-
1
-
-
1942536148
-
Drug-induced torsades de pointes and implications for drug development
-
Fenichel, R.; Malik, M.; Antzelevitch, C.; Sanguinetti, M.; Roden, D.; Priori, S.; Ruskin, J.; Lipicky, R.; Cantilena, L. Drug-induced torsades de pointes and implications for drug development. J. Cardiovasc. Electrophysiol. 2004, 15, 475-495.
-
(2004)
J. Cardiovasc. Electrophysiol
, vol.15
, pp. 475-495
-
-
Fenichel, R.1
Malik, M.2
Antzelevitch, C.3
Sanguinetti, M.4
Roden, D.5
Priori, S.6
Ruskin, J.7
Lipicky, R.8
Cantilena, L.9
-
2
-
-
14544268139
-
QT prolongation through hERG K(+) channel blockade: Current knowledge and strategies for the early prediction during drug development
-
Recanatini, M.; Poluzzi, E.; Masetti, M.; Cavalli, A.; Ponti, F. D. QT prolongation through hERG K(+) channel blockade: Current knowledge and strategies for the early prediction during drug development. Med. Res. Rev. 2005, 25, 133-166.
-
(2005)
Med. Res. Rev
, vol.25
, pp. 133-166
-
-
Recanatini, M.1
Poluzzi, E.2
Masetti, M.3
Cavalli, A.4
Ponti, F.D.5
-
3
-
-
0038471102
-
The impact of drug-induced QT interval prolongation on drug discovery and development
-
Fermini, B.; Fossa, A. The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discovery 2003, 2, 439-447.
-
(2003)
Nat. Rev. Drug Discovery
, vol.2
, pp. 439-447
-
-
Fermini, B.1
Fossa, A.2
-
4
-
-
33645317063
-
hERG potassium channels and cardiac arrhythmia
-
Sanguinetti, M.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440, 463-469.
-
(2006)
Nature
, vol.440
, pp. 463-469
-
-
Sanguinetti, M.1
Tristani-Firouzi, M.2
-
5
-
-
33845770848
-
Molecular mechanisms for drug interactions with hERG that cause long QT syndrome
-
Stansfeld, P.; Sutcliffe, M.; Mitcheson, J. Molecular mechanisms for drug interactions with hERG that cause long QT syndrome. Expert Opin. Drug Metab. Toxicol. 2006, 2, 81-94.
-
(2006)
Expert Opin. Drug Metab. Toxicol
, vol.2
, pp. 81-94
-
-
Stansfeld, P.1
Sutcliffe, M.2
Mitcheson, J.3
-
6
-
-
13844254976
-
Predictive in silico modeling for hERG channel blockers
-
Aronov, A. Predictive in silico modeling for hERG channel blockers. Drug Discovery Today 2005, 10, 149-155.
-
(2005)
Drug Discovery Today
, vol.10
, pp. 149-155
-
-
Aronov, A.1
-
8
-
-
33747505446
-
Medicinal chemistry of hERG optimizations: Highlights and hang-ups
-
Jamieson, C.; Moir, E.; Rankovic, Z.; Wishart, G. Medicinal chemistry of hERG optimizations: Highlights and hang-ups. J. Med. Chem. 2006, 49, 5029-5046.
-
(2006)
J. Med. Chem
, vol.49
, pp. 5029-5046
-
-
Jamieson, C.1
Moir, E.2
Rankovic, Z.3
Wishart, G.4
-
9
-
-
62349138659
-
In silico prediction of drug properties
-
Hutter, M. In silico prediction of drug properties. Curr. Med. Chem. 2009, 16, 189-202.
-
(2009)
Curr. Med. Chem
, vol.16
, pp. 189-202
-
-
Hutter, M.1
-
10
-
-
58149310480
-
In Silico Prediction of the Chemical Block of Human Ether-a-Go-Go-Related Gene (hERG) K(+) Current
-
Inanobe, A.; Kamiya, N.; Murakami, S.; Fukunishi, Y.; Nakamura, H.; Kurachi, Y. In Silico Prediction of the Chemical Block of Human Ether-a-Go-Go-Related Gene (hERG) K(+) Current. J. Physiol. Sci. 2008, 58, 459-470.
