-
1
-
-
58149116805
-
Ligand-target prediction using winnow and naive Bayesian algorithms and the implications of overall performance statistics
-
Nigsch, F.; Bender, A.; Jenkins, J. L.; Mitchell, J. Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics. J. Chem. Inf. Model. 2008, 48, 2313-2325.
-
(2008)
J. Chem. Inf. Model
, vol.48
, pp. 2313-2325
-
-
Nigsch, F.1
Bender, A.2
Jenkins, J.L.3
Mitchell, J.4
-
2
-
-
1842690601
-
Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier
-
Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170-178.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 170-178
-
-
Bender, A.1
Mussa, H.Y.2
Glen, R.C.3
Reiling, S.4
-
3
-
-
0036429879
-
Rapid evaluation of molecular shape similarity index using pairwise calculation of the nearest atomic distances
-
DOI 10.1021/ci010068d
-
Kotani, T.; Higashiura, K. Rapid evaluation of molecular shape similarity index using pairwise calculation of the nearest atomic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63. (Pubitemid 35359023)
-
(2002)
Journal of Chemical Information and Computer Sciences
, vol.42
, Issue.1
, pp. 58-63
-
-
Kotani, T.1
Higashiura, K.2
-
4
-
-
65249120827
-
Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes
-
Rueda, M.; Bottegoni, G.; Abagyan, R. Consistent Improvement of Cross-Docking Results Using Binding Site Ensembles Generated with Elastic Network Normal Modes. J. Chem. Inf. Comput. Sci. 2009, 49, 716-725.
-
(2009)
J. Chem. Inf. Comput. Sci.
, vol.49
, pp. 716-725
-
-
Rueda, M.1
Bottegoni, G.2
Abagyan, R.3
-
5
-
-
84932021208
-
Theoretical foundations of the potential function method in pattern recognition
-
Aizerman, M.; Braverman, E. M; Rozonoer, L. Theoretical Foundations of the Potential Function Method in Pattern Recognition. Avtom. Telemekh. 1964, 25, 917-936.
-
(1964)
Avtom. Telemekh
, vol.25
, pp. 917-936
-
-
Aizerman, M.1
Braverman, E.M.2
Rozonoer, L.3
-
8
-
-
0004255908
-
-
2nd ed.; McGraw-Hill International: New York
-
Mitchell, T. M. Machine Learning, 2nd ed.; McGraw-Hill International: New York, 1997.
-
(1997)
Machine Learning
-
-
Mitchell, T.M.1
-
9
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou, T.; Pontil, M.; Poggio, T. Regularization Networks and Support Vector Machines. Adv. Comp. Math. 2000, 13, 1-50.
-
(2000)
Adv. Comp. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
10
-
-
33750986884
-
"Bayes affinity fingerprints" Improve retrieval rates in virtual screening and define orthogonal bioactivity space: When are multitarget drugs a feasible concept?
-
DOI 10.1021/ci600197y
-
Bender, A.; Jenkins, J. L.; Glick, M.; Deng, Z.; Nettles, H. J.; Davies, W. J. "Bayes Affinity Fingerprints" Improve Retrieval Rates in Virtual Screening and Define Orthogonal Bioactivity Space: When Are Multitarget Drugs a Feasible Concept. J. Chem. Inf. Model. 2006, 46, 2445-2456. (Pubitemid 46008117)
-
(2006)
Journal of Chemical Information and Modeling
, vol.46
, Issue.6
, pp. 2445-2456
-
-
Bender, A.1
Jenkins, J.L.2
Glick, M.3
Zhan, D.4
Nettles, J.H.5
Davies, J.W.6
-
11
-
-
0035438388
-
Prediction of biological activity for high-throughput screening using binary kernel discrimination
-
Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1295-1300
-
-
Harper, G.1
Bradshaw, J.2
Gittins, J.C.3
Green, D.V.S.4
Leach, A.R.5
-
12
-
-
33646250166
-
Virtual screening using binary kernel discrimination: Analysis of pesticide data
-
Wilton, D. J.; Harrison, R. F.; Willett, P.; Dalaney, J.; Lawson, K.; Mullier, G. Virtual Screening Using Binary Kernel Discrimination: Analysis of Pesticide Data. J. Chem. Inf. Model. 2006, 46, 471-477.
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 471-477
-
-
Wilton, D.J.1
Harrison, R.F.2
Willett, P.3
Dalaney, J.4
Lawson, K.5
Mullier, G.6
-
16
-
-
23044525572
-
Scaling Kernel-based systems to large data sets
-
Tresp, V. Scaling kernel-based systems to large data sets. Data Min. Knowl. Discov. 2001, 5, 197-211. (Pubitemid 33750366)
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, Issue.3
, pp. 197-211
-
-
Tresp, V.1
-
17
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 1950, 68, 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
23
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
DOI 10.1023/A:1007662407062
-
Freund, Y.; Schapire, R. E. Large margin classification using the perceptron algorithm. Machine Learning 1999, 37, 277-296. (Pubitemid 32210619)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.E.2
-
24
-
-
33747459401
-
On the potential function method
-
Braverman, E. M. On the potential function method. Avtom. Telemekh. 1965, 26, 2205-2213.
-
(1965)
Avtom. Telemekh
, vol.26
, pp. 2205-2213
-
-
Braverman, E.M.1
-
25
-
-
33747467331
-
The probability problem of pattern recognition learning and method of potential functions
-
Aizerman, M.; Braverman, E. M.; Rozonoer, L. The probability problem of pattern recognition learning and method of potential functions. Avtom. Telemekh. 1964, 25, 1307-1323.
