-
1
-
-
84859776222
-
The future of metabolic engineering and synthetic biology: towards a systematic practice
-
Yadav, V.G., De Mey, M., Lim, C.G., Ajikumar, P.K., Stephanopoulos, G., The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng. 14:3 (2012), 233–241.
-
(2012)
Metab. Eng.
, vol.14
, Issue.3
, pp. 233-241
-
-
Yadav, V.G.1
De Mey, M.2
Lim, C.G.3
Ajikumar, P.K.4
Stephanopoulos, G.5
-
2
-
-
0027657693
-
Metabolic engineering–methodologies and future prospects
-
Stephanopoulos, G., Sinskey, A.J., Metabolic engineering–methodologies and future prospects. Trends Biotechnol. 11:9 (1993), 392–396.
-
(1993)
Trends Biotechnol.
, vol.11
, Issue.9
, pp. 392-396
-
-
Stephanopoulos, G.1
Sinskey, A.J.2
-
3
-
-
0037026501
-
Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes
-
Bailey, J.E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W.A., Tsai, P.S., Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 79:5 (2002), 568–579.
-
(2002)
Biotechnol. Bioeng.
, vol.79
, Issue.5
, pp. 568-579
-
-
Bailey, J.E.1
Sburlati, A.2
Hatzimanikatis, V.3
Lee, K.4
Renner, W.A.5
Tsai, P.S.6
-
4
-
-
0034992791
-
Metabolic engineering as an integrating platform for strain development
-
Stafford, D.E., Stephanopoulos, G., Metabolic engineering as an integrating platform for strain development. Curr. Opin. Microbiol. 4:3 (2001), 336–340.
-
(2001)
Curr. Opin. Microbiol.
, vol.4
, Issue.3
, pp. 336-340
-
-
Stafford, D.E.1
Stephanopoulos, G.2
-
5
-
-
5044237367
-
Exploiting biological complexity for strain improvement through systems biology
-
Stephanopoulos, G., Alper, H., Moxley, J., Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol., 22(10), 2004, 1261.
-
(2004)
Nat. Biotechnol.
, vol.22
, Issue.10
, pp. 1261
-
-
Stephanopoulos, G.1
Alper, H.2
Moxley, J.3
-
6
-
-
5044239136
-
Metabolic Engineering in the Post Genomic Era
-
Garland Science
-
Kholodenko, B.N., Westerhoff, H.V., Metabolic Engineering in the Post Genomic Era. 2004, Garland Science.
-
(2004)
-
-
Kholodenko, B.N.1
Westerhoff, H.V.2
-
7
-
-
53049087092
-
Towards systems metabolic engineering of microorganisms for amino acid production
-
Park, J.H., Lee, S.Y., Towards systems metabolic engineering of microorganisms for amino acid production. Curr. Opin. Biotechnol. 19:5 (2008), 454–460.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, Issue.5
, pp. 454-460
-
-
Park, J.H.1
Lee, S.Y.2
-
8
-
-
77954699474
-
Systems metabolic engineering: genome-scale models and beyond
-
Blazeck, J., Alper, H., Systems metabolic engineering: genome-scale models and beyond. Biotechnol. J. 5:7 (2010), 647–659.
-
(2010)
Biotechnol. J.
, vol.5
, Issue.7
, pp. 647-659
-
-
Blazeck, J.1
Alper, H.2
-
9
-
-
33847073370
-
Expanding the metabolic engineering toolbox: more options to engineer cells
-
Tyo, K.E., Alper, H.S., Stephanopoulos, G.N., Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25:3 (2007), 132–137.
-
(2007)
Trends Biotechnol.
, vol.25
, Issue.3
, pp. 132-137
-
-
Tyo, K.E.1
Alper, H.S.2
Stephanopoulos, G.N.3
-
10
-
-
84979984875
-
Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites
-
Kim, H.U., Charusanti, P., Lee, S.Y., Weber, T., Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat. Prod. Rep. 33:8 (2016), 933–941.
-
(2016)
Nat. Prod. Rep.
, vol.33
, Issue.8
, pp. 933-941
-
-
Kim, H.U.1
Charusanti, P.2
Lee, S.Y.3
Weber, T.4
-
11
-
-
84908529904
-
Metabolic engineering for the production of hydrocarbon fuels
-
Lee, S.Y., Kim, H.M., Cheon, S., Metabolic engineering for the production of hydrocarbon fuels. Curr. Opin. Biotechnol. 33 (2015), 15–22.
-
(2015)
Curr. Opin. Biotechnol.
, vol.33
, pp. 15-22
-
-
Lee, S.Y.1
Kim, H.M.2
Cheon, S.3
-
12
-
-
84947614696
-
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering
-
Cho, C., Choi, S.Y., Luo, Z.W., Lee, S.Y., Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol. Adv. 33:7 (2015), 1455–1466.