-
(2008)
J. Physiol. Sci
, vol.58
, pp. 459-470
-
-
Inanobe, A.1
Kamiya, N.2
Murakami, S.3
Fukunishi, Y.4
Nakamura, H.5
Kurachi, Y.6
-
11
-
-
65249092596
-
Similarity-Based Classifier Using Topomers to Provide a Knowledge Base for hERG Channel Inhibition
-
Nisius, B.; Göller, A. H. Similarity-Based Classifier Using Topomers to Provide a Knowledge Base for hERG Channel Inhibition. J. Chem. Inf. Model. 2009, 49, 247-256.
-
(2009)
J. Chem. Inf. Model
, vol.49
, pp. 247-256
-
-
Nisius, B.1
Göller, A.H.2
-
12
-
-
0035272287
-
An Introduction to Kernelbased Learning Algorithms
-
Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B. An Introduction to Kernelbased Learning Algorithms. IEEE Neural Networks 2001, 12, 181-201.
-
(2001)
IEEE Neural Networks
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
15
-
-
33748124863
-
Machine learning techniques for in silico modeling of drug metabolism
-
Fox, T.; Kriegl, J. Machine learning techniques for in silico modeling of drug metabolism. Curr. Top. Med. Chem. 2006, 6, 1579-1591.
-
(2006)
Curr. Top. Med. Chem
, vol.6
, pp. 1579-1591
-
-
Fox, T.1
Kriegl, J.2
-
16
-
-
35248832636
-
Gaussian processes: A method for automatic QSAR modeling of ADME properties
-
Obrezanova, O.; Csanyi, G.; Gola, J.; Segall, M. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model. 2007, 47, 1847-1857.
-
(2007)
J. Chem. Inf. Model
, vol.47
, pp. 1847-1857
-
-
Obrezanova, O.1
Csanyi, G.2
Gola, J.3
Segall, M.4
-
17
-
-
36849084612
-
Predictive models for HERG channel blockers: Ligand-based and structure-based approaches
-
Thai, K.; Ecker, G. Predictive models for HERG channel blockers: ligand-based and structure-based approaches. Curr. Med. Chem. 2007, 14, 3003-3026.
-
(2007)
Curr. Med. Chem
, vol.14
, pp. 3003-3026
-
-
Thai, K.1
Ecker, G.2
-
18
-
-
44449142895
-
A Probabilistic Approach to Classifying Metabolic Stability
-
Schwaighofer, A.; Schroeter, T.; Mika, S.; Hansen, K.; ter Laak, A.; Lienau, P.; Reichel, A.; Heinrich, N.; Müller, K.-R. A Probabilistic Approach to Classifying Metabolic Stability. J. Chem. Inf. Model. 2008, 48, 785-796.
-
(2008)
J. Chem. Inf. Model
, vol.48
, pp. 785-796
-
-
Schwaighofer, A.1
Schroeter, T.2
Mika, S.3
Hansen, K.4
ter Laak, A.5
Lienau, P.6
Reichel, A.7
Heinrich, N.8
Müller, K.-R.9
-
19
-
-
58149086468
-
Combining Cluster Analysis, Feature Selection and Multiple Support Vector Machine Models for the Identification of Human Ether-a-go-go Related Gene Channel Blocking Compounds
-
Nisius, B.; Göller, A. H.; Bajorath, J. Combining Cluster Analysis, Feature Selection and Multiple Support Vector Machine Models for the Identification of Human Ether-a-go-go Related Gene Channel Blocking Compounds. Chem. Biol. Drug Des. 2009, 73, 17-25.
-
(2009)
Chem. Biol. Drug Des
, vol.73
, pp. 17-25
-
-
Nisius, B.1
Göller, A.H.2
Bajorath, J.3
-
20
-
-
39749088786
-
hERG classification Model Based on a Combination of Support Vector Machine Method and GRIND Descriptors
-
Li, Q.; Joergensen, F.; Oprea, T.; Brunak, S.; Taboureau, O. hERG classification Model Based on a Combination of Support Vector Machine Method and GRIND Descriptors. Mol. Pharm. 2008, 117-127.
-
(2008)
Mol. Pharm
, pp. 117-127
-
-
Li, Q.1
Joergensen, F.2
Oprea, T.3
Brunak, S.4
Taboureau, O.5
-
21
-
-
13944268698
-
Greater than the sum of its parts: Combining models for useful ADMET prediction
-
O'Brien, S.; de Groot, M. Greater than the sum of its parts: combining models for useful ADMET prediction. J. Med. Chem. 2005, 48, 1287-1291.
