmatch-a new software tool to aid in the development and evaluation of chemically similar groups
    • Patlewicz G, Jeliazkova N, Gallegos Saliner A, Worth AP. Toxmatch-a new software tool to aid in the development and evaluation of chemically similar groups. SAR QSAR Environ Res 2008; 19: 397-412.
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 397-412
    • Patlewicz, G.1    Jeliazkova, N.2    Gallegos-Saliner, A.3    Worth, A.P.4
  • 132
    • 0025863682 scopus 로고
    • Computer prediction of possible toxic action from chemical structure; the DEREK system
    • Sanderson DM, Earnshaw CG. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol 1991; 10: 261-73.
    • (1991) Hum Exp Toxicol , vol.10 , pp. 261-273
    • Sanderson, D.M.1    Earnshaw, C.G.2
  • 133
    • 0030048695 scopus 로고    scopus 로고
    • Computer prediction of possible toxic action from chemical structure: An update on the DEREK system
    • Ridings JE, Barratt MD, Cary R, et al. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology 1996; 106: 267-79.
    • (1996) Toxicology , vol.106 , pp. 267-279
    • Ridings, J.E.1    Barratt, M.D.2    Cary, R.3
  • 134
    • 84857768195 scopus 로고    scopus 로고
    • The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of Toxtree 2008, [pdf on the internet]. European Comission Joint Research Centre, Ispra;, updated 2008; cited 2011 Oct 17
    • The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of Toxtree 2008, [pdf on the internet]. European Comission Joint Research Centre, Ispra; c2008 [updated 2008; cited 2011 Oct 17]. Available from http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/doc/EUR_23241_EN.pdf.
    • (2008)
  • 136
    • 0026785215 scopus 로고
    • Classifying environmental pollutants.1: Structure-activity relationships for prediction of aquatic toxicity
    • JLMH
    • Verhaar HJM, C. VL, JLMH. Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 1992; 25: 471-91.
    • (1992) Chemosphere , vol.25 , pp. 471-491
    • Verhaar, H.J.M.1    Vl, C.2
  • 137
    • 9644255830 scopus 로고    scopus 로고
    • Use of Physicochemical Property Limits to Develop Rules for Identifying Chemical Substances with no Skin Irritation or Corrosion Potential
    • Gerner I, Schlegel K, Walker JD, Hulzebos E. Use of Physicochemical Property Limits to Develop Rules for Identifying Chemical Substances with no Skin Irritation or Corrosion Potential. QSAR Comb Sci 2004; 23: 726-33.
    • (2004) QSAR Comb Sci , vol.23 , pp. 726-733
    • Gerner, I.1    Schlegel, K.2    Walker, J.D.3    Hulzebos, E.4
  • 138
    • 22044433824 scopus 로고    scopus 로고
    • Assessment of the eye irritating properties of chemicals by applying alternatives to the Draize rabbit eye test: The use of QSARs and in vitro tests for the classification of eye irritation
    • Gerner I, Liebsch M, Spielmann H. Assessment of the eye irritating properties of chemicals by applying alternatives to the Draize rabbit eye test: The use of QSARs and in vitro tests for the classification of eye irritation. Atla-Alternatives to Laboratory Animals 2005; 33: 215-37.
    • (2005) Atla-Alternatives to Laboratory Animals , vol.33 , pp. 215-237
    • Gerner, I.1    Liebsch, M.2    Spielmann, H.3
  • 143
    • 79952592181 scopus 로고    scopus 로고
    • Classifying Large Chemical Data Sets: Using A Regularized Potential Function Method
    • Mussa HY, Hawizy L, Nigsch F, Glen RC. Classifying Large Chemical Data Sets: Using A Regularized Potential Function Method. J Chem Inf and Model 2011; 51: 4-14.
    • (2011) J Chem Inf and Model , vol.51 , pp. 4-14
    • Mussa, H.Y.1    Hawizy, L.2    Nigsch, F.3    Glen, R.C.4
  • 144
    • 79551667504 scopus 로고    scopus 로고
    • In-silico ADME models: A general assessment of their utility in drug discovery applications
    • Gleeson MP, Hersey A, Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 2011; 11: 358-81.
    • (2011) Curr Top Med Chem , vol.11 , pp. 358-381
    • Gleeson, M.P.1    Hersey, A.2    Hannongbua, S.3
  • 146
    • 77956964002 scopus 로고    scopus 로고
    • Best Practices for QSAR Model Development, Validation, and Exploitation
    • Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics 2010; 29: 476-88.
    • (2010) Molecular Informatics , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 148
    • 68149160790 scopus 로고    scopus 로고
    • Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models
    • Dragos H, Gilles M, Alexandre V. Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models. J Chem Inf and Model 2009; 49: 1762-76.
    • (2009) J Chem Inf and Model , vol.49 , pp. 1762-1776
    • Dragos, H.1    Gilles, M.2    Alexandre, V.3
  • 151
    • 3042781869 scopus 로고    scopus 로고
    • In silico ADME prediction: Data, models, facts and myths
    • Lombardo F, Gifford E, Shalaeva MY. In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem 2003; 3: 861-75.
    • (2003) Mini Rev Med Chem , vol.3 , pp. 861-875
    • Lombardo, F.1    Gifford, E.2    Shalaeva, M.Y.3
  • 152
    • 0042355457 scopus 로고    scopus 로고
    • In silico prediction of drug toxicity
    • Dearden JC. In silico prediction of drug toxicity. J Comput Aided Mol Des 2003; 17: 119-27.
    • (2003) J Comput Aided Mol Des , vol.17 , pp. 119-127
    • Dearden, J.C.1
  • 153
    • 34047134980 scopus 로고    scopus 로고
    • Development, interpretation and temporal evaluation of a global QSAR of hERG electrophysiology screening data
    • Gavaghan CL, Arnby CH, Blomberg N, Strandlund G, Boyer S. Development, interpretation and temporal evaluation of a global QSAR of hERG electrophysiology screening data. J Comput-aided Mol Des 2007; 21: 189-206.
    • (2007) J Comput-aided Mol Des , vol.21 , pp. 189-206
    • Gavaghan, C.L.1    Arnby, C.H.2    Blomberg, N.3    Strandlund, G.4    Boyer, S.5
  • 154
    • 0038443423 scopus 로고    scopus 로고
    • Dimension related distance and its application in QSAR/QSPR model error estimation
    • Xu Y-j, Gao H. Dimension related distance and its application in QSAR/QSPR model error estimation. QSAR Comb Sci 2003; 22:422-9.
    • (2003) QSAR Comb Sci , vol.22 , pp. 422-429
    • Xu, Y.-J.1    Gao, H.2
  • 156
    • 42749092988 scopus 로고    scopus 로고
    • The importance of the domain of applicability in QSAR modeling
    • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 2008; 26: 1315-26.
    • (2008) J Mol Graph Model , vol.26 , pp. 1315-1326
    • Weaver, S.1    Gleeson, M.P.2
  • 157
    • 0035526164 scopus 로고    scopus 로고
    • Search for Predictive Generic Model of Aqueous Solubility Using Bayesian Neural Nets
    • Bruneau P. Search for Predictive Generic Model of Aqueous Solubility Using Bayesian Neural Nets. J Chem Inf Comput Sci 2001; 41: 1605-16.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1605-1616
    • Bruneau, P.1
  • 158
    • 10044263240 scopus 로고    scopus 로고
    • Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR
    • Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK. Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR. J Chem Inf Comput Sci 2004; 44:1912-28.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1912-1928
    • Sheridan, R.P.1    Feuston, B.P.2    Maiorov, V.N.3    Kearsley, S.K.4
  • 159
    • 77952003134 scopus 로고    scopus 로고
    • Evaluation of Quantitative Structure-Activity Relationship Modeling Strategies: Local and Global Models
    • Helgee EA, Carlsson L, Boyer S, Norinder U. Evaluation of Quantitative Structure-Activity Relationship Modeling Strategies: Local and Global Models. J Chem Inf and Model 2010; 50: 677-89.
    • (2010) J Chem Inf and Model , vol.50 , pp. 677-689
    • Helgee, E.A.1    Carlsson, L.2    Boyer, S.3    Norinder, U.4
  • 160
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci 2004; 44: 1-12.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1-12
    • Hawkins, D.M.1
  • 161
    • 79958775318 scopus 로고    scopus 로고
    • Development and Comparison of hERG Blocker Classifiers: Assessment on Different Datasets Yields Markedly Different Results
    • Marchese Robinson RL, Glen RC, Mitchell JBO. Development and Comparison of hERG Blocker Classifiers: Assessment on Different Datasets Yields Markedly Different Results. Mol Informatics 2011;30: 443-58.
    • (2011) Mol Informatics , vol.30 , pp. 443-458
    • Marchese-Robinson, R.L.1    Glen, R.C.2    Mitchell, J.B.O.3
  • 163
    • 39449135396 scopus 로고    scopus 로고
    • The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
    • Johnson SR. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 2008; 48: 25-6.
    • (2008) J Chem Inf Model , vol.48 , pp. 25-26
    • Johnson, S.R.1
  • 164
    • 37349097759 scopus 로고    scopus 로고
    • Y-Randomization and its variants in QSPR/QSAR
    • Rucker C, Rucker G, Meringer M. Y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 2007; 47: 2345-57.
    • (2007) J Chem Inf Model , vol.47 , pp. 2345-2357
    • Rucker, C.1    Rucker, G.2    Meringer, M.3
  • 165
    • 34250617990 scopus 로고    scopus 로고
    • Time-Series QSAR Analysis of Human Plasma Protein Binding Data
    • Rodgers SL, Davis AM, van de Waterbeemd H. Time-Series QSAR Analysis of Human Plasma Protein Binding Data. QSAR Comb Sci 2007; 26: 511-21.