-
(2015)
Biotechnol. Adv.
, vol.33
, Issue.7
, pp. 1455-1466
-
-
Cho, C.1
Choi, S.Y.2
Luo, Z.W.3
Lee, S.Y.4
-
13
-
-
0035979211
-
Progress in plant metabolic engineering
-
Broun, P., Somerville, C., Progress in plant metabolic engineering. Proc. Natl. Acad. Sci. 98:16 (2001), 8925–8927.
-
(2001)
Proc. Natl. Acad. Sci.
, vol.98
, Issue.16
, pp. 8925-8927
-
-
Broun, P.1
Somerville, C.2
-
14
-
-
85058868849
-
Ecological Chemistry and Biochemistry of Plant Terpenoids
-
Clarendon Press
-
Harborne, J.B., Tomas-Barberan, F.A., Ecological Chemistry and Biochemistry of Plant Terpenoids. 1991, Clarendon Press.
-
(1991)
-
-
Harborne, J.B.1
Tomas-Barberan, F.A.2
-
15
-
-
84926205808
-
The re-emergence of natural products for drug discovery in the genomics era
-
Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 14(2), 2015, 111.
-
(2015)
Nat. Rev. Drug Discov.
, vol.14
, Issue.2
, pp. 111
-
-
Harvey, A.L.1
Edrada-Ebel, R.2
Quinn, R.J.3
-
16
-
-
85046315723
-
Book review: antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer
-
Dhakal, D., Dhakal, Y., Sohng, J.K., Book review: antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Front. Pharmacol., 8, 2017, 771.
-
(2017)
Front. Pharmacol.
, vol.8
, pp. 771
-
-
Dhakal, D.1
Dhakal, Y.2
Sohng, J.K.3
-
17
-
-
28844473175
-
A mathematical model of n-linked glycosylation
-
Krambeck, F.J., Betenbaugh, M.J., A mathematical model of n-linked glycosylation. Biotechnol. Bioeng. 92:6 (2005), 711–728.
-
(2005)
Biotechnol. Bioeng.
, vol.92
, Issue.6
, pp. 711-728
-
-
Krambeck, F.J.1
Betenbaugh, M.J.2
-
18
-
-
0343581263
-
A mathematical model of n-linked glycoform biosynthesis
-
Umaña, P., Bailey, J.E., A mathematical model of n-linked glycoform biosynthesis. Biotechnol. Bioeng. 55:6 (1997), 890–908.
-
(1997)
Biotechnol. Bioeng.
, vol.55
, Issue.6
, pp. 890-908
-
-
Umaña, P.1
Bailey, J.E.2
-
19
-
-
84929504676
-
Metabolic engineering of cyanobacteria for the synthesis of commodity products
-
Angermayr, S.A., Rovira, A.G., Hellingwerf, K.J., Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33:6 (2015), 352–361.
-
(2015)
Trends Biotechnol.
, vol.33
, Issue.6
, pp. 352-361
-
-
Angermayr, S.A.1
Rovira, A.G.2
Hellingwerf, K.J.3
-
20
-
-
85020930713
-
Channeling in native microbial pathways: implications and challenges for metabolic engineering
-
Abernathy, M.H., He, L., Tang, Y.J., Channeling in native microbial pathways: implications and challenges for metabolic engineering. Biotechnol. Adv. 35:6 (2017), 805–814.
-
(2017)
Biotechnol. Adv.
, vol.35
, Issue.6
, pp. 805-814
-
-
Abernathy, M.H.1
He, L.2
Tang, Y.J.3
-
21
-
-
84877131240
-
Production of biopharmaceutical proteins by yeast: advances through metabolic engineering
-
Nielsen, J., Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4:4 (2013), 207–211.
-
(2013)
Bioengineered
, vol.4
, Issue.4
, pp. 207-211
-
-
Nielsen, J.1
-
22
-
-
84859768457
-
Parts plus pipes: synthetic biology approaches to metabolic engineering
-
Boyle, P.M., Silver, P.A., Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab. Eng. 14:3 (2012), 223–232.
-
(2012)
Metab. Eng.
, vol.14
, Issue.3
, pp. 223-232
-
-
Boyle, P.M.1
Silver, P.A.2
-
23
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O., Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet., 15(2), 2014, 107.
-
(2014)
Nat. Rev. Genet.
, vol.15
, Issue.2
, pp. 107
-
-
Bordbar, A.1
Monk, J.M.2
King, Z.A.3
Palsson, B.O.4
-
24
-
-
85053153826
-
Activation of microbial secondary metabolic pathways: avenues and challenges
-
Baral, B., Akhgari, A., Metsä-Ketelä, M., Activation of microbial secondary metabolic pathways: avenues and challenges. Synth. Syst. Biotechnol. 3:3 (2018), 163–178.