-
(2005)
J. Med. Chem
, vol.48
, pp. 1287-1291
-
-
O'Brien, S.1
de Groot, M.2
-
22
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21-44.
-
(2006)
IEEE Circuits Syst. Mag
, vol.6
, pp. 21-44
-
-
Polikar, R.1
-
23
-
-
33646271333
-
Model Selection Based on Structural Similarity-Method Description and Application to Water Solubility Prediction
-
Kühne, R.; Ebert, R.-U.; Schürmann, G. Model Selection Based on Structural Similarity-Method Description and Application to Water Solubility Prediction. J. Chem. Inf. Model. 2006, 46, 636-641.
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 636-641
-
-
Kühne, R.1
Ebert, R.-U.2
Schürmann, G.3
-
24
-
-
0036557849
-
Neural Network Studies. 4. Intoduction to Associative Neural Networks
-
Tetko, I. Neural Network Studies. 4. Intoduction to Associative Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42, 717-728.
-
(2002)
J. Chem. Inf. Comput. Sci
, vol.42
, pp. 717-728
-
-
Tetko, I.1
-
25
-
-
58149402899
-
Associative neural network
-
Tetko, I. Associative neural network. Methods Mol. Biol. 2008, 458, 185-202.
-
(2008)
Methods Mol. Biol
, vol.458
, pp. 185-202
-
-
Tetko, I.1
-
26
-
-
37249039935
-
QSAR modeling using automatically updating correction libraries: Application to a human plasma protein binding model
-
Rodgers, S.; Davis, A.; Tomkinson, N.; van de Waterbeemd, H. QSAR modeling using automatically updating correction libraries: application to a human plasma protein binding model. J. Chem. Inf. Model. 2007, 47, 2401-2407.
-
(2007)
J. Chem. Inf. Model
, vol.47
, pp. 2401-2407
-
-
Rodgers, S.1
Davis, A.2
Tomkinson, N.3
van de Waterbeemd, H.4
-
27
-
-
33745383499
-
-
Bruneau, P.; McElroy, N. logD(7.4) Modeling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction. J. Chem. Inf. Model. 2006, 46, 1379-1387.
-
Bruneau, P.; McElroy, N. logD(7.4) Modeling Using Bayesian Regularized Neural Networks. Assessment and Correction of the Errors of Prediction. J. Chem. Inf. Model. 2006, 46, 1379-1387.
-
-
-
-
28
-
-
46749099544
-
A composite model for HERG blockade
-
Kramer, C.; Beck, B.; Kriegl, J.; Clark, T. A composite model for HERG blockade. J. Chem. Med. Chem. 2008, 3, 254-265.
-
(2008)
J. Chem. Med. Chem
, vol.3
, pp. 254-265
-
-
Kramer, C.1
Beck, B.2
Kriegl, J.3
Clark, T.4
-
29
-
-
4644257489
-
Variability in the measurement of hERG potassium channel inhibition: Effects of temperature and stimulus pattern
-
Kirsch, G.; Trepakova, E.; Brimecombe, J.; Sidach, S.; Erickson, H.; Kochan, M.; Shyjka, L.; Lacerda, A.; Brown, A. Variability in the measurement of hERG potassium channel inhibition: Effects of temperature and stimulus pattern. J. Pharmacol. Toxicol. Meth. 2004, 50, 93-101.
-
(2004)
J. Pharmacol. Toxicol. Meth
, vol.50
, pp. 93-101
-
-
Kirsch, G.1
Trepakova, E.2
Brimecombe, J.3
Sidach, S.4
Erickson, H.5
Kochan, M.6
Shyjka, L.7
Lacerda, A.8
Brown, A.9
-
30
-
-
0033523672
-
Scaffold- Hopping by Topological Pharmacophore Search: A Contribution to Virtual Screening
-
Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. "Scaffold- Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angew. Chem., Int. Ed. Engl. 1999, 38, 2894-2896.
-
(1999)
Angew. Chem., Int. Ed. Engl
, vol.38
, pp. 2894-2896
-
-
Schneider, G.1
Neidhart, W.2
Giller, T.3
Schmid, G.4
-
31
-
-
0033800498
-
-
Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 2000, 11, 29-39.
-
Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 2000, 11, 29-39.
-
-
-
-
32
-
-
41649106660
-
Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodise with antitumor activity
-
Fortuna, C. G.; Barresi, V.; Berellini, G.; Musumarra, G. Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodise with antitumor activity. Bioorg. Med. Chem. 2008, 16, 4150-4159.
