메뉴 건너뛰기




Volumn 51, Issue 1, 2011, Pages 4-14

Classifying large chemical data sets: Using a regularized potential function method

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 79952592181     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci100022u     Document Type: Article
Times cited : (11)

References (46)
  • 1
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-target prediction using winnow and naive Bayesian algorithms and the implications of overall performance statistics
    • Nigsch, F.; Bender, A.; Jenkins, J. L.; Mitchell, J. Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics. J. Chem. Inf. Model. 2008, 48, 2313-2325.
    • (2008) J. Chem. Inf. Model , vol.48 , pp. 2313-2325
    • Nigsch, F.1    Bender, A.2    Jenkins, J.L.3    Mitchell, J.4
  • 2
    • 1842690601 scopus 로고    scopus 로고
    • Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier
    • Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170-178.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 170-178
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 3
    • 0036429879 scopus 로고    scopus 로고
    • Rapid evaluation of molecular shape similarity index using pairwise calculation of the nearest atomic distances
    • DOI 10.1021/ci010068d
    • Kotani, T.; Higashiura, K. Rapid evaluation of molecular shape similarity index using pairwise calculation of the nearest atomic distances. J. Chem. Inf. Comput. Sci. 2002, 42, 58-63. (Pubitemid 35359023)
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , Issue.1 , pp. 58-63
    • Kotani, T.1    Higashiura, K.2
  • 4
    • 65249120827 scopus 로고    scopus 로고
    • Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes
    • Rueda, M.; Bottegoni, G.; Abagyan, R. Consistent Improvement of Cross-Docking Results Using Binding Site Ensembles Generated with Elastic Network Normal Modes. J. Chem. Inf. Comput. Sci. 2009, 49, 716-725.
    • (2009) J. Chem. Inf. Comput. Sci. , vol.49 , pp. 716-725
    • Rueda, M.1    Bottegoni, G.2    Abagyan, R.3
  • 5
    • 84932021208 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition
    • Aizerman, M.; Braverman, E. M; Rozonoer, L. Theoretical Foundations of the Potential Function Method in Pattern Recognition. Avtom. Telemekh. 1964, 25, 917-936.
    • (1964) Avtom. Telemekh , vol.25 , pp. 917-936
    • Aizerman, M.1    Braverman, E.M.2    Rozonoer, L.3
  • 8
    • 0004255908 scopus 로고    scopus 로고
    • 2nd ed.; McGraw-Hill International: New York
    • Mitchell, T. M. Machine Learning, 2nd ed.; McGraw-Hill International: New York, 1997.
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 9
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou, T.; Pontil, M.; Poggio, T. Regularization Networks and Support Vector Machines. Adv. Comp. Math. 2000, 13, 1-50.
    • (2000) Adv. Comp. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 10
    • 33750986884 scopus 로고    scopus 로고
    • "Bayes affinity fingerprints" Improve retrieval rates in virtual screening and define orthogonal bioactivity space: When are multitarget drugs a feasible concept?
    • DOI 10.1021/ci600197y
    • Bender, A.; Jenkins, J. L.; Glick, M.; Deng, Z.; Nettles, H. J.; Davies, W. J. "Bayes Affinity Fingerprints" Improve Retrieval Rates in Virtual Screening and Define Orthogonal Bioactivity Space: When Are Multitarget Drugs a Feasible Concept. J. Chem. Inf. Model. 2006, 46, 2445-2456. (Pubitemid 46008117)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.6 , pp. 2445-2456
    • Bender, A.1    Jenkins, J.L.2    Glick, M.3    Zhan, D.4    Nettles, J.H.5    Davies, J.W.6
  • 11
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of biological activity for high-throughput screening using binary kernel discrimination
    • Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.S.4    Leach, A.R.5
  • 16
    • 23044525572 scopus 로고    scopus 로고
    • Scaling Kernel-based systems to large data sets
    • Tresp, V. Scaling kernel-based systems to large data sets. Data Min. Knowl. Discov. 2001, 5, 197-211. (Pubitemid 33750366)
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 197-211
    • Tresp, V.1
  • 17
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 1950, 68, 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 23
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Freund, Y.; Schapire, R. E. Large margin classification using the perceptron algorithm. Machine Learning 1999, 37, 277-296. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 33747459401 scopus 로고
    • On the potential function method
    • Braverman, E. M. On the potential function method. Avtom. Telemekh. 1965, 26, 2205-2213.
    • (1965) Avtom. Telemekh , vol.26 , pp. 2205-2213
    • Braverman, E.M.1
  • 25
    • 33747467331 scopus 로고
    • The probability problem of pattern recognition learning and method of potential functions
    • Aizerman, M.; Braverman, E. M.; Rozonoer, L. The probability problem of pattern recognition learning and method of potential functions. Avtom. Telemekh. 1964, 25, 1307-1323.