-
(2018)
Synth. Syst. Biotechnol.
, vol.3
, Issue.3
, pp. 163-178
-
-
Baral, B.1
Akhgari, A.2
Metsä-Ketelä, M.3
-
25
-
-
84055221856
-
Perspectives on metabolic engineering for increased lipid contents in microalgae
-
Schuhmann, H., Lim, D.K., Schenk, P.M., Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:1 (2012), 71–86.
-
(2012)
Biofuels
, vol.3
, Issue.1
, pp. 71-86
-
-
Schuhmann, H.1
Lim, D.K.2
Schenk, P.M.3
-
26
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S., Lee, S.Y., Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8:6 (2012), 536–546.
-
(2012)
Nat. Chem. Biol.
, vol.8
, Issue.6
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
Lee, J.4
Choi, S.5
Lee, S.Y.6
-
27
-
-
77952915373
-
Construction and optimization of synthetic pathways in metabolic engineering
-
Na, D., Kim, T.Y., Lee, S.Y., Construction and optimization of synthetic pathways in metabolic engineering. Curr. Opin. Microbiol. 13:3 (2010), 363–370.
-
(2010)
Curr. Opin. Microbiol.
, vol.13
, Issue.3
, pp. 363-370
-
-
Na, D.1
Kim, T.Y.2
Lee, S.Y.3
-
28
-
-
53049109464
-
De novo biosynthetic pathways: rational design of microbial chemical factories
-
Prather, K.L.J., Martin, C.H., De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin. Biotechnol. 19:5 (2008), 468–474.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, Issue.5
, pp. 468-474
-
-
Prather, K.L.J.1
Martin, C.H.2
-
29
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S.B., Keasling, J.D., Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:7280 (2010), 559–562.
-
(2010)
Nature
, vol.463
, Issue.7280
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.2
Bokinsky, G.3
Hu, Z.4
Schirmer, A.5
McClure, A.6
Del Cardayre, S.B.7
Keasling, J.D.8
-
30
-
-
84875670791
-
Engineering central metabolic modules of Escherichia coli for improving β-carotene production
-
Zhao, J., Li, Q., Sun, T., Zhu, X., Xu, H., Tang, J., Zhang, X., Ma, Y., Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng. 17 (2013), 42–50.
-
(2013)
Metab. Eng.
, vol.17
, pp. 42-50
-
-
Zhao, J.1
Li, Q.2
Sun, T.3
Zhu, X.4
Xu, H.5
Tang, J.6
Zhang, X.7
Ma, Y.8
-
31
-
-
84879829307
-
Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production
-
Alonso-Gutierrez, J., Chan, R., Batth, T.S., Adams, P.D., Keasling, J.D., Petzold, C.J., Lee, T.S., Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19 (2013), 33–41.
-
(2013)
Metab. Eng.
, vol.19
, pp. 33-41
-
-
Alonso-Gutierrez, J.1
Chan, R.2
Batth, T.S.3
Adams, P.D.4
Keasling, J.D.5
Petzold, C.J.6
Lee, T.S.7
-
32
-
-
70449336249
-
Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
-
Lindberg, P., Park, S., Melis, A., Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12:1 (2010), 70–79.
-
(2010)
Metab. Eng.
, vol.12
, Issue.1
, pp. 70-79
-
-
Lindberg, P.1
Park, S.2
Melis, A.3
-
33
-
-
79958232375
-
Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
-
Zhao, Y., Yang, J., Qin, B., Li, Y., Sun, Y., Su, S., Xian, M., Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl. Microbiol. Biotechnol., 90(6), 2011, 1915.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.90
, Issue.6
, pp. 1915
-
-
Zhao, Y.1
Yang, J.2
Qin, B.3
Li, Y.4
Sun, Y.5
Su, S.6
Xian, M.7
-
34
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:7174 (2008), 86–89.
-
(2008)
Nature
, vol.451
, Issue.7174
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
35
-
-
68049135724
-
Engineering alternative butanol production platforms in heterologous bacteria
-
Nielsen, D.R., Leonard, E., Yoon, S.H., Tseng, H.C., Yuan, C., Prather, K.L.J., Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11:4 (2009), 262–273.
-
(2009)
Metab. Eng.
, vol.11
, Issue.4
, pp. 262-273
-
-
Nielsen, D.R.1
Leonard, E.2
Yoon, S.H.3
Tseng, H.C.4
Yuan, C.5
Prather, K.L.J.6
-
36
-
-
79958747820
-
Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
-
Lan, E.I., Liao, J.C., Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13:4 (2011), 353–363.
-
(2011)
Metab. Eng.
, vol.13
, Issue.4
, pp. 353-363
-
-
Lan, E.I.1
Liao, J.C.2
-
37
-
-
84857281676
-
Styrene biosynthesis from glucose by engineeredE. coli
-
McKenna, R., Nielsen, D.R., Styrene biosynthesis from glucose by engineeredE. coli. Metab. Eng. 13:5 (2011), 544–554.
