메뉴 건너뛰기




Volumn 49, Issue 6, 2009, Pages 1486-1496

Bias-correction of regression models: A case study on hERG inhibition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL CHEMISTRY; DECISION TREES; LEARNING SYSTEMS; MEAN SQUARE ERROR; MOLECULAR GRAPHICS; RANDOM ERRORS; SUPPORT VECTOR REGRESSION; THREE TERM CONTROL SYSTEMS;

EID: 67650067615     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci9000794     Document Type: Article
Times cited : (28)

References (55)
  • 2
    • 14544268139 scopus 로고    scopus 로고
    • QT prolongation through hERG K(+) channel blockade: Current knowledge and strategies for the early prediction during drug development
    • Recanatini, M.; Poluzzi, E.; Masetti, M.; Cavalli, A.; Ponti, F. D. QT prolongation through hERG K(+) channel blockade: Current knowledge and strategies for the early prediction during drug development. Med. Res. Rev. 2005, 25, 133-166.
    • (2005) Med. Res. Rev , vol.25 , pp. 133-166
    • Recanatini, M.1    Poluzzi, E.2    Masetti, M.3    Cavalli, A.4    Ponti, F.D.5
  • 3
    • 0038471102 scopus 로고    scopus 로고
    • The impact of drug-induced QT interval prolongation on drug discovery and development
    • Fermini, B.; Fossa, A. The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discovery 2003, 2, 439-447.
    • (2003) Nat. Rev. Drug Discovery , vol.2 , pp. 439-447
    • Fermini, B.1    Fossa, A.2
  • 4
    • 33645317063 scopus 로고    scopus 로고
    • hERG potassium channels and cardiac arrhythmia
    • Sanguinetti, M.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440, 463-469.
    • (2006) Nature , vol.440 , pp. 463-469
    • Sanguinetti, M.1    Tristani-Firouzi, M.2
  • 5
    • 33845770848 scopus 로고    scopus 로고
    • Molecular mechanisms for drug interactions with hERG that cause long QT syndrome
    • Stansfeld, P.; Sutcliffe, M.; Mitcheson, J. Molecular mechanisms for drug interactions with hERG that cause long QT syndrome. Expert Opin. Drug Metab. Toxicol. 2006, 2, 81-94.
    • (2006) Expert Opin. Drug Metab. Toxicol , vol.2 , pp. 81-94
    • Stansfeld, P.1    Sutcliffe, M.2    Mitcheson, J.3
  • 6
    • 13844254976 scopus 로고    scopus 로고
    • Predictive in silico modeling for hERG channel blockers
    • Aronov, A. Predictive in silico modeling for hERG channel blockers. Drug Discovery Today 2005, 10, 149-155.
    • (2005) Drug Discovery Today , vol.10 , pp. 149-155
    • Aronov, A.1
  • 8
    • 33747505446 scopus 로고    scopus 로고
    • Medicinal chemistry of hERG optimizations: Highlights and hang-ups
    • Jamieson, C.; Moir, E.; Rankovic, Z.; Wishart, G. Medicinal chemistry of hERG optimizations: Highlights and hang-ups. J. Med. Chem. 2006, 49, 5029-5046.
    • (2006) J. Med. Chem , vol.49 , pp. 5029-5046
    • Jamieson, C.1    Moir, E.2    Rankovic, Z.3    Wishart, G.4
  • 9
    • 62349138659 scopus 로고    scopus 로고
    • In silico prediction of drug properties
    • Hutter, M. In silico prediction of drug properties. Curr. Med. Chem. 2009, 16, 189-202.
    • (2009) Curr. Med. Chem , vol.16 , pp. 189-202
    • Hutter, M.1
  • 10
    • 58149310480 scopus 로고    scopus 로고
    • In Silico Prediction of the Chemical Block of Human Ether-a-Go-Go-Related Gene (hERG) K(+) Current
    • Inanobe, A.; Kamiya, N.; Murakami, S.; Fukunishi, Y.; Nakamura, H.; Kurachi, Y. In Silico Prediction of the Chemical Block of Human Ether-a-Go-Go-Related Gene (hERG) K(+) Current. J. Physiol. Sci. 2008, 58, 459-470.
    • (2008) J. Physiol. Sci , vol.58 , pp. 459-470
    • Inanobe, A.1    Kamiya, N.2    Murakami, S.3    Fukunishi, Y.4    Nakamura, H.5    Kurachi, Y.6
  • 11
    • 65249092596 scopus 로고    scopus 로고
    • Similarity-Based Classifier Using Topomers to Provide a Knowledge Base for hERG Channel Inhibition
    • Nisius, B.; Göller, A. H. Similarity-Based Classifier Using Topomers to Provide a Knowledge Base for hERG Channel Inhibition. J. Chem. Inf. Model. 2009, 49, 247-256.