    • (1964) Avtom. Telemekh , vol.25 , pp. 1307-1323
    • Aizerman, M.1    Braverman, E.M.2    Rozonoer, L.3
  • 26
    • 79952584995 scopus 로고
    • Estimation of the rate of convergence of algorithms based on the potential function method
    • Braverman, E. M.; Pyatnitski, E. S. Estimation of the rate of convergence of algorithms based on the potential function method. Avtom. Telemekh. 1966, 27, 95-112.
    • (1966) Avtom. Telemekh , vol.27 , pp. 95-112
    • Braverman, E.M.1    Pyatnitski, E.S.2
  • 29
    • 84965017495 scopus 로고    scopus 로고
    • Convergence theorem for kemel perceptron: In computational intelligence for the e-age
    • Singapore, November 18-22, 2002; Wang, L, Rajapakse, J. C., Fukushima, K., Lee, S, Yao, X., Eds; Wiley-IEEE Press: Hoboken, NJ
    • Ikeda, K. Convergence Theorem for Kemel Perceptron: In Computational Intelligence for the E-Age; Proceedings of the 9th International Conference on Neural Information, Singapore, November 18-22, 2002; Wang, L, Rajapakse, J. C., Fukushima, K., Lee, S, Yao, X., Eds; Wiley-IEEE Press: Hoboken, NJ, 2002; Vol. 1, pp 163-166.
    • (2002) Proceedings of the 9th International Conference on Neural. Information , vol.1 , pp. 163-166
    • Ikeda, K.1
  • 30
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C.; Vapnik, V. N. Support vector networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 31
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171-1220.
    • (2008) Ann. Stat. , vol.36 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 32
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • Bari, Italy, July 3-6, 1996; Saitta, L., Ed.; Morgan Kaufmann: Burlington, MA
    • Burges, C. J. Simplified support Vector decision rules; Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, July 3-6, 1996; Saitta, L., Ed.; Morgan Kaufmann: Burlington, MA, 1996; pp 71-77.
    • (1996) Proceedings of the 13th International Conference on Machine Learning , pp. 71-77
    • Burges, C.J.1
  • 33
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121-167. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 34
    • 0000249788 scopus 로고    scopus 로고
    • An Equivalence between Sparse Approximation and Support Vector Machines
    • Girosi, F. An equivalence between sparse approximation and support vector machines. Neural Comput. 1998, 10, 1455-1480. (Pubitemid 128464285)
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 35
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • DOI 10.1016/S0893-6080(98)00032-X, PII S089360809800032X
    • Smola, A. J.; Scholkopf, B.; Muller, K. R. The connection between regularization operators and support vector kernels. Neural Networks 1998, 11, 637-649. (Pubitemid 28400264)
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.-R.3
  • 38
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bulletin 1945, 1, 80-83.
    • (1945) Biometrics Bulletin , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 39
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Joachims, T.; Finley, T.; Yu, C. J. Cutting-Plane Training of Structural SVMs. Mach. Learn. 2009, 77, 27-59.
    • (2009) Mach. Learn , vol.77 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.J.3
  • 41
    • 79952579937 scopus 로고    scopus 로고
    • Molecular Operating Environment MOE; Chemical Computing Group: Montreal, Quebec, Canada;, Accessed January 10, 2010
    • Molecular Operating Environment (MOE); Chemical Computing Group: Montreal, Quebec, Canada; http://www.chemComp.com. Accessed January 10, 2010.
  • 42
    • 0000900996 scopus 로고    scopus 로고
    • A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split
    • Kearns, M. A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split. Neural Comput. 1997, 9, 1143-1161. (Pubitemid 127462796)
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1143-1161
    • Kearns, M.1
  • 44
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf, B., Burges, C., Smola, A. J., Eds.; MIT-Press: Cambridge, MA
    • Joachims, T. Making large-Scale SVM Learning Practical. In Advances in Kernel Methods - Support Vector Learning; Schölkopf, B., Burges, C., Smola, A. J., Eds.; MIT-Press: Cambridge, MA, 1999; pp 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 45
    • 79952579706 scopus 로고    scopus 로고
    • University of California Irvine Machine Learning Repository; University of California, Irvine: Irvine, CA;, Accessed March 4, 2008
    • University of California Irvine Machine Learning Repository; University of California, Irvine: Irvine, CA; http://archive.ics.uci.edu/ml/. Accessed March 4, 2008.
  • 46
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing: Vienna, Austria, Accessed April-July, 2010
    • R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; http://www.R-project.org. Accessed April-July, 2010.
    • (2008) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.