-
(2008)
Bioorg. Med. Chem
, vol.16
, pp. 4150-4159
-
-
Fortuna, C.G.1
Barresi, V.2
Berellini, G.3
Musumarra, G.4
-
33
-
-
0037498037
-
Prediction of Aqueous Solubility and Partition Coefficient Optimized by a Genetic Algorithm Based Descriptor Selection Method
-
Wegner, J. K.; Zell, A. Prediction of Aqueous Solubility and Partition Coefficient Optimized by a Genetic Algorithm Based Descriptor Selection Method. J. Chem. Inf. Comput. Sci. 2003, 43, 1077-1084.
-
(2003)
J. Chem. Inf. Comput. Sci
, vol.43
, pp. 1077-1084
-
-
Wegner, J.K.1
Zell, A.2
-
34
-
-
48249154237
-
Predictive QSAR models for polyspecific drug targets: The importance of feature selection
-
Demel, M.; Janecek, A.; Thai, K.-M.; Ecker, G.; Gansterer, W. Predictive QSAR models for polyspecific drug targets: The importance of feature selection. Curr. Comput.-Aided Drug Des. 2008, 4, 91-110.
-
(2008)
Curr. Comput.-Aided Drug Des
, vol.4
, pp. 91-110
-
-
Demel, M.1
Janecek, A.2
Thai, K.-M.3
Ecker, G.4
Gansterer, W.5
-
35
-
-
21244457905
-
Predictive automatic relevance determination by expectation propagation
-
New York, NY
-
Qi, Y. A.; Minka, T. P.; Picard, R. W.; Ghahramani, Z. Predictive automatic relevance determination by expectation propagation. ICML '04: Proceedings of the twenty-first international conference on Machine learning; New York, NY, 2004; p 85.
-
(2004)
ICML '04: Proceedings of the twenty-first international conference on Machine learning
, pp. 85
-
-
Qi, Y.A.1
Minka, T.P.2
Picard, R.W.3
Ghahramani, Z.4
-
37
-
-
18344381621
-
Classifying 'Drug-likeness' with Kernel-Based Learning Methods
-
Müller, K.-R.; Rätsch, G.; Sonnenburg, S.; Mika, S.; Grimm, M.; Heinrich, N. Classifying 'Drug-likeness' with Kernel-Based Learning Methods. J. Chem. Inf. Model. 2005, 45, 249-253.
-
(2005)
J. Chem. Inf. Model
, vol.45
, pp. 249-253
-
-
Müller, K.-R.1
Rätsch, G.2
Sonnenburg, S.3
Mika, S.4
Grimm, M.5
Heinrich, N.6
-
38
-
-
44449148610
-
Predicting Lipophilicity of Drug Discovery Molecules using Gaussian Process Models
-
Schroeter, T.; Schwaighofer, A.; Mika, S.; ter Laak, A.; Sülzle, D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Predicting Lipophilicity of Drug Discovery Molecules using Gaussian Process Models. J. Chem. Med. Chem. 2007, 2, 1265-1267.
-
(2007)
J. Chem. Med. Chem
, vol.2
, pp. 1265-1267
-
-
Schroeter, T.1
Schwaighofer, A.2
Mika, S.3
ter Laak, A.4
Sülzle, D.5
Ganzer, U.6
Heinrich, N.7
Müller, K.-R.8
-
39
-
-
35748984950
-
Estimating the Domain of Applicability for Machine Learning QSAR RModels: A Study on Aqueous Solubility of Drug Discovery Molecules
-
Schroeter, T.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Estimating the Domain of Applicability for Machine Learning QSAR RModels: A Study on Aqueous Solubility of Drug Discovery Molecules. J. Comput.-Aided Mol. Des. 2007, 21, 485-498.
-
(2007)
J. Comput.-Aided Mol. Des
, vol.21
, pp. 485-498
-
-
Schroeter, T.1
Schwaighofer, A.2
Mika, S.3
Laak, A.T.4
Suelzle, D.5
Ganzer, U.6
Heinrich, N.7
Müller, K.-R.8
-
40
-
-
37749038713
-
Estimating the Domain of Applicability for Machine Learning QSAR RModels: A Study on Aqueous Solubility of Drug Discovery Molecules
-
Schroeter, T.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Estimating the Domain of Applicability for Machine Learning QSAR RModels: A Study on Aqueous Solubility of Drug Discovery Molecules. J. Comput.-Aided Mol. Des. 2007, 21, 651-664.