    • (2009) J. Chem. Inf. Model , vol.49 , pp. 247-256
    • Nisius, B.1    Göller, A.H.2
  • 15
    • 33748124863 scopus 로고    scopus 로고
    • Machine learning techniques for in silico modeling of drug metabolism
    • Fox, T.; Kriegl, J. Machine learning techniques for in silico modeling of drug metabolism. Curr. Top. Med. Chem. 2006, 6, 1579-1591.
    • (2006) Curr. Top. Med. Chem , vol.6 , pp. 1579-1591
    • Fox, T.1    Kriegl, J.2
  • 16
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova, O.; Csanyi, G.; Gola, J.; Segall, M. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model. 2007, 47, 1847-1857.
    • (2007) J. Chem. Inf. Model , vol.47 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.3    Segall, M.4
  • 17
    • 36849084612 scopus 로고    scopus 로고
    • Predictive models for HERG channel blockers: Ligand-based and structure-based approaches
    • Thai, K.; Ecker, G. Predictive models for HERG channel blockers: ligand-based and structure-based approaches. Curr. Med. Chem. 2007, 14, 3003-3026.
    • (2007) Curr. Med. Chem , vol.14 , pp. 3003-3026
    • Thai, K.1    Ecker, G.2
  • 19
    • 58149086468 scopus 로고    scopus 로고
    • Combining Cluster Analysis, Feature Selection and Multiple Support Vector Machine Models for the Identification of Human Ether-a-go-go Related Gene Channel Blocking Compounds
    • Nisius, B.; Göller, A. H.; Bajorath, J. Combining Cluster Analysis, Feature Selection and Multiple Support Vector Machine Models for the Identification of Human Ether-a-go-go Related Gene Channel Blocking Compounds. Chem. Biol. Drug Des. 2009, 73, 17-25.
    • (2009) Chem. Biol. Drug Des , vol.73 , pp. 17-25
    • Nisius, B.1    Göller, A.H.2    Bajorath, J.3
  • 20
    • 39749088786 scopus 로고    scopus 로고
    • hERG classification Model Based on a Combination of Support Vector Machine Method and GRIND Descriptors
    • Li, Q.; Joergensen, F.; Oprea, T.; Brunak, S.; Taboureau, O. hERG classification Model Based on a Combination of Support Vector Machine Method and GRIND Descriptors. Mol. Pharm. 2008, 117-127.
    • (2008) Mol. Pharm , pp. 117-127
    • Li, Q.1    Joergensen, F.2    Oprea, T.3    Brunak, S.4    Taboureau, O.5
  • 21
    • 13944268698 scopus 로고    scopus 로고
    • Greater than the sum of its parts: Combining models for useful ADMET prediction
    • O'Brien, S.; de Groot, M. Greater than the sum of its parts: combining models for useful ADMET prediction. J. Med. Chem. 2005, 48, 1287-1291.
    • (2005) J. Med. Chem , vol.48 , pp. 1287-1291
    • O'Brien, S.1    de Groot, M.2
  • 22
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21-44.
    • (2006) IEEE Circuits Syst. Mag , vol.6 , pp. 21-44
    • Polikar, R.1
  • 23
    • 33646271333 scopus 로고    scopus 로고
    • Model Selection Based on Structural Similarity-Method Description and Application to Water Solubility Prediction
    • Kühne, R.; Ebert, R.-U.; Schürmann, G. Model Selection Based on Structural Similarity-Method Description and Application to Water Solubility Prediction. J. Chem. Inf. Model. 2006, 46, 636-641.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 636-641
    • Kühne, R.1    Ebert, R.-U.2    Schürmann, G.3
  • 24
    • 0036557849 scopus 로고    scopus 로고
    • Neural Network Studies. 4. Intoduction to Associative Neural Networks
    • Tetko, I. Neural Network Studies. 4. Intoduction to Associative Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42, 717-728.
    • (2002) J. Chem. Inf. Comput. Sci , vol.42 , pp. 717-728
    • Tetko, I.1
  • 25
    • 58149402899 scopus 로고    scopus 로고
    • Associative neural network
    • Tetko, I. Associative neural network. Methods Mol. Biol. 2008, 458, 185-202.
    • (2008) Methods Mol. Biol , vol.458 , pp. 185-202
    • Tetko, I.1
  • 26
    • 37249039935 scopus 로고    scopus 로고
    • QSAR modeling using automatically updating correction libraries: Application to a human plasma protein binding model
    • Rodgers, S.; Davis, A.; Tomkinson, N.; van de Waterbeemd, H. QSAR modeling using automatically updating correction libraries: application to a human plasma protein binding model. J. Chem. Inf. Model. 2007, 47, 2401-2407.
    • (2007) J. Chem. Inf. Model , vol.47 , pp. 2401-2407
    • Rodgers, S.1    Davis, A.2    Tomkinson, N.3    van de Waterbeemd, H.4
  • 27
    • 33745383499 scopus 로고    scopus 로고
    • Bruneau, P.; McElroy, N. logD(7.4) Modeling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction. J. Chem. Inf. Model. 2006, 46, 1379-1387.