    • (2007) QSAR Comb Sci , vol.26 , pp. 511-521
    • Rodgers, S.L.1    Davis, A.M.2    van de Waterbeemd, H.3
  • 166
    • 37249039935 scopus 로고    scopus 로고
    • QSAR modeling using automatically updating correction libraries: Application to a human plasma protein binding model
    • Rodgers SL, Davis AM, Tomkinson NP. QSAR modeling using automatically updating correction libraries: Application to a human plasma protein binding model. J Chem Inf and Model 2007; 47:2401-07.
    • (2007) J Chem Inf and Model , vol.47 , pp. 2401-2407
    • Rodgers, S.L.1    Davis, A.M.2    Tomkinson, N.P.3
  • 170
    • 0001085722 scopus 로고
    • Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids
    • Hansch C, Quinlan JE, Lawrence GL. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. JOrg Chem 1968; 33: 347-50.
    • (1968) JOrg Chem , vol.33 , pp. 347-350
    • Hansch, C.1    Quinlan, J.E.2    Lawrence, G.L.3
  • 171
    • 0040914011 scopus 로고
    • P-o-7t Analysis. A Method for the Correlation of Biological Activity and Chemical Structure
    • Hansch C, Fujita T. P-o-7t Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J Am Chem Soc 1964; 86: 1616-26.
    • (1964) J Am Chem Soc , vol.86 , pp. 1616-1626
    • Hansch, C.1    Fujita, T.2
  • 172
    • 33947487319 scopus 로고
    • Additions and Corrections - p-o-7t Analysis. A Method for the Correlation of Biological Activity and Chemical Structure
    • Hansch C, Fujita T. Additions and Corrections - p-o-7t Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J Am Chem Soc 1964; 86: 5710-5720.
    • (1964) J Am Chem Soc , vol.86 , pp. 5710-5720
    • Hansch, C.1    Fujita, T.2
  • 174
    • 72949116422 scopus 로고    scopus 로고
    • Fragment-Based Prediction of the Clinical Occurrence of Long QT Syndrome and Torsade de Pointes
    • Clark M, Wiseman JS. Fragment-Based Prediction of the Clinical Occurrence of Long QT Syndrome and Torsade de Pointes. J Chem Inf and Model 2009; 49: 2617-26.
    • (2009) J Chem Inf and Model , vol.49 , pp. 2617-2626
    • Clark, M.1    Wiseman, J.S.2
  • 175
    • 78650663374 scopus 로고    scopus 로고
    • On the separation of classes: Can the Fisher criterion be improved upon when classes have unequal variance-covariance structure?
    • Aberg KM, Jacobsson SP. On the separation of classes: can the Fisher criterion be improved upon when classes have unequal variance-covariance structure?J ChemometrJ Chemometr 2010; 24: 650-54.
    • (2010) J ChemometrJ Chemometr , vol.24 , pp. 650-654
    • Aberg, K.M.1    Jacobsson, S.P.2
  • 176
    • 0000764772 scopus 로고
    • The Use of Multiple Measurements in Taxonomic Problems
    • Fisher RA. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 1936; 7: 179-88.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 177
    • 77951675415 scopus 로고    scopus 로고
    • Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases
    • Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem 2010; 5: 716-29.
    • (2010) ChemMedChem , vol.5 , pp. 716-729
    • Doddareddy, M.R.1    Klaasse, E.C.2    Shagufta3    Ijzerman, A.P.4    Bender, A.5
  • 178
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics
    • Nigsch F, Bender A, Jenkins JL, Mitchell JBO. Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics. J Chem Inf and Model 2008; 48: 2313-25.
    • (2008) J Chem Inf and Model , vol.48 , pp. 2313-2325
    • Nigsch, F.1    Bender, A.2    Jenkins, J.L.3    Mitchell, J.B.O.4
  • 181
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
    • Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 2009, 14, 332-48.
    • (2009) Psychol Methods , vol.14 , pp. 332-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 182
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze BH, Kelm BM, Masuch R, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 2009; 10; 213.
    • (2009) BMC Bioinformatics , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3
  • 183
    • 0033217466 scopus 로고    scopus 로고
    • Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning
    • Rusinko A, Farmen MW, Lambert CG, Brown PL, Young SS. Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning. J Chem Inf Comput Sci 1999; 39: 1017-26.
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 1017-1026
    • Rusinko, A.1    Farmen, M.W.2    Lambert, C.G.3    Brown, P.L.4    Young, S.S.5
  • 184
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 2001; 26: 5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 185
    • 33746275630 scopus 로고    scopus 로고
    • In silico classification of HERG channel blockers: A knowledge-based strategy
    • Dubus E, Ijjaali I, Petitet F, Michel A. In silico classification of HERG channel blockers: a knowledge-based strategy. ChemMedChem 2006; 1: 622-30.
    • (2006) ChemMedChem , vol.1 , pp. 622-630
    • Dubus, E.1    Ijjaali, I.2    Petitet, F.3    Michel, A.4
  • 186
    • 0035478854 scopus 로고    scopus 로고
    • Random forests. Mach
    • Breiman L. Random forests. Mach. Learn. 2001; 45: 5-32.
    • (2001) Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 188
    • 0034367139 scopus 로고    scopus 로고
    • Artificial Neural Networks and Their Use in Chemistry
    • Lipkowitz, K.B, Boyd, D.B, Eds.; Wiley-VCH: New York
    • Peterson KL. Artificial Neural Networks and Their Use in Chemistry In: Reviews in Computational Chemistry; Lipkowitz, K.B, Boyd, D.B, Eds.; Wiley-VCH: New York, 2000, Vol. 16, 53-128.
    • (2000) Reviews In Computational Chemistry , vol.16 , pp. 53-128
    • Peterson, K.L.1
  • 189
    • 52649109749 scopus 로고    scopus 로고
    • Classification models for HERG inhibitors by counter-propagation neural networks
    • Thai KM, Ecker GF. Classification models for HERG inhibitors by counter-propagation neural networks. Chem Biol Drug Des 2008; 72: 279-89.
    • (2008) Chem Biol Drug Des , vol.72 , pp. 279-289
    • Thai, K.M.1    Ecker, G.F.2
  • 190
    • 66149091150 scopus 로고    scopus 로고
    • Development and Uses of Artificial Intelligence in Chemistry
    • Lipkowitz, K.B., Cudari T.R. Eds.; Wiley-VCH: New York
    • Cartwright H. Development and Uses of Artificial Intelligence in Chemistry In: Reviews in Computational Chemistry; Lipkowitz, K.B., Cudari T.R. Eds.; Wiley-VCH: New York, 2007, Vol. 25, 349-389.
    • (2007) Reviews In Computational Chemistry , vol.25 , pp. 349-389
    • Cartwright, H.1
  • 191
    • 34848824629 scopus 로고    scopus 로고
    • Applications of Support Vector Machines in Chemistry
    • Lipkowitz, K.B., Cudari T.R. Eds.; Wiley-VCH: New York
    • Ivanciuc O. Applications of Support Vector Machines in Chemistry In: Reviews in Computational Chemistry; Lipkowitz, K.B., Cudari T.R. Eds.; Wiley-VCH: New York, 2006, Vol. 23, 291-400.
    • (2006) Reviews In Computational Chemistry , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 193
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi SS, Lin CJ. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 2003; 15: 1667-89.
    • (2003) Neural Comput , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 194
    • 33244474244 scopus 로고    scopus 로고
    • Development and evaluation of an in silico model for hERG binding
    • Song MH, Clark M. Development and evaluation of an in silico model for hERG binding. J Chem Inf and Model 2006; 46: 392-400.
    • (2006) J Chem Inf and Model , vol.46 , pp. 392-400
    • Song, M.H.1    Clark, M.2
  • 195
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure--property relationship approach based on the k-nearest-neighbor principle
    • Zheng W, Tropsha A. Novel variable selection quantitative structure--property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 2000; 40: 185-94.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 185-194
    • Zheng, W.1    Tropsha, A.2
  • 196
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000; 16: 412-24.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.F.4    Nielsen, H.5
  • 197
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975; 405: 442-51.
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 198
    • 58149412516 scopus 로고
    • Weighed kappa: Nominal scale agreement with provision for scaled disagreement or partial credit
    • Cohen J. Weighed kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin 1968; 70: 213-20.
    • (1968) Psychological Bulletin , vol.70 , pp. 213-220
    • Cohen, J.1
  • 200
    • 33846230530 scopus 로고    scopus 로고
    • Plasma protein binding affinity and its relationship to molecular structure: An in-silico analysis
    • Gleeson MP. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007; 50: 101-12.
    • (2007) J Med Chem , vol.50 , pp. 101-112
    • Gleeson, M.P.1
  • 201
    • 33645404135 scopus 로고    scopus 로고
    • In silico human and rat Vss quantitative structure-activity relationship models
    • Gleeson MP, Waters NJ, Paine SW, Davis AM. In silico human and rat Vss quantitative structure-activity relationship models. J Med Chem 2006; 49: 1953-63.
    • (2006) J Med Chem , vol.49 , pp. 1953-1963
    • Gleeson, M.P.1    Waters, N.J.2    Paine, S.W.3    Davis, A.M.4
  • 202
    • 0346500732 scopus 로고    scopus 로고
    • A distance measure between models: A tool for similarity/diversity analysis of model populations
    • Todeschini R, Consonni V, Pavan M. A distance measure between models: a tool for similarity/diversity analysis of model populations. Chemometr Intell Lab 2004; 70: 55-61.