-
(2007)
J. Comput.-Aided Mol. Des
, vol.21
, pp. 651-664
-
-
Schroeter, T.1
Schwaighofer, A.2
Mika, S.3
Laak, A.T.4
Suelzle, D.5
Ganzer, U.6
Heinrich, N.7
Müller, K.-R.8
-
41
-
-
34548159310
-
Machine Learning Models for Lipophilicity and their Domain of Applicability
-
Schroeter, T.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Machine Learning Models for Lipophilicity and their Domain of Applicability. Mol. Pharm. 2007, 4, 524-538.
-
(2007)
Mol. Pharm
, vol.4
, pp. 524-538
-
-
Schroeter, T.1
Schwaighofer, A.2
Mika, S.3
Laak, A.T.4
Suelzle, D.5
Ganzer, U.6
Heinrich, N.7
Müller, K.-R.8
-
42
-
-
34247186391
-
Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach
-
Schwaighofer, A.; Schroeter, T.; Mika, S.; Laub, J.; ter Laak, A.; Sülzle, D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach. J. Chem. Inf. Model. 2007, 47, 407-424.
-
(2007)
J. Chem. Inf. Model
, vol.47
, pp. 407-424
-
-
Schwaighofer, A.1
Schroeter, T.2
Mika, S.3
Laub, J.4
ter Laak, A.5
Sülzle, D.6
Ganzer, U.7
Heinrich, N.8
Müller, K.-R.9
-
43
-
-
33745215847
-
From outliers to prototypes: Ordering data
-
Harmeling, S.; Dornhege, G.; Tax, D.; Meinecke, F. C.; Müller, K. R. From outliers to prototypes: ordering data. Neurocomputing 2006, 69, 1608-1618.
-
(2006)
Neurocomputing
, vol.69
, pp. 1608-1618
-
-
Harmeling, S.1
Dornhege, G.2
Tax, D.3
Meinecke, F.C.4
Müller, K.R.5
-
44
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199-222.
-
(2004)
Stat. Comput
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
49
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests. Machine Learning 2001, 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
51
-
-
67650005772
-
-
Wen, Y. M. B. L. L.; Zhao, H. Equal clustering makes min-max modular support vector machine more efficient. Proceedings of the 12th International Conference on Neural Information Processing (ICONIP 2005); Taipei, 2005; pp 77-82.
-
Wen, Y. M. B. L. L.; Zhao, H. Equal clustering makes min-max modular support vector machine more efficient. Proceedings of the 12th International Conference on Neural Information Processing (ICONIP 2005); Taipei, 2005; pp 77-82.
-
-
-
-
52
-
-
33847336843
-
A quantitative assessment of hERG liability as a function of lipophilicity
-
Waring, M. J.; Johnstone, C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett. 2007, 17, 1759-1764.
-
(2007)
Bioorg. Med. Chem. Lett
, vol.17
, pp. 1759-1764
-
-
Waring, M.J.1
Johnstone, C.2
-
53
-
-
39749181550
-
Generation of a Set of Simple, Interpretable ADMET Rules of Thumb
-
Gleeson, M. P. Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. J. Med. Chem. 2008, 51, 817-834.
-
(2008)
J. Med. Chem
, vol.51
, pp. 817-834
-
-
Gleeson, M.P.1
-
54
-
-
17344373426
-
Characterizing of a hERG Screen Using the IonWorks HT: Comparison to a hERG Rubidium Efflux Screen
-
Sorota, S.; Zhang, X.-S.; Margulis, M.; Tucker, K.; Priestly, T. Characterizing of a hERG Screen Using the IonWorks HT: Comparison to a hERG Rubidium Efflux Screen. Assay Drug Dev. Technol. 2005, 3, 47-57.
-
(2005)
Assay Drug Dev. Technol
, vol.3
, pp. 47-57
-
-
Sorota, S.1
Zhang, X.-S.2
Margulis, M.3
Tucker, K.4
Priestly, T.5
-
55
-
-
33748129547
-
Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT
-
Bridgland-Taylor, M. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Meth. 2006, 54, 189-199.
-
(2006)
J. Pharmacol. Toxicol. Meth
, vol.54
, pp. 189-199
-
-
Bridgland-Taylor, M.1
|