    • Bruneau, P.; McElroy, N. logD(7.4) Modeling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction. J. Chem. Inf. Model. 2006, 46, 1379-1387.
  • 30
    • 0033523672 scopus 로고    scopus 로고
    • Scaffold- Hopping by Topological Pharmacophore Search: A Contribution to Virtual Screening
    • Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. "Scaffold- Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angew. Chem., Int. Ed. Engl. 1999, 38, 2894-2896.
    • (1999) Angew. Chem., Int. Ed. Engl , vol.38 , pp. 2894-2896
    • Schneider, G.1    Neidhart, W.2    Giller, T.3    Schmid, G.4
  • 31
    • 0033800498 scopus 로고    scopus 로고
    • Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 2000, 11, 29-39.
    • Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 2000, 11, 29-39.
  • 32
    • 41649106660 scopus 로고    scopus 로고
    • Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodise with antitumor activity
    • Fortuna, C. G.; Barresi, V.; Berellini, G.; Musumarra, G. Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodise with antitumor activity. Bioorg. Med. Chem. 2008, 16, 4150-4159.
    • (2008) Bioorg. Med. Chem , vol.16 , pp. 4150-4159
    • Fortuna, C.G.1    Barresi, V.2    Berellini, G.3    Musumarra, G.4
  • 33
    • 0037498037 scopus 로고    scopus 로고
    • Prediction of Aqueous Solubility and Partition Coefficient Optimized by a Genetic Algorithm Based Descriptor Selection Method
    • Wegner, J. K.; Zell, A. Prediction of Aqueous Solubility and Partition Coefficient Optimized by a Genetic Algorithm Based Descriptor Selection Method. J. Chem. Inf. Comput. Sci. 2003, 43, 1077-1084.
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 1077-1084
    • Wegner, J.K.1    Zell, A.2
  • 34
    • 48249154237 scopus 로고    scopus 로고
    • Predictive QSAR models for polyspecific drug targets: The importance of feature selection
    • Demel, M.; Janecek, A.; Thai, K.-M.; Ecker, G.; Gansterer, W. Predictive QSAR models for polyspecific drug targets: The importance of feature selection. Curr. Comput.-Aided Drug Des. 2008, 4, 91-110.
    • (2008) Curr. Comput.-Aided Drug Des , vol.4 , pp. 91-110
    • Demel, M.1    Janecek, A.2    Thai, K.-M.3    Ecker, G.4    Gansterer, W.5
  • 44
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199-222.
    • (2004) Stat. Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 49
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Machine Learning 2001, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 51
    • 67650005772 scopus 로고    scopus 로고
    • Wen, Y. M. B. L. L.; Zhao, H. Equal clustering makes min-max modular support vector machine more efficient. Proceedings of the 12th International Conference on Neural Information Processing (ICONIP 2005); Taipei, 2005; pp 77-82.
    • Wen, Y. M. B. L. L.; Zhao, H. Equal clustering makes min-max modular support vector machine more efficient. Proceedings of the 12th International Conference on Neural Information Processing (ICONIP 2005); Taipei, 2005; pp 77-82.
  • 52
    • 33847336843 scopus 로고    scopus 로고
    • A quantitative assessment of hERG liability as a function of lipophilicity
    • Waring, M. J.; Johnstone, C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett. 2007, 17, 1759-1764.
    • (2007) Bioorg. Med. Chem. Lett , vol.17 , pp. 1759-1764
    • Waring, M.J.1    Johnstone, C.2
  • 53
    • 39749181550 scopus 로고    scopus 로고
    • Generation of a Set of Simple, Interpretable ADMET Rules of Thumb
    • Gleeson, M. P. Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. J. Med. Chem. 2008, 51, 817-834.
    • (2008) J. Med. Chem , vol.51 , pp. 817-834
    • Gleeson, M.P.1
  • 54
    • 17344373426 scopus 로고    scopus 로고
    • Characterizing of a hERG Screen Using the IonWorks HT: Comparison to a hERG Rubidium Efflux Screen
    • Sorota, S.; Zhang, X.-S.; Margulis, M.; Tucker, K.; Priestly, T. Characterizing of a hERG Screen Using the IonWorks HT: Comparison to a hERG Rubidium Efflux Screen. Assay Drug Dev. Technol. 2005, 3, 47-57.
    • (2005) Assay Drug Dev. Technol , vol.3 , pp. 47-57
    • Sorota, S.1    Zhang, X.-S.2    Margulis, M.3    Tucker, K.4    Priestly, T.5
  • 55
    • 33748129547 scopus 로고    scopus 로고
    • Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT
    • Bridgland-Taylor, M. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Meth. 2006, 54, 189-199.
    • (2006) J. Pharmacol. Toxicol. Meth , vol.54 , pp. 189-199
    • Bridgland-Taylor, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.