    • (2004) Chemometr Intell Lab , vol.70 , pp. 55-61
    • Todeschini, R.1    Consonni, V.2    Pavan, M.3
  • 203
    • 34250687911 scopus 로고    scopus 로고
    • Assessing Applicability Domains of Toxicological QSARs: Definition, Confidence in Predicted Values, and the Role of Mechanisms of Action
    • Schultz TW, Hewitt M, Netzeva TI, Cronin MTD. Assessing Applicability Domains of Toxicological QSARs: Definition, Confidence in Predicted Values, and the Role of Mechanisms of Action. QSAR Comb Sci 2007; 26: 238-54.
    • (2007) QSAR Comb Sci , vol.26 , pp. 238-254
    • Schultz, T.W.1    Hewitt, M.2    Netzeva, T.I.3    Cronin, M.T.D.4
  • 204
    • 33745383499 scopus 로고    scopus 로고
    • Logd7.4 modeling using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction
    • Bruneau P, McElroy NR. Logd7.4 modeling using Bayesian Regularized Neural Networks. Assessment and correction of the errors of prediction. J Chem Inf Model 2006; 46: 1379-1387.
    • (2006) J Chem Inf Model , vol.46 , pp. 1379-1387
    • Bruneau, P.1    McElroy, N.R.2
  • 205
    • 78650714907 scopus 로고    scopus 로고
    • Applicability Domains for Classification Problems: Benchmarking of Distance to Models for Ames Mutagenicity Set
    • Sushko I, Novotarskyi S, Korner R, et al. Applicability Domains for Classification Problems: Benchmarking of Distance to Models for Ames Mutagenicity Set. J Chem Inf and Model 2010; 50: 2094-111.
    • (2010) J Chem Inf and Model , vol.50 , pp. 2094-2111
    • Sushko, I.1    Novotarskyi, S.2    Korner, R.3
  • 206
    • 54249125512 scopus 로고    scopus 로고
    • Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis: Focusing on Applicability Domain and Overfitting by Variable Selection
    • Tetko IV, Sushko I, Pandey AK, et al. Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis: Focusing on Applicability Domain and Overfitting by Variable Selection. J Chem Inf and Model 2008; 48: 1733-46.
    • (2008) J Chem Inf and Model , vol.48 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3
  • 208
    • 73349083976 scopus 로고    scopus 로고
    • Chemical Domain of QSAR Models from Atom-Centered Fragments
    • Kuhne R, Ebert RU, Schuurmann G. Chemical Domain of QSAR Models from Atom-Centered Fragments. J Chem Inf and Model 2009; 49: 2660-69.
    • (2009) J Chem Inf and Model , vol.49 , pp. 2660-2669
    • Kuhne, R.1    Ebert, R.U.2    Schuurmann, G.3
  • 209
    • 27744443484 scopus 로고    scopus 로고
    • Human ether-a-go-go related gene (HERG): A chemist's perspective
    • Vaz RJ, Li Y, Rampe D. Human ether-a-go-go related gene (HERG): a chemist's perspective. Prog Med Chem 2005; 43: 1-18.
    • (2005) Prog Med Chem , vol.43 , pp. 1-18
    • Vaz, R.J.1    Li, Y.2    Rampe, D.3
  • 210
    • 64549115930 scopus 로고    scopus 로고
    • Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties
    • Polak S, Wisniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties. J Applied Toxicol 2009; 29: 183-206.
    • (2009) J Applied Toxicol , vol.29 , pp. 183-206
    • Polak, S.1    Wisniowska, B.2    Brandys, J.3
  • 211
    • 33748129547 scopus 로고    scopus 로고
    • Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks(TM) HT
    • Bridgland-Taylor MH, Hargreaves AC, Easter A, et al. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks(TM) HT. J Pharmacol Toxicologl 2006; 54: 189-99.
    • (2006) J Pharmacol Toxicologl , vol.54 , pp. 189-199
    • Bridgland-Taylor, M.H.1    Hargreaves, A.C.2    Easter, A.3
  • 212
    • 39749088786 scopus 로고    scopus 로고
    • Herg classification model based on a combination of support vector machine method and GRIND descriptors
    • Li Q, Jorgensen FS, Oprea T, Brunak S, Taboureau O. Herg classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm 2008; 5: 117-27.
    • (2008) Mol Pharm , vol.5 , pp. 117-127
    • Li, Q.1    Jorgensen, F.S.2    Oprea, T.3    Brunak, S.4    Taboureau, O.5
  • 213
    • 78049442434 scopus 로고    scopus 로고
    • In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage
    • Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model 2010; 50: 1304-18.
    • (2010) J Chem Inf Model , vol.50 , pp. 1304-1318
    • Su, B.H.1    Shen, M.Y.2    Esposito, E.X.3    Hopfinger, A.J.4    Tseng, Y.J.5
  • 214
    • 77954075802 scopus 로고    scopus 로고
    • Gaussian processes for classification: QSAR modeling of ADMET and target activity
    • Obrezanova O, Segall MD. Gaussian processes for classification: QSAR modeling of ADMET and target activity. J Chem Inf Model 2010; 50: 1053-61.
    • (2010) J Chem Inf Model , vol.50 , pp. 1053-1061
    • Obrezanova, O.1    Segall, M.D.2
  • 215
    • 79151471075 scopus 로고    scopus 로고
    • Predicting hERG activities of compounds from their 3D structures: Development and evaluation of a global descriptors based QSAR model
    • Sen S, Sinha N. Predicting hERG activities of compounds from their 3D structures: Development and evaluation of a global descriptors based QSAR model. European J Med Chem 2011; 46: 618-30.
    • (2011) European J Med Chem , vol.46 , pp. 618-630
    • Sen, S.1    Sinha, N.2
  • 216
    • 48149096544 scopus 로고    scopus 로고
    • Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model
    • Yao X, Anderson DL, Ross SA, et al. Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br J Pharmacol 2008; 154: 1446-56.
    • (2008) Br J Pharmacol , vol.154 , pp. 1446-1456
    • Yao, X.1    Anderson, D.L.2    Ross, S.A.3
  • 217
    • 41649121041 scopus 로고    scopus 로고
    • A binary QSAR model for classification of hERG potassium channel blockers
    • Thai KM, Ecker GF. A binary QSAR model for classification of hERG potassium channel blockers. Bioorg Med Chem 2008; 16: 4107-19.
    • (2008) Bioorg Med Chem , vol.16 , pp. 4107-4119
    • Thai, K.M.1    Ecker, G.F.2
  • 219
    • 68349152323 scopus 로고    scopus 로고
    • Similarity-based SIBAR descriptors for classification of chemically diverse hERG blockers
    • Thai KM, Ecker GF. Similarity-based SIBAR descriptors for classification of chemically diverse hERG blockers. Mol Divers 2009; 13: 321-36.
    • (2009) Mol Divers , vol.13 , pp. 321-336
    • Thai, K.M.1    Ecker, G.F.2
  • 220
    • 0036229805 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel
    • Ekins S, Crumb WJ, Sarazan RD, Wikel JH, Wrighton SA. Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther 2002; 301: 427-34.
    • (2002) J Pharmacol Exp Ther , vol.301 , pp. 427-434
    • Ekins, S.1    Crumb, W.J.2    Sarazan, R.D.3    Wikel, J.H.4    Wrighton, S.A.5
  • 221
    • 33750998518 scopus 로고    scopus 로고
    • Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers
    • Aronov AM. Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers. J Med Chem 2006; 49: 6917-21.
    • (2006) J Med Chem , vol.49 , pp. 6917-6921
    • Aronov, A.M.1
  • 223
    • 47249159421 scopus 로고    scopus 로고
    • Modeling hERG and its Interactions with Drugs: Recent Advances in Light of Current Potassium Channel Simulations
    • Recanatini M, Cavalli A, Masetti M. Modeling hERG and its Interactions with Drugs: Recent Advances in Light of Current Potassium Channel Simulations. Chem Med Chem 2008; 3: 523-35.
    • (2008) Chem Med Chem , vol.3 , pp. 523-535
    • Recanatini, M.1    Cavalli, A.2    Masetti, M.3
  • 224
    • 0036904104 scopus 로고    scopus 로고
    • A virtual screening method for prediction of the HERG potassium channel liability of compound libraries
    • Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G. A virtual screening method for prediction of the HERG potassium channel liability of compound libraries. Chem Bio Chem 2002; 3: 455-9.
    • (2002) Chem Bio Chem , vol.3 , pp. 455-459
    • Roche, O.1    Trube, G.2    Zuegge, J.3    Pflimlin, P.4    Alanine, A.5    Schneider, G.6
  • 225
    • 67650067615 scopus 로고    scopus 로고
    • Bias-correction of regression models: A case study on hERG inhibition
    • Hansen K, Rathke F, Schroeter T, et al. Bias-correction of regression models: a case study on hERG inhibition. J Chem Inf Model 2009; 49: 1486-96.
    • (2009) J Chem Inf Model , vol.49 , pp. 1486-1496
    • Hansen, K.1    Rathke, F.2    Schroeter, T.3
  • 227
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova O, Csanyi G, Gola JM, Segall MD. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007; 47: 1847-57.
