|
Volumn 29, Issue 3, 2010, Pages 243-249
|
Quantitative prediction of regioselectivity toward cytochrome P450/3A4 using machine learning approaches
|
Author keywords
ADMET; CYP 3A4; Random forest; Regioselectivity; Structure activity relationships
|
Indexed keywords
ARTIFICIAL INTELLIGENCE;
BIOMOLECULES;
FORECASTING;
LEARNING SYSTEMS;
METABOLITES;
ADMET;
CYTOCHROME P450-3A4;
DRUG CANDIDATES;
DRUG DISCOVERY PROCESS;
MACHINE LEARNING APPROACHES;
PREDICTION OF REGIOSELECTIVITY;
PROPERTY;
QUANTITATIVE PREDICTION;
RANDOM FORESTS;
STRUCTURE-ACTIVITY RELATIONSHIPS;
REGIOSELECTIVITY;
ALFENTANIL;
AMIODARONE;
AZELASTINE;
BUPRENORPHINE;
CISAPRIDE;
CITALOPRAM;
CLARITHROMYCIN;
CLOZAPINE;
CODEINE;
COLCHICINE;
CYTOCHROME P450 3A4;
DEXAMETHASONE;
DEXTROMETHORPHAN;
DIAZEPAM;
DILTIAZEM;
DOCETAXEL;
DRUG METABOLITE;
EBASTINE;
ERYTHROMYCIN;
ESTRONE;
ETOPOSIDE;
FENTANYL;
FLUNITRAZEPAM;
HALOFANTRINE;
HALOPERIDOL;
HYDROCORTISONE;
INDINAVIR;
MIDAZOLAM;
NEVIRAPINE;
UNINDEXED DRUG;
ACCURACY;
ANALYTIC METHOD;
ARTICLE;
DEALKYLATION;
DRUG HYDROXYLATION;
ENZYME METABOLISM;
HYDROGEN BOND;
K NEAREST NEIGHBOR;
MACHINE LEARNING;
PHARMACOPHORE;
PREDICTION;
PRIORITY JOURNAL;
RANDOM FOREST;
X RAY CRYSTAL STRUCTURE;
|
EID: 77952703842
PISSN: 18681743
EISSN: 18681751
Source Type: Journal
DOI: 10.1002/minf.200900086 Document Type: Article |
Times cited : (17)
|
References (21)
|