-
(1964)
Avtom. Telemekh
, vol.25
, pp. 1307-1323
-
-
Aizerman, M.1
Braverman, E.M.2
Rozonoer, L.3
-
26
-
-
79952584995
-
Estimation of the rate of convergence of algorithms based on the potential function method
-
Braverman, E. M.; Pyatnitski, E. S. Estimation of the rate of convergence of algorithms based on the potential function method. Avtom. Telemekh. 1966, 27, 95-112.
-
(1966)
Avtom. Telemekh
, vol.27
, pp. 95-112
-
-
Braverman, E.M.1
Pyatnitski, E.S.2
-
29
-
-
84965017495
-
Convergence theorem for kemel perceptron: In computational intelligence for the e-age
-
Singapore, November 18-22, 2002; Wang, L, Rajapakse, J. C., Fukushima, K., Lee, S, Yao, X., Eds; Wiley-IEEE Press: Hoboken, NJ
-
Ikeda, K. Convergence Theorem for Kemel Perceptron: In Computational Intelligence for the E-Age; Proceedings of the 9th International Conference on Neural Information, Singapore, November 18-22, 2002; Wang, L, Rajapakse, J. C., Fukushima, K., Lee, S, Yao, X., Eds; Wiley-IEEE Press: Hoboken, NJ, 2002; Vol. 1, pp 163-166.
-
(2002)
Proceedings of the 9th International Conference on Neural. Information
, vol.1
, pp. 163-166
-
-
Ikeda, K.1
-
30
-
-
34249753618
-
Support vector networks
-
Cortes, C.; Vapnik, V. N. Support vector networks. Mach. Learn. 1995, 20, 273-297.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
31
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171-1220.
-
(2008)
Ann. Stat.
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
32
-
-
0002400882
-
Simplified support vector decision rules
-
Bari, Italy, July 3-6, 1996; Saitta, L., Ed.; Morgan Kaufmann: Burlington, MA
-
Burges, C. J. Simplified support Vector decision rules; Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, July 3-6, 1996; Saitta, L., Ed.; Morgan Kaufmann: Burlington, MA, 1996; pp 71-77.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning
, pp. 71-77
-
-
Burges, C.J.1
-
33
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121-167. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
34
-
-
0000249788
-
An Equivalence between Sparse Approximation and Support Vector Machines
-
Girosi, F. An equivalence between sparse approximation and support vector machines. Neural Comput. 1998, 10, 1455-1480. (Pubitemid 128464285)
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
35
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
DOI 10.1016/S0893-6080(98)00032-X, PII S089360809800032X
-
Smola, A. J.; Scholkopf, B.; Muller, K. R. The connection between regularization operators and support vector kernels. Neural Networks 1998, 11, 637-649. (Pubitemid 28400264)
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Scholkopf, B.2
Muller, K.-R.3
-
38
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bulletin 1945, 1, 80-83.
-
(1945)
Biometrics Bulletin
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
39
-
-
69549111057
-
Cutting-plane training of structural SVMs
-
Joachims, T.; Finley, T.; Yu, C. J. Cutting-Plane Training of Structural SVMs. Mach. Learn. 2009, 77, 27-59.
-
(2009)
Mach. Learn
, vol.77
, pp. 27-59
-
-
Joachims, T.1
Finley, T.2
Yu, C.J.3
-
40
-
-
84968923096
-
WOMBAT: World of molecular bioactivity
-
Oprea, T. I., Ed.; Wiley-VCH: Weinheim, Germany
-
Olah, M.; Mracec, M.; Ostopovici, L.; Rad, R.; Bora, A.; Hadaruga, N.; Olah, I.; Banda, M.; Simon, Z.; Oprea, T. I. WOMBAT: World of Molecular Bioactivity. In Cheminformatics in Drug Discovery; Oprea, T. I., Ed.; Wiley-VCH: Weinheim, Germany, 2004; pp 223-239.
-
(2004)
Cheminformatics in Drug Discovery
, pp. 223-239
-
-
Olah, M.1
Mracec, M.2
Ostopovici, L.3
Rad, R.4
Bora, A.5
Hadaruga, N.6
Olah, I.7
Banda, M.8
Simon, Z.9
Oprea, T.I.10
-
41
-
-
79952579937
-
-
Molecular Operating Environment MOE; Chemical Computing Group: Montreal, Quebec, Canada;, Accessed January 10, 2010
-
Molecular Operating Environment (MOE); Chemical Computing Group: Montreal, Quebec, Canada; http://www.chemComp.com. Accessed January 10, 2010.
-
-
-
-
42
-
-
0000900996
-
A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split
-
Kearns, M. A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split. Neural Comput. 1997, 9, 1143-1161. (Pubitemid 127462796)
-
(1997)
Neural Computation
, vol.9
, Issue.5
, pp. 1143-1161
-
-
Kearns, M.1
-
44
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf, B., Burges, C., Smola, A. J., Eds.; MIT-Press: Cambridge, MA
-
Joachims, T. Making large-Scale SVM Learning Practical. In Advances in Kernel Methods - Support Vector Learning; Schölkopf, B., Burges, C., Smola, A. J., Eds.; MIT-Press: Cambridge, MA, 1999; pp 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
45
-
-
79952579706
-
-
University of California Irvine Machine Learning Repository; University of California, Irvine: Irvine, CA;, Accessed March 4, 2008
-
University of California Irvine Machine Learning Repository; University of California, Irvine: Irvine, CA; http://archive.ics.uci.edu/ml/. Accessed March 4, 2008.
-
-
-
-
46
-
-
5344244656
-
-
R Development Core Team, R Foundation for Statistical Computing: Vienna, Austria, Accessed April-July, 2010
-
R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; http://www.R-project.org. Accessed April-July, 2010.
-
(2008)
R: A Language and Environment for Statistical Computing
-
-
|