    • (2007) J Chem Inf Model , vol.47 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.3    Segall, M.D.4
  • 228
  • 229
    • 78650508749 scopus 로고    scopus 로고
    • Using Electrophysiology and In Silico Three-Dimensional Modeling to Reduce Human Ether-a-go-go Related Gene K(+) Channel Inhibition in a Histamine H3 Receptor Antagonist Program
    • Davenport AJ, Moller C, Heifetz A, Mazanetz MP, Law RJ, Ebneth A., Gemkow MJ. Using Electrophysiology and In Silico Three-Dimensional Modeling to Reduce Human Ether-a-go-go Related Gene K(+) Channel Inhibition in a Histamine H3 Receptor Antagonist Program. Assay and Drug Development Technologies 2010; 8: 781-9.
    • (2010) Assay and Drug Development Technologies , vol.8 , pp. 781-789
    • Davenport, A.J.1    Moller, C.2    Heifetz, A.3    Mazanetz, M.P.4    Law, R.J.5    Ebneth, A.6    Gemkow, M.J.7
  • 230
    • 68149129503 scopus 로고    scopus 로고
    • ADMET rules of thumb II: A comparison of the effects of common substituents on a range of ADMET parameters
    • Gleeson P, Bravi G, Modi S, Lowe D. ADMET rules of thumb II: A comparison of the effects of common substituents on a range of ADMET parameters. Bioorg Med Chem 2009; 17: 5906-19.
    • (2009) Bioorg Med Chem , vol.17 , pp. 5906-5919
    • Gleeson, P.1    Bravi, G.2    Modi, S.3    Lowe, D.4
  • 231
    • 64349094193 scopus 로고    scopus 로고
    • Docking Model of Drug Binding to the Human Ether-a-go-go Potassium Channel Guided by Tandem Dimer Mutant Patch-Clamp Data: A Synergic Approach
    • Imai YN, Ryu S, Oiki S. Docking Model of Drug Binding to the Human Ether-a-go-go Potassium Channel Guided by Tandem Dimer Mutant Patch-Clamp Data: A Synergic Approach. J Med Chem 2009; 52: 1630-38.
    • (2009) J Med Chem , vol.52 , pp. 1630-1638
    • Imai, Y.N.1    Ryu, S.2    Oiki, S.3
  • 233
    • 0015591140 scopus 로고
    • An improved bacterial test system for the detection and classification of mutagens and carcinogens
    • Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 1973; 70: 782-6.
    • (1973) Proc Natl Acad Sci U S A , vol.70 , pp. 782-786
    • Ames, B.N.1    Lee, F.D.2    Durston, W.E.3
  • 234
    • 0016685233 scopus 로고
    • Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test
    • Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 1975; 31: 347-64.
    • (1975) Mutat Res , vol.31 , pp. 347-364
    • Ames, B.N.1    McCann, J.2    Yamasaki, E.3
  • 235
    • 0021236729 scopus 로고
    • The detection of environmental mutagens and potential carcinogens
    • Ames BN. The detection of environmental mutagens and potential carcinogens. Cancer 1984; 53: 2034-40.
    • (1984) Cancer , vol.53 , pp. 2034-2040
    • Ames, B.N.1
  • 237
    • 0026342473 scopus 로고
    • The genetic toxicity database of the National Toxicology Program: Evaluation of the relationships between genetic toxicity and carcinogenicity
    • Tennant RW. The genetic toxicity database of the National Toxicology Program: evaluation of the relationships between genetic toxicity and carcinogenicity. Environ Health Perspect 1991; 96: 47-51.
    • (1991) Environ Health Perspect , vol.96 , pp. 47-51
    • Tennant, R.W.1
  • 238
    • 84857693160 scopus 로고    scopus 로고
    • Tokyo Metropolitan Institute of Public Health; [updated 2008 May 16; cited 2011 Oct 17]
    • Mutagenicity of food additives dataset[homepage on the internet]. Tokyo Metropolitan Institute of Public Health; [updated 2008 May 16; cited 2011 Oct 17]. Available from www.tokyo-eiken.go.jp/henigen/index.htm
    • Mutagenicity of Food Additives Dataset[homepage On the Internet]
  • 239
    • 21544473568 scopus 로고    scopus 로고
    • Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity
    • Kirkland D, Aardema M, Henderson L, Muller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 2005; 584: 1-256.
    • (2005) Mutat Res , vol.584 , pp. 1-256
    • Kirkland, D.1    Aardema, M.2    Henderson, L.3    Muller, L.4
  • 240
    • 0023856614 scopus 로고
    • Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S
    • Ashby J, Tennant RW. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res 1988; 204: 17-115.
    • (1988) NCI/NTP. Mutat Res , vol.204 , pp. 17-115
    • Ashby, J.1    Tennant, R.W.2
  • 241
    • 0000973407 scopus 로고
    • Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP
    • Ashby J, Tennant RW. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res 1991; 257: 229-306.
    • (1991) Mutat Res , vol.257 , pp. 229-306
    • Ashby, J.1    Tennant, R.W.2
  • 242
    • 0022400101 scopus 로고
    • Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity
    • Ashby J. Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ Mutagen 1985; 7: 919-21.
    • (1985) Environ Mutagen , vol.7 , pp. 919-921
    • Ashby, J.1
  • 244
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
    • Helma C, Cramer T, Kramer S, De Raedt L. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 2004; 44: 1402-11.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    de Raedt, L.4
  • 245
    • 0027899779 scopus 로고
    • Neural network classification of mutagens using structural fragment data
    • Brinn M, Walsh PT, Payne MP, Bott B. Neural network classification of mutagens using structural fragment data. SAR and QSAR in Environ Res 1993; 2-3: 189-210.
    • (1993) SAR and QSAR In Environ Res , vol.2 , Issue.3 , pp. 189-210
    • Brinn, M.1    Walsh, P.T.2    Payne, M.P.3    Bott, B.4
  • 246
    • 27744582712 scopus 로고    scopus 로고
    • In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software
    • Contrera JF, Matthews EJ, Kruhlak NL, Benz RD. In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software. Reg Toxicol and Pharmacol 2005; 43: 313-23.
    • (2005) Reg Toxicol and Pharmacol , vol.43 , pp. 313-323
    • Contrera, J.F.1    Matthews, E.J.2    Kruhlak, N.L.3    Benz, R.D.4
  • 247
    • 0041766208 scopus 로고    scopus 로고
    • In-silico screening of high production volume chemicals for mutagenicity using the MCASE QSAR expert system
    • Klopman G, Chakravarti SK, Harris N, Ivanov J, Saiakhov RD. In-silico screening of high production volume chemicals for mutagenicity using the MCASE QSAR expert system. SAR QSAR Env Res 2003; 14: 165-80.
    • (2003) SAR QSAR Env Res , vol.14 , pp. 165-180
    • Klopman, G.1    Chakravarti, S.K.2    Harris, N.3    Ivanov, J.4    Saiakhov, R.D.5
  • 248
    • 0242401969 scopus 로고    scopus 로고
    • QSAR modeling of genotoxicity on non-congeneric sets of organic compounds
    • Maran U, Sild S. QSAR modeling of genotoxicity on non-congeneric sets of organic compounds. Artif Intell Rev 2003; 20: 13-38.
    • (2003) Artif Intell Rev , vol.20 , pp. 13-38
    • Maran, U.1    Sild, S.2
  • 249
    • 3042807182 scopus 로고    scopus 로고
    • Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals I: TA100 model
    • Mekenyan O, Dimitrov S, Serafimova R, Thompson E, Kotov S, Dimitrova N, Walker JD. Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals I: TA100 model. Chem Res in Toxicol 2004; 17: 753-66.
    • (2004) Chem Res In Toxicol , vol.17 , pp. 753-766
    • Mekenyan, O.1    Dimitrov, S.2    Serafimova, R.3    Thompson, E.4    Kotov, S.5    Dimitrova, N.6    Walker, J.D.7
  • 250
    • 34248597840 scopus 로고    scopus 로고
    • Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model
    • Mekenyan O, Serafimova R, Todorov M, Pavlov T, Kotov S, Jacob E, Aptula A. Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model. Chem Res in Toxicol 2007; 20: 662-76.
    • (2007) Chem Res In Toxicol , vol.20 , pp. 662-676
    • Mekenyan, O.1    Serafimova, R.2    Todorov, M.3    Pavlov, T.4    Kotov, S.5    Jacob, E.6    Aptula, A.7
  • 252
    • 68349150527 scopus 로고    scopus 로고
    • Towards a quantitative framework for the prediction of DDIs arising from cytochrome P450 induction
    • Almond LM, Yang J, Jamei M, Tucker GT, Rostami-Hodjegan A. Towards a quantitative framework for the prediction of DDIs arising from cytochrome P450 induction. Curr Drug Metabol 2009; 10: 420-32.
    • (2009) Curr Drug Metabol , vol.10 , pp. 420-432
    • Almond, L.M.1    Yang, J.2    Jamei, M.3    Tucker, G.T.4    Rostami-Hodjegan, A.5
  • 253
    • 34247505094 scopus 로고    scopus 로고
    • Induction of drug metabolizing enzymes: A survey of in vitro methodologies and interpretations used in the pharmaceutical industry-do they comply with FDA recommendations?
    • Hewitt NJ, de Kanter R, LeCluyse E. Induction of drug metabolizing enzymes: a survey of in vitro methodologies and interpretations used in the pharmaceutical industry-do they comply with FDA recommendations? Chem-biol interact 2007; 168: 51-65.
    • (2007) Chem-biol Interact , vol.168 , pp. 51-65
    • Hewitt, N.J.1    de Kanter, R.2    Lecluyse, E.3
  • 254
    • 27644596457 scopus 로고    scopus 로고
    • Predicting in vivo drug interactions from in vitro drug discovery data
    • Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005; 4: 825-33.
