메뉴 건너뛰기




Volumn 47, Issue 6, 2007, Pages 2401-2407

QSAR modeling using automatically updating correction libraries: Application to a human plasma protein binding model

Author keywords

[No Author keywords available]

Indexed keywords

BINDING SITES; COMPUTER SIMULATION; DATABASE SYSTEMS; PLASMA (HUMAN); PROTEINS;

EID: 37249039935     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci700197x     Document Type: Article
Times cited : (26)

References (17)
  • 3
    • 34250617990 scopus 로고    scopus 로고
    • Time-Series QSAR Analysis of Human Plasma Protein Binding Data
    • Rodgers, S. L.; Davis, A. M.; Van de Waterbeemd, H. Time-Series QSAR Analysis of Human Plasma Protein Binding Data. QSAR Comb. Sci. 2007, 26, 511-521.
    • (2007) QSAR Comb. Sci , vol.26 , pp. 511-521
    • Rodgers, S.L.1    Davis, A.M.2    Van de Waterbeemd, H.3
  • 5
    • 33746928751 scopus 로고    scopus 로고
    • Local Lazy Regression: Making Use of the Neighbourhood to Improve QSAR Predictions
    • Guha, R.; Dutta, D.; Jurs, P. C.; Chen, T. Local Lazy Regression: Making Use of the Neighbourhood to Improve QSAR Predictions. J. Chem. Inf. Model 2006, 46, 1836-1847.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 1836-1847
    • Guha, R.1    Dutta, D.2    Jurs, P.C.3    Chen, T.4
  • 6
    • 33750321978 scopus 로고    scopus 로고
    • A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models
    • Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J. Chem. Inf. Model. 2006, 46, 1984-1995.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 7
    • 33845965001 scopus 로고    scopus 로고
    • ADMET Property Prediction: The State of the Art and Current Challenges
    • Gola, J.; Obrezanova, O.; Champness, E.; Segall, M. ADMET Property Prediction: The State of the Art and Current Challenges. QSAR Comb. Sci. 2006, 25, 1172-1180.
    • (2006) QSAR Comb. Sci , vol.25 , pp. 1172-1180
    • Gola, J.1    Obrezanova, O.2    Champness, E.3    Segall, M.4
  • 8
    • 0036557849 scopus 로고    scopus 로고
    • Neural Network Studies. 4. Introduction to Associative Neural Networks
    • Tetko, I. Neural Network Studies. 4. Introduction to Associative Neural Networks. J. Chem. Inf. Model. 2002, 42, 717-728.
    • (2002) J. Chem. Inf. Model , vol.42 , pp. 717-728
    • Tetko, I.1
  • 9
    • 0036757804 scopus 로고    scopus 로고
    • Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program
    • Tetko, I. Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program. J. Chem. Inf. Model. 2002, 42, 1136-1145.
    • (2002) J. Chem. Inf. Model , vol.42 , pp. 1136-1145
    • Tetko, I.1
  • 11
    • 0029783934 scopus 로고    scopus 로고
    • Neighbourhood Behaviour: A Useful Concept for Validation of "Molecular Diversity" Descriptors
    • Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinbuerger, L. E. Neighbourhood Behaviour: A Useful Concept for Validation of "Molecular Diversity" Descriptors. J. Med. Chem. 1996, 39, 3049-3059.
    • (1996) J. Med. Chem , vol.39 , pp. 3049-3059
    • Patterson, D.E.1    Cramer, R.D.2    Ferguson, A.M.3    Clark, R.D.4    Weinbuerger, L.E.5
  • 12
    • 10644293897 scopus 로고    scopus 로고
    • Application of ALOGPS to Predict 1-Octanol/Water Distribution Coefficients, logP, and logD, of AstraZeneca InHouse Database
    • Tetko, I. V.; Bruneau, P. Application of ALOGPS to Predict 1-Octanol/Water Distribution Coefficients, logP, and logD, of AstraZeneca InHouse Database. J. Pharm. Sci. 2004, 93, 3103-3110.
    • (2004) J. Pharm. Sci , vol.93 , pp. 3103-3110
    • Tetko, I.V.1    Bruneau, P.2
  • 13
    • 0036757804 scopus 로고    scopus 로고
    • Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program
    • Tetko, I. V.; Tanchuk, V. Y. Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program. J. Chem. Inf. Model. 2002, 42, 1136-1145.
    • (2002) J. Chem. Inf. Model , vol.42 , pp. 1136-1145
    • Tetko, I.V.1    Tanchuk, V.Y.2
  • 14
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards Prediction Paradise?
    • Van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards Prediction Paradise? Nat. Rev. Drug Discovery 2003, 2, 192-204.
    • (2003) Nat. Rev. Drug Discovery , vol.2 , pp. 192-204
    • Van de Waterbeemd, H.1    Gifford, E.2
  • 15
    • 84956677450 scopus 로고    scopus 로고
    • The Role of Plasma Protein Binding in Drug Discovery
    • 1st ed, Testa, B, Krämer, S. D, Wunderlie-Allenspach, H, Folkers G, Eds, Verlag Helvetica Chimica Acta: Zurich, Switzerland
    • Fessey, R. E.; Austin, R. P.; Barton, P.; Davis, A. M.; Wenlock, M. C. The Role of Plasma Protein Binding in Drug Discovery. In Pharmacokinetic Profiling in Drug Research, 1st ed.; Testa, B., Krämer, S. D., Wunderlie-Allenspach, H., Folkers G., Eds.; Verlag Helvetica Chimica Acta: Zurich, Switzerland, 2006; pp 119-141.
    • (2006) Pharmacokinetic Profiling in Drug Research , pp. 119-141
    • Fessey, R.E.1    Austin, R.P.2    Barton, P.3    Davis, A.M.4    Wenlock, M.C.5
  • 16
    • 33745383499 scopus 로고    scopus 로고
    • 7.4 Modelling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction
    • 7.4 Modelling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction. J. Chem. Inf. Model. 2006, 46, 1379-1387.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 1379-1387
    • Bruneau, P.1    McElroy, N.R.2
  • 17
    • 37249014180 scopus 로고    scopus 로고
    • SIMCA-P, v10.0.4.0; Umetrics: Umeå, Sweden 2003. Available from http://www.umetrics.com.
    • SIMCA-P, v10.0.4.0; Umetrics: Umeå, Sweden 2003. Available from http://www.umetrics.com.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.