메뉴 건너뛰기




Volumn 29, Issue 3, 2010, Pages 243-249

Quantitative prediction of regioselectivity toward cytochrome P450/3A4 using machine learning approaches

Author keywords

ADMET; CYP 3A4; Random forest; Regioselectivity; Structure activity relationships

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOMOLECULES; FORECASTING; LEARNING SYSTEMS; METABOLITES;

EID: 77952703842     PISSN: 18681743     EISSN: 18681751     Source Type: Journal    
DOI: 10.1002/minf.200900086     Document Type: Article
Times cited : (17)

References (21)
  • 12
    • 85161771295 scopus 로고    scopus 로고
    • ConQuest 1.1.2, http://www.ccdc.cam.ac.uk/products/csd/
    • ConQuest 1.1.2
  • 18
    • 85161784612 scopus 로고    scopus 로고
    • ADMETpredictor Ver.4.0
    • ADMETpredictor Ver.4.0, http://www.northernsc.co.jp/ADMETPredictor.php.
  • 19
    • 85161773699 scopus 로고    scopus 로고
    • MOE 2009.10, http://www.chemcomp.com/software.htm.
    • (2009) MOE , vol.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.