    • (2005) Nat Rev Drug Discov , vol.4 , pp. 825-833
    • Wienkers, L.C.1    Heath, T.G.2
  • 255
    • 45249121177 scopus 로고    scopus 로고
    • Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4
    • Zhou S-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metabol 2008; 9: 310-22.
    • (2008) Curr Drug Metabol , vol.9 , pp. 310-322
    • Zhou, S.-F.1
  • 257
    • 68249162213 scopus 로고    scopus 로고
    • Predicting drug-drug interactions: An FDA perspective
    • Zhang L, Zhang YD, Zhao P, Huang S-M. Predicting drug-drug interactions: an FDA perspective. AAPSJ 2009; 11: 300-6.
    • (2009) AAPSJ , vol.11 , pp. 300-306
    • Zhang, L.1    Zhang, Y.D.2    Zhao, P.3    Huang, S.-M.4
  • 258
    • 67649404709 scopus 로고    scopus 로고
    • In vitro and in vivo Induction of Cytochrome P450: A Survey of the Current Practices and Recommendations: A Pharmaceutical Research and Manufacturers of America Perspective
    • Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp S, Silva J, Sinha V, Sinz M, Skerjanec A. In vitro and in vivo Induction of Cytochrome P450: A Survey of the Current Practices and Recommendations: A Pharmaceutical Research and Manufacturers of America Perspective. Drug Metabol Dispos 2009; 37: 1339-54.
    • (2009) Drug Metabol Dispos , vol.37 , pp. 1339-1354
    • Chu, V.1    Einolf, H.J.2    Evers, R.3    Kumar, G.4    Moore, D.5    Ripp, S.6    Silva, J.7    Sinha, V.8    Sinz, M.9    Skerjanec, A.10
  • 259
    • 0033934402 scopus 로고    scopus 로고
    • Quantitative Structure-Activity Relationships (QSAR) Study of Flavonoid Derivatives for Inhibition of Cytochrome P450 1A2
    • Moon T, Chi MH, Kim D-H, Yoon CN, Choi Y-S. Quantitative Structure-Activity Relationships (QSAR) Study of Flavonoid Derivatives for Inhibition of Cytochrome P450 1A2. Quant Structure-Act Rel 2000; 19: 257-63.
    • (2000) Quant Structure-Act Rel , vol.19 , pp. 257-263
    • Moon, T.1    Chi, M.H.2    Kim, D.-H.3    Yoon, C.N.4    Choi, Y.-S.5
  • 260
    • 54249100909 scopus 로고    scopus 로고
    • Comparative QSAR Studies of CYP1A2 Inhibitor Flavonoids Using 2D and 3D Descriptors
    • Roy K, Roy PP. Comparative QSAR Studies of CYP1A2 Inhibitor Flavonoids Using 2D and 3D Descriptors. Chem Biol Drug Des 2008; 72: 370-82.
    • (2008) Chem Biol Drug Des , vol.72 , pp. 370-382
    • Roy, K.1    Roy, P.P.2
  • 261
    • 79960366106 scopus 로고    scopus 로고
    • Optimizing QSAR Models for Predicting Ligand Binding to the Drug-Metabolizing Cytochrome P450 Isoenzyme CYP2D6
    • Saraceno M, Massarelli I, Imbriani M, James TL, Bianucci AM. Optimizing QSAR Models for Predicting Ligand Binding to the Drug-Metabolizing Cytochrome P450 Isoenzyme CYP2D6. Chem Biol Drug Des 2011; 78: 236-51.
    • (2011) Chem Biol Drug Des , vol.78 , pp. 236-251
    • Saraceno, M.1    Massarelli, I.2    Imbriani, M.3    James, T.L.4    Bianucci, A.M.5
  • 262
    • 0041698413 scopus 로고    scopus 로고
    • Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition
    • Susnow RG, Dixon SL. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J Chem Inf Comput Sci 2003; 43: 1308-15.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1308-1315
    • Susnow, R.G.1    Dixon, S.L.2
  • 263
    • 34547158029 scopus 로고    scopus 로고
    • Quantitative Structure-Activity Relationship Study of Binding Affinity of Azole Compounds with CYP2B and CYP3A
    • Itokawa D, Nishioka T, Fukushima J, Yasuda T, Yamauchi A, Chuman H. Quantitative Structure-Activity Relationship Study of Binding Affinity of Azole Compounds with CYP2B and CYP3A. QSAR Comb Sci 2007; 26: 828-36.
    • (2007) QSAR Comb Sci , vol.26 , pp. 828-836
    • Itokawa, D.1    Nishioka, T.2    Fukushima, J.3    Yasuda, T.4    Yamauchi, A.5    Chuman, H.6
  • 264
    • 23444437988 scopus 로고    scopus 로고
    • A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries
    • Chohan KK, Paine SW, Mistry J, Barton P, Davis AM. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J Med Chem 2005; 48: 5154-61.
    • (2005) J Med Chem , vol.48 , pp. 5154-5161
    • Chohan, K.K.1    Paine, S.W.2    Mistry, J.3    Barton, P.4    Davis, A.M.5
  • 266
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani G. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 2000; 11: S29-S39.
    • (2000) Eur J Pharm Sci , vol.11
    • Cruciani, G.1
  • 267
    • 33750118328 scopus 로고    scopus 로고
    • Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: Importance of the quality of the dataset
    • Burton J, Ijjaali I, Barberan O, Petitet F, Vercauteren DP, Michel A. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. J Med Chem 2006; 49: 6231-40.
    • (2006) J Med Chem , vol.49 , pp. 6231-6240
    • Burton, J.1    Ijjaali, I.2    Barberan, O.3    Petitet, F.4    Vercauteren, D.P.5    Michel, A.6
  • 268
    • 0042357537 scopus 로고    scopus 로고
    • Generation and Validation of Rapid Computational Filters for CYP2D6 and CYP3A4
    • Ekins S, Berbaum J, Harrison RK. Generation and Validation of Rapid Computational Filters for CYP2D6 and CYP3A4. Drug Metabol Dispos 2003; 31: 1077-80.
    • (2003) Drug Metabol Dispos , vol.31 , pp. 1077-1080
    • Ekins, S.1    Berbaum, J.2    Harrison, R.K.3
  • 269
    • 33846923287 scopus 로고    scopus 로고
    • In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors
    • Jensen BF, Vind C, Brockhoff PB, Refsgaard HHF. In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors. J Med Chem 2007; 50: 501-11.
    • (2007) J Med Chem , vol.50 , pp. 501-511
    • Jensen, B.F.1    Vind, C.2    Brockhoff, P.B.3    Refsgaard, H.H.F.4
  • 272
    • 33748105936 scopus 로고    scopus 로고
    • Computational Models for Predicting Interactions with Cytochrome p450 Enzyme
    • Arimoto R. Computational Models for Predicting Interactions with Cytochrome p450 Enzyme. Curr Topics Med Chem 2006; 6: 1609-18.
    • (2006) Curr Topics Med Chem , vol.6 , pp. 1609-1618
    • Arimoto, R.1
  • 274
    • 0035676242 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships (QSARs) within substrates of human cytochromes P450 involved in drug metabolism
    • Lewis DF, Modi S, Dickins M. Quantitative structure-activity relationships (QSARs) within substrates of human cytochromes P450 involved in drug metabolism. Drug Metabol Drug Interact 2001; 18: 221-42.
    • (2001) Drug Metabol Drug Interact , vol.18 , pp. 221-242
    • Lewis, D.F.1    Modi, S.2    Dickins, M.3
  • 276
    • 70350513549 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors with respect to binding free energy and pIC50 using common molecular descriptors
    • Dagliyan O, Kavakli IH, Turkay M. Classification of cytochrome P450 inhibitors with respect to binding free energy and pIC50 using common molecular descriptors. J Chem Inf and Model 2009; 49: 2403-11.
    • (2009) J Chem Inf and Model , vol.49 , pp. 2403-2411
    • Dagliyan, O.1    Kavakli, I.H.2    Turkay, M.3
  • 277
    • 71949083397 scopus 로고    scopus 로고
    • Classification of cytochrome p(450) activities using machine learning methods
    • Hammann F, Gutmann H, Baumann U, Helma C, Drewe J. Classification of cytochrome p(450) activities using machine learning methods. Mol pharmaceutics 2009; 6: 1920-1916.
    • (2009) Mol Pharmaceutics , vol.6 , pp. 1916-1920
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3    Helma, C.4    Drewe, J.5
  • 278
    • 72949110641 scopus 로고    scopus 로고
    • Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome p450 substrates
    • Michielan L, Terfloth L, Gasteiger J, Moro S. Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome p450 substrates. J Chem Inf and Model 2009; 49: 2588-605.
    • (2009) J Chem Inf and Model , vol.49 , pp. 2588-2605
    • Michielan, L.1    Terfloth, L.2    Gasteiger, J.3    Moro, S.4
  • 279
    • 20144370197 scopus 로고    scopus 로고
    • Predictive three-dimensional quantitative structure-activity relationship of cytochrome P450 1A2 inhibitors
    • Korhonen LE, Rahnasto M, Mahonen NJ, Wittekindt C, Poso A, Juvonen RO, Raunio H. Predictive three-dimensional quantitative structure-activity relationship of cytochrome P450 1A2 inhibitors. J Med Chem 2005; 48: 3808-15.
    • (2005) J Med Chem , vol.48 , pp. 3808-3815
    • Korhonen, L.E.1    Rahnasto, M.2    Mahonen, N.J.3    Wittekindt, C.4    Poso, A.5    Juvonen, R.O.6    Raunio, H.7
  • 280
    • 0035099265 scopus 로고    scopus 로고
    • A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors
    • Poso A, Gynther J, Juvonen R. A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors. J Comput-aided Mol Design 2001; 15: 195-202.
    • (2001) J Comput-aided Mol Design , vol.15 , pp. 195-202
    • Poso, A.1    Gynther, J.2    Juvonen, R.3
  • 281
    • 34047233676 scopus 로고    scopus 로고
    • New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis
    • Korhonen LE, Turpeinen M, Rahnasto M, Wittekindt C, Poso A, Pelkonen O, Raunio H, Juvonen RO. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Br J Pharmacol 2007; 150: 932-42.
    • (2007) Br J Pharmacol , vol.150 , pp. 932-942
    • Korhonen, L.E.1    Turpeinen, M.2    Rahnasto, M.3    Wittekindt, C.4    Poso, A.5    Pelkonen, O.6    Raunio, H.7    Juvonen, R.O.8
  • 282
    • 0030159247 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors
    • Oprea TI, Garcia AE. Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors. J Comput-aided 1996; 10: 186-200.
    • (1996) J Comput-aided , vol.10 , pp. 186-200
    • Oprea, T.I.1    Garcia, A.E.2
  • 283
    • 0021871375 scopus 로고
    • A computational procedure for determining energetically favorable binding sites on biologically important macromolecules
    • Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985; 28: 849-57.
    • (1985) J Med Chem , vol.28 , pp. 849-857
    • Goodford, P.J.1
  • 284
    • 0035065393 scopus 로고    scopus 로고
    • Competitive CYP2C9 inhibitors: Enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis
    • Afzelius L, Zamora I, Ridderström M, Andersson TB, Karlén A, Masimirembwa CM. Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol Pharmacol 2001; 59: 909-19.
    • (2001) Mol Pharmacol , vol.59 , pp. 909-919
    • Afzelius, L.1    Zamora, I.2    Ridderström, M.3    Andersson, T.B.4    Karlén, A.5    Masimirembwa, C.M.6
  • 285
    • 0034710718 scopus 로고    scopus 로고
    • GRid- INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors
    • Pastor M, Cruciani G, McLay I, Pickett S, Clementi S. GRid- INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 2000; 43: 3233-43.
    • (2000) J Med Chem , vol.43 , pp. 3233-3243
    • Pastor, M.1    Cruciani, G.2    McLay, I.3    Pickett, S.4    Clementi, S.5
  • 286
    • 2442659094 scopus 로고    scopus 로고
    • Incorporating molecular shape into the alignment-free Grid-Independent Descriptors
    • Fontaine F, Pastor M, Sanz F. Incorporating molecular shape into the alignment-free Grid-Independent Descriptors. J Med Chem 2004; 47: 2805-15.
    • (2004) J Med Chem , vol.47 , pp. 2805-2815
    • Fontaine, F.1    Pastor, M.2    Sanz, F.3
  • 287
    • 12244310480 scopus 로고    scopus 로고
    • Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors
    • Afzelius L, Masimirembwa CM, Karlén A, Andersson TB, Zamora I. Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. JComput-aided Mol DesignJ Comput-aided Mol Des 2002; 16: 443-58.
    • (2002) JComput-aided Mol DesignJ Comput-aided Mol Des , vol.16 , pp. 443-458
    • Afzelius, L.1    Masimirembwa, C.M.2    Karlén, A.3    Andersson, T.B.4    Zamora, I.5
  • 290
    • 0037204549 scopus 로고    scopus 로고
    • Pharmacophore modeling of cytochromes P450
    • de Groot MJ, Ekins S. Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 2002; 54: 367-83.
    • (2002) Adv Drug Deliv Rev , vol.54 , pp. 367-383
    • de Groot, M.J.1    Ekins, S.2
  • 291
    • 17444411955 scopus 로고    scopus 로고
    • Cytochrome p450 in silico: An integrative modeling approach
    • de Graaf C, Vermeulen NPE, Feenstra KA. Cytochrome p450 in silico: an integrative modeling approach. J Med Chem 2005; 48:2725-55.
    • (2005) J Med Chem , vol.48 , pp. 2725-2755
    • de Graaf, C.1    Vermeulen, N.P.E.2    Feenstra, K.A.3
  • 292
    • 33745216665 scopus 로고    scopus 로고
    • Designing better drugs: Predicting cytochrome P450 metabolism
    • de Groot MJ. Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 2006; 11: 601-6.
    • (2006) Drug Discov Today , vol.11 , pp. 601-606
    • de Groot, M.J.1
  • 293
    • 34548319111 scopus 로고    scopus 로고
    • In silico pharmacology for drug discovery: Applications to targets and beyond
    • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007; 152: 21-37.
    • (2007) Br J Pharmacol , vol.152 , pp. 21-37
    • Ekins, S.1    Mestres, J.2    Testa, B.3
  • 294
    • 33645822986 scopus 로고    scopus 로고
    • Development and validation of an in silico P450 profiler based on pharmacophore models
    • Schuster D, Laggner C, Steindl TM, Langer T. Development and validation of an in silico P450 profiler based on pharmacophore models. Curr Drug Discov Technol 2006; 3: 1-48.
    • (2006) Curr Drug Discov Technol , vol.3 , pp. 1-48
    • Schuster, D.1    Laggner, C.2    Steindl, T.M.3    Langer, T.4
  • 295
    • 2642518851 scopus 로고    scopus 로고
    • Quantitative binding models for CYP2C9 based on benzbromarone analogues
    • Locuson CW, Rock Da, Jones JP. Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochem 2004; 43: 6948-58.
    • (2004) Biochem , vol.43 , pp. 6948-6958
    • Locuson, C.W.1    Da, R.2    Jones, J.P.3
  • 297
    • 61449219789 scopus 로고    scopus 로고
    • Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach
    • Leong MK, Chen Y-M, Chen H-B, Chen P-H. Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Pharm Res 2009; 26: 987-1000.
    • (2009) Pharm Res , vol.26 , pp. 987-1000
    • Leong, M.K.1    Chen, Y.-M.2    Chen, H.-B.3    Chen, P.-H.4
  • 300
    • 79951899664 scopus 로고    scopus 로고
    • In silico site of metabolism prediction of cytochrome P450-mediated biotransformations
    • Tarcsay A, Keseru GM. In silico site of metabolism prediction of cytochrome P450-mediated biotransformations. Expert Opin Drug Metab Toxicol 2011; 7: 299-312.
    • (2011) Expert Opin Drug Metab Toxicol , vol.7 , pp. 299-312
    • Tarcsay, A.1    Keseru, G.M.2
  • 301
    • 0028534521 scopus 로고
    • META 1. A Program for the Evaluation of Metabolic Transformation of Chemicals
    • Klopman G, Dimayuga M, Talafous J. META 1. A Program for the Evaluation of Metabolic Transformation of Chemicals. J Chem Inf and Model 1994; 34: 1320-25.
    • (1994) J Chem Inf and Model , vol.34 , pp. 1320-1325
    • Klopman, G.1    Dimayuga, M.2    Talafous, J.3
  • 302
    • 0024027564 scopus 로고
    • Predicting metabolic pathways by logic programming
    • Darvas F. Predicting metabolic pathways by logic programming. J Mol Graph Mod 1988; 6: 80-6.
    • (1988) J Mol Graph Mod , vol.6 , pp. 80-86
    • Darvas, F.1
  • 303
    • 47649092672 scopus 로고    scopus 로고
    • SyGMa: Combining expert knowledge and empirical scoring in the prediction of metabolites
    • Ridder L, Wagener M. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. Chem Med Chem 2008; 3: 821-32.
    • (2008) Chem Med Chem , vol.3 , pp. 821-832
    • Ridder, L.1    Wagener, M.2
  • 304
    • 1842430781 scopus 로고    scopus 로고
    • A Systematic Approach to Simulating Metabolism in Computational Toxicology. I. The TIMES Heuristic Modelling Framework
    • Mekenyan OG, Dimitrov SD, Pavlov TS, Veith GD. A Systematic Approach to Simulating Metabolism in Computational Toxicology. I. The TIMES Heuristic Modelling Framework. Current Pharm Des 2004; 10: 1273-93.
    • (2004) Current Pharm Des , vol.10 , pp. 1273-1293
    • Mekenyan, O.G.1    Dimitrov, S.D.2    Pavlov, T.S.3    Veith, G.D.4
  • 305
    • 77953322016 scopus 로고    scopus 로고
    • Site of metabolism prediction on cytochrome P450 2C9: A knowledge-based docking approach
    • Tarcsay A, Kiss R, Keseru GM. Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. J Comput-aided Mol Des 2010: 399-408.
    • (2010) J Comput-aided Mol Des , pp. 399-408
    • Tarcsay, A.1    Kiss, R.2    Keseru, G.M.3
  • 306
    • 84857712452 scopus 로고    scopus 로고
    • [homepage on the internet]. Accelrys Inc. San Diego CA, [updated 2011 Oct 17; cited 2011 Oct 17]
    • [Accelrys Metabolite Database. [homepage on the internet]. Accelrys Inc. San Diego CA; c2011[updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/http://accelrys.com/products/databases/bioactivity/metabolite.html
    • (2011) Accelrys Metabolite Database
  • 307
    • 84857723763 scopus 로고    scopus 로고
    • [document on the internet]. University of Cambridge, UK, updated 2010; cited 2011 Oct 17
    • [Adams SE. Molecular Similarity and Xenobiotic Metabolism. [document on the internet]. University of Cambridge, UK; c2010 [updated 2010; cited 2011 Oct 17] http://www.dspace.cam.ac.uk/bitstream/1810/225225/1/Adams,%20SE%20-%20Molecular%20Similarity%20and%20Xenobiotic%20Metabolism.pdf
    • (2010) Molecular Similarity and Xenobiotic Metabolism
    • Adams, S.E.1
  • 308
    • 77954048869 scopus 로고    scopus 로고
    • Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse
    • Carlsson L, Spjuth O, Adams S, Glen RC, Boyer S. Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse. BMC bioinformatics 2010; 11: 362.
    • (2010) BMC Bioinformatics , vol.11 , pp. 362
    • Carlsson, L.1    Spjuth, O.2    Adams, S.3    Glen, R.C.4    Boyer, S.5
  • 309
    • 84857739993 scopus 로고    scopus 로고
    • MetaPrint2D. [homepage on the internet]. University of Cambridge,UK; c2008-2011 [updated 2011 Oct 17; cited
    • MetaPrint2D. [homepage on the internet]. University of Cambridge,UK; c2008-2011 [updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/http://www-metaprint2d.ch.cam.ac.uk/metaprint2d
    • (2011)
  • 310
    • 0033737778 scopus 로고    scopus 로고
    • PASS: Prediction of activity spectra for biologically active substances
    • Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 2000; 16: 747-48.
    • (2000) Bioinformatics , vol.16 , pp. 747-748
    • Lagunin, A.1    Stepanchikova, A.2    Filimonov, D.3    Poroikov, V.4
  • 311
    • 84857696779 scopus 로고    scopus 로고
    • Advanced Chemistry Development, Inc; c1996-2011 [updated 2011 Oct 17; cited 2011 Oct 17]
    • ACD Labs P450 Regioselectivity Tool [homepage on the internet]. Advanced Chemistry Development, Inc; c1996-2011 [updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/www.acdlabs.com
    • ACD Labs P450 Regioselectivity Tool [homepage On the Internet]
  • 312
    • 0038440502 scopus 로고    scopus 로고
    • Predicting drug metabolism: A site of metabolism prediction tool applied to the cytochrome P450 2C9
    • Zamora I, Afzelius L, Cruciani G. Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J Med Chem 2003; 46: 2313-24.
    • (2003) J Med Chem , vol.46 , pp. 2313-2324
    • Zamora, I.1    Afzelius, L.2    Cruciani, G.3
  • 313
    • 21244487140 scopus 로고    scopus 로고
    • Pharmacophore, drug metabolism, and pharmacokinetics models on non-peptide AT1, AT2, and AT1/AT2 angiotensin II receptor antagonists
    • Berellini G, Cruciani G, Mannhold R. Pharmacophore, drug metabolism, and pharmacokinetics models on non-peptide AT1, AT2, and AT1/AT2 angiotensin II receptor antagonists. J Med Chem 2005; 48: 4389-99.
    • (2005) J Med Chem , vol.48 , pp. 4389-4399
    • Berellini, G.1    Cruciani, G.2    Mannhold, R.3
  • 314
    • 33646764551 scopus 로고    scopus 로고
    • Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions
    • Zhou DS, Afzelius L, Grimm SW, Andersson TB, Zauhar RJ, Zamora I. Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metabol Dispos 2006; 34: 976-83.
    • (2006) Drug Metabol Dispos , vol.34 , pp. 976-983
    • Zhou, D.S.1    Afzelius, L.2    Grimm, S.W.3    Andersson, T.B.4    Zauhar, R.J.5    Zamora, I.6
  • 315
    • 60549095002 scopus 로고    scopus 로고
    • Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation
    • Trunzer M, Faller B, Zimmerlin A. Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation. J Med Chem 2009; 52: 329-35.
    • (2009) J Med Chem , vol.52 , pp. 329-335
    • Trunzer, M.1    Faller, B.2    Zimmerlin, A.3
  • 318
    • 33646107162 scopus 로고    scopus 로고
    • Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking
    • de Graaf C, Oostenbrink C, Keizers PHJ, van Der Wijst T, Jongejan A, Vermeulen NPE. Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 2006; 49: 2417-30.
    • (2006) J Med Chem , vol.49 , pp. 2417-2430
    • de Graaf, C.1    Oostenbrink, C.2    Keizers, P.H.J.3    van der Wijst, T.4    Jongejan, A.5    Vermeulen, N.P.E.6
  • 319
    • 17144368025 scopus 로고    scopus 로고
    • Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking
    • de Graaf C, Pospisil P, Pos W, Folkers G, Vermeulen NPE. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking. J Med Chem 2005; 48: 2308-18.
    • (2005) J Med Chem , vol.48 , pp. 2308-2318
    • de Graaf, C.1    Pospisil, P.2    Pos, W.3    Folkers, G.4    Vermeulen, N.P.E.5
  • 320
    • 0025135112 scopus 로고
    • Automated docking of substrates to proteins by simulated annealing
    • Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990; 8: 195-202.
    • (1990) Proteins , vol.8 , pp. 195-202
    • Goodsell, D.S.1    Olson, A.J.2
  • 321
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996; 261: 470-89.
    • (1996) J Mol Biol , vol.261 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 322
    • 75749127293 scopus 로고    scopus 로고
    • Role of water in molecular docking simulations of cytochrome P450 2D6
    • Santos R, Hritz J, Oostenbrink C. Role of water in molecular docking simulations of cytochrome P450 2D6. J Chem Inf and Model 2010; 50: 146-54.
    • (2010) J Chem Inf and Model , vol.50 , pp. 146-154
    • Santos, R.1    Hritz, J.2    Oostenbrink, C.3
  • 323
    • 77956060951 scopus 로고    scopus 로고
    • Analysis of binding modes of ligands to multiple conformations of CYP3A4
    • Teixeira VH, Ribeiro V, Martel PJ. Analysis of binding modes of ligands to multiple conformations of CYP3A4. Biochimica et biophysica acta 2010; 1804: 2036-45.
    • (2010) Biochimica Et Biophysica Acta , vol.1804 , pp. 2036-2045
    • Teixeira, V.H.1    Ribeiro, V.2    Martel, P.J.3
  • 324
    • 24944529052 scopus 로고    scopus 로고
    • Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines: In silico predictions and experimental validation
    • Keizers PHJ, de Graaf C, de Kanter FJJ, Oostenbrink C, Feenstra KA, Commandeur JNM, Vermeulen NPE. Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines: in silico predictions and experimental validation. J Med Chem 2005; 48: 6117-27.
    • (2005) J Med Chem , vol.48 , pp. 6117-6127
    • Keizers, P.H.J.1    de Graaf, C.2    de Kanter, F.J.J.3    Oostenbrink, C.4    Feenstra, K.A.5    Commandeur, J.N.M.6    Vermeulen, N.P.E.7
  • 325
    • 67749088486 scopus 로고    scopus 로고
    • Biological profiling of anti-HIV agents and insight into CCR5 antagonist binding using in silico techniques
    • Carrieri A, Pérez-Nueno VI, Fano A, Pistone C, Ritchie DW, Teixidó J. Biological profiling of anti-HIV agents and insight into CCR5 antagonist binding using in silico techniques. ChemMedChem 2009; 4: 1153-63.
    • (2009) ChemMedChem , vol.4 , pp. 1153-1163
    • Carrieri, A.1    Pérez-Nueno, V.I.2    Fano, A.3    Pistone, C.4    Ritchie, D.W.5    Teixidó, J.6
  • 326
    • 57549116672 scopus 로고    scopus 로고
    • Clustering and classifying diverse HIV entry inhibitors using a novel consensus shape-based virtual screening approach: Further evidence for multiple binding sites within the CCR5 extracellular pocket
    • Pérez-Nueno VI, Ritchie DW, Borrell JI, Teixidó J. Clustering and classifying diverse HIV entry inhibitors using a novel consensus shape-based virtual screening approach: further evidence for multiple binding sites within the CCR5 extracellular pocket. J Chem Inf and Model 2008; 48: 2146-65.
    • (2008) J Chem Inf and Model , vol.48 , pp. 2146-2165
    • Pérez-Nueno, V.I.1    Ritchie, D.W.2    Borrell, J.I.3    Teixidó, J.4
  • 328
    • 78650689245 scopus 로고    scopus 로고
    • Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods
    • Venkatraman V, Pérez-Nueno VI, Mavridis L, Ritchie DW. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J Chem Inf and Model 2010; 50: 2079-93.
    • (2010) J Chem Inf and Model , vol.50 , pp. 2079-2093
    • Venkatraman, V.1    Pérez-Nueno, V.I.2    Mavridis, L.3    Ritchie, D.W.4
  • 329
    • 37249016887 scopus 로고    scopus 로고
    • Fast and efficient in silico 3D screening: Toward maximum computational efficiency of pharmacophore-based and shape-based approaches
    • Kirchmair J, Ristic S, Eder K, Markt P, Wolber G, Laggner C, Langer T. Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J Chem Inf and Model 2007; 47: 2182-96.
    • (2007) J Chem Inf and Model , vol.47 , pp. 2182-2196
    • Kirchmair, J.1    Ristic, S.2    Eder, K.3    Markt, P.4    Wolber, G.5    Laggner, C.6    Langer, T.7
  • 331
    • 79959768770 scopus 로고    scopus 로고
    • Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening
    • Perez-Nueno VI, Ritchie DW. Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening. J Chem Inf and Model 2011; 6: 1233-48.
    • (2011) J Chem Inf and Model , vol.6 , pp. 1233-1248
    • Perez-Nueno, V.I.1    Ritchie, D.W.2
  • 332
    • 33644510432 scopus 로고    scopus 로고
    • Molecular shape and electrostatics in the encoding of relevant chemical information
    • Nicholls A, Grant JA. Molecular shape and electrostatics in the encoding of relevant chemical information. J Comput-aided Mol Des 2005; 19: 661-86.
    • (2005) J Comput-aided Mol Des , vol.19 , pp. 661-686
    • Nicholls, A.1    Grant, J.A.2
  • 333
    • 39749093726 scopus 로고    scopus 로고
    • Prediction of metabolism by cytochrome P450 2C9: Alignment and docking studies of a validated database of substrates
    • Sykes MJ, McKinnon RA, Miners JO. Prediction of metabolism by cytochrome P450 2C9: alignment and docking studies of a validated database of substrates. J Med Chem 2008; 51: 780-91.
    • (2008) J Med Chem , vol.51 , pp. 780-791
    • Sykes, M.J.1    McKinnon, R.A.2    Miners, J.O.3
  • 334
    • 78449309981 scopus 로고    scopus 로고
    • The SMARTCyp cytochrome P450 metabolism prediction server
    • Rydberg P, Gloriam D, Olsen L. The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 2010; 26: 2988-89.
    • (2010) Bioinformatics , vol.26 , pp. 2988-2989
    • Rydberg, P.1    Gloriam, D.2    Olsen, L.3
  • 335
    • 77953932263 scopus 로고    scopus 로고
    • SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism
    • Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism. Med Chem Lett 2010; 1: 96-100.
    • (2010) Med Chem Lett , vol.1 , pp. 96-100
    • Rydberg, P.1    Gloriam, D.E.2    Zaretzki, J.3    Breneman, C.4    Olsen, L.5
  • 337
    • 0033529017 scopus 로고    scopus 로고
    • Novel approach to predicting P450-mediated drug metabolism: Development of a combined protein and pharmacophore model for CYP2D6
    • de Groot MJ, Ackland MJ, Horne VA, Alex AA, Jones BC. Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J Med Chem 1999; 42: 1515-24.
    • (1999) J Med Chem , vol.42 , pp. 1515-1524
    • de Groot, M.J.1    Ackland, M.J.2    Horne, V.A.3    Alex, A.A.4    Jones, B.C.5
  • 338
    • 77952703842 scopus 로고    scopus 로고
    • Quantitative Prediction of Regioselectivity Toward Cytochrome P450/3A4 Using Machine Learning Approaches
    • Hasegawa K, Koyama M, Funatsu K. Quantitative Prediction of Regioselectivity Toward Cytochrome P450/3A4 Using Machine Learning Approaches. Mol Informatics 2010; 29: 243-249.
    • (2010) Mol Informatics , vol.29 , pp. 243-249
    • Hasegawa, K.1    Koyama, M.2    Funatsu, K.3
  • 339
    • 0035821590 scopus 로고    scopus 로고
    • Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: Insights from docking, molecular dynamics, and quantum chemical calculations
    • Kuhn B, Jacobsen W, Christians U, Benet LZ, Kollman Pa. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J Med Chem 2001; 44: 2027-34.
    • (2001) J Med Chem , vol.44 , pp. 2027-2034
    • Kuhn, B.1    Jacobsen, W.2    Christians, U.3    Benet, L.Z.4    Pa, K.5
  • 340
    • 0025150366 scopus 로고
    • Theoretical studies on cytochrome P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions
    • Korzekwa KR, Jones JP, Gillette JR. Theoretical studies on cytochrome P-450 mediated hydroxylation: a predictive model for hydrogen atom abstractions. J Am Chem Soc 1990; 112: 7042-46.
    • (1990) J Am Chem Soc , vol.112 , pp. 7042-7046
    • Korzekwa, K.R.1    Jones, J.P.2    Gillette, J.R.3
  • 341
    • 0036136527 scopus 로고    scopus 로고
    • Computational Models for Cytochrome P450: A Predictive Electronic Model for Aromatic Oxidation and Hydrogen Atom Abstraction
    • Jones JP, Mysinger M, Korzekwa KR. Computational Models for Cytochrome P450: A Predictive Electronic Model for Aromatic Oxidation and Hydrogen Atom Abstraction. Drug Metabol Dispos 2002; 30: 7-12.
    • (2002) Drug Metabol Dispos , vol.30 , pp. 7-12
    • Jones, J.P.1    Mysinger, M.2    Korzekwa, K.R.3
  • 342
    • 42149138057 scopus 로고    scopus 로고
    • New combined model for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism
    • Oh WS, Kim DN, Jung J, Cho K-H, No KT. New combined model for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. J Chem Inf and Model 2008; 48: 591-601.
    • (2008) J Chem Inf and Model , vol.48 , pp. 591-601
    • Oh, W.S.1    Kim, D.N.2    Jung, J.3    Cho, K.-H.4    No, K.T.5
  • 343
    • 64349117376 scopus 로고    scopus 로고
    • Reactivity Profiling: Covalent Modification of Single Nucleophile Peptides for Skin Sensitization Risk Assessment
    • Aleksic M, Thain E, Roger D, Saib O, Davies M, Li J, Aptula A, Zazzeroni R. Reactivity Profiling: Covalent Modification of Single Nucleophile Peptides for Skin Sensitization Risk Assessment. Toxicol Sci 2009; 108: 401-11.
    • (2009) Toxicol Sci , vol.108 , pp. 401-411
    • Aleksic, M.1    Thain, E.2    Roger, D.3    Saib, O.4    Davies, M.5    Li, J.6    Aptula, A.7    Zazzeroni, R.8
  • 346
    • 33749004016 scopus 로고    scopus 로고
    • Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization
    • Roberts DW, Aptula AO, Patlewicz G. Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization. Chem Res Toxicol 2006; 19: 1228-33.
    • (2006) Chem Res Toxicol , vol.19 , pp. 1228-1233
    • Roberts, D.W.1    Aptula, A.O.2    Patlewicz, G.3
  • 347
    • 68949178212 scopus 로고    scopus 로고
    • Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine
    • Yuan H, Huang JP, Cao CZ. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine. Int J Mol Sci 2009; 10: 3237-54.
    • (2009) Int J Mol Sci , vol.10 , pp. 3237-3254
    • Yuan, H.1    Huang, J.P.2    Cao, C.Z.3
  • 350
    • 41649114183 scopus 로고    scopus 로고
    • Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition
    • Enoch SJ, Madden JC, Cronin MTD, Schultz TW. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition. Chem Res Toxicol 2008; 21: 513-20.
    • (2008) Chem Res Toxicol , vol.21 , pp. 513-520
    • Enoch, S.J.1    Madden, J.C.2    Cronin, M.T.D.3    Schultz, T.W.4
  • 352
    • 58149349853 scopus 로고    scopus 로고
    • Application of a systems biology approach to skin allergy risk assessment
    • Maxwell G, Mackay C. Application of a systems biology approach to skin allergy risk assessment. Altern Lab Anim 2008; 36: 521-56.
    • (2008) Altern Lab Anim , vol.36 , pp. 521-556
    • Maxwell, G.1    Mackay, C.2
  • 353
    • 78751681443 scopus 로고    scopus 로고
    • Determining epidermal disposition kinetics for use in an integrated non-animal approach to skin sensitisation risk assessment
    • Davies M, Pendlington RU, Page L, Roper CS, Sanders DJ, Bourner C, Pease CK, MacKay C. Determining epidermal disposition kinetics for use in an integrated non-animal approach to skin sensitisation risk assessment. Toxicol Sci 2010; 2: 308-18.
    • (2010) Toxicol Sci , vol.2 , pp. 308-318
    • Davies, M.1    Pendlington, R.U.2    Page, L.3    Roper, C.S.4    Sanders, D.J.5    Bourner, C.6    Pease, C.K.7    Mackay, C.8
  • 354
    • 84857744306 scopus 로고    scopus 로고
    • Note
    • [354] 7th framework joint research programmes (FP7) [homepage on the internet]. European Commission, Brussels; c2011[updated 2011 Oct 17; cited 2011 Oct 17]. Available from http:// tox-net.nlm.nih.gov/ http://ec.europa.eu/research/fp7/index_en.cfm.Note
  • 355
    • 85035308750 scopus 로고    scopus 로고
    • Innovative Medicines Initiative [homepage on the internet], updated 2011 Oct 17; cited 2011 Oct 17
    • [Innovative Medicines Initiative [homepage on the internet]. Innovative Medicines initiative Brussels; c2011 [updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/http://www.imi.europa.eu/
    • (2011) Innovative Medicines Initiative Brussels
  • 356
    • 84857726032 scopus 로고    scopus 로고
    • SEURAT1 project [homepage on the internet], updated 2011 Oct 17; cited 2011 Oct 17
    • SEURAT1 project [homepage on the internet]. The European Cosmetics Association, Brussels; c2010 [updated 2011 Oct 17; cited 2011 Oct 17]. Available from http://toxnet.nlm.nih.gov/http://www.colipa.eu/news-a-events.html
    • (2010) The European Cosmetics Association, Brussels
  • 357
    • 69249126232 scopus 로고    scopus 로고
    • TOX 21: New dimensions of toxicity testing
    • Schmidt CW. TOX 21: new dimensions of toxicity testing. Environ Health Perspect 2009; 117: 348-353.
    • (2009) Environ Health Perspect , vol.117 , pp. 348-353
    • Schmidt, C.W.1
  • 358
    • 59149106151 scopus 로고    scopus 로고
    • Toxicity testing in the 21st century: Bringing the vision to life
    • Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 2009; 107: 324-30.
    • (2009) Toxicol Sci , vol.107 , pp. 324-330
    • Andersen, M.E.1    Krewski, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.