-
(2011)
Metab. Eng.
, vol.13
, Issue.5
, pp. 544-554
-
-
McKenna, R.1
Nielsen, D.R.2
-
38
-
-
84872221971
-
Metabolic engineering of Escherichia coli for (2s)-pinocembrin production from glucose by a modular metabolic strategy
-
Wu, J., Du, G., Zhou, J., Chen, J., Metabolic engineering of Escherichia coli for (2s)-pinocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16 (2013), 48–55.
-
(2013)
Metab. Eng.
, vol.16
, pp. 48-55
-
-
Wu, J.1
Du, G.2
Zhou, J.3
Chen, J.4
-
39
-
-
80555150665
-
Metabolic engineering of Escherichia coli for α-farnesene production
-
Wang, C., Yoon, S.H., Jang, H.J., Chung, Y.R., Kim, J.Y., Choi, E.S., Kim, S.W., Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13:6 (2011), 648–655.
-
(2011)
Metab. Eng.
, vol.13
, Issue.6
, pp. 648-655
-
-
Wang, C.1
Yoon, S.H.2
Jang, H.J.3
Chung, Y.R.4
Kim, J.Y.5
Choi, E.S.6
Kim, S.W.7
-
40
-
-
84949845284
-
Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase
-
Gemperlein, K., Zipf, G., Bernauer, H.S., Müller, R., Wenzel, S.C., Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab. Eng. 33 (2016), 98–108.
-
(2016)
Metab. Eng.
, vol.33
, pp. 98-108
-
-
Gemperlein, K.1
Zipf, G.2
Bernauer, H.S.3
Müller, R.4
Wenzel, S.C.5
-
41
-
-
84883802093
-
Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica
-
Xue, Z., Sharpe, P.L., Hong, S.P., Yadav, N.S., Xie, D., Short, D.R., Damude, H.G., Rupert, R.A., Seip, J.E., Wang, J., et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31:8 (2013), 734–740.
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.8
, pp. 734-740
-
-
Xue, Z.1
Sharpe, P.L.2
Hong, S.P.3
Yadav, N.S.4
Xie, D.5
Short, D.R.6
Damude, H.G.7
Rupert, R.A.8
Seip, J.E.9
Wang, J.10
-
42
-
-
85007347043
-
In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose
-
Zhu, Z., Zhang, Y.H.P., In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metab. Eng. 39 (2017), 110–116.
-
(2017)
Metab. Eng.
, vol.39
, pp. 110-116
-
-
Zhu, Z.1
Zhang, Y.H.P.2
-
43
-
-
84891829362
-
Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
-
Runguphan, W., Keasling, J.D., Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 21 (2014), 103–113.
-
(2014)
Metab. Eng.
, vol.21
, pp. 103-113
-
-
Runguphan, W.1
Keasling, J.D.2
-
44
-
-
78049430020
-
Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
-
Raab, A.M., Gebhardt, G., Bolotina, N., Weuster-Botz, D., Lang, C., Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12:6 (2010), 518–525.
-
(2010)
Metab. Eng.
, vol.12
, Issue.6
, pp. 518-525
-
-
Raab, A.M.1
Gebhardt, G.2
Bolotina, N.3
Weuster-Botz, D.4
Lang, C.5
-
45
-
-
84947810654
-
Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae
-
Murakami, S., Shimamoto, T., Nagano, H., Tsuruno, M., Okuhara, H., Hatanaka, H., Tojo, H., Kodama, Y., Funato, K., Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae. Sci Rep, 5, 2015.
-
(2015)
Sci Rep
, vol.5
-
-
Murakami, S.1
Shimamoto, T.2
Nagano, H.3
Tsuruno, M.4
Okuhara, H.5
Hatanaka, H.6
Tojo, H.7
Kodama, Y.8
Funato, K.9
-
46
-
-
84993995233
-
The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae
-
Klein, M., Islam, Z.u., Knudsen, P.B., Carrillo, M., Swinnen, S., Workman, M., Nevoigt, E., The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae. Metab. Eng. Commun. 3 (2016), 252–257.
-
(2016)
Metab. Eng. Commun.
, vol.3
, pp. 252-257
-
-
Klein, M.1
Islam, Z.U.2
Knudsen, P.B.3
Carrillo, M.4
Swinnen, S.5
Workman, M.6
Nevoigt, E.7
-
47
-
-
85013391822
-
Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol
-
Kim, S.R., Skerker, J.M., Kong, I.I., Kim, H., Maurer, M.J., Zhang, G.C., Peng, D., Wei, N., Arkin, A.P., Jin, Y.S., Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metab. Eng. 40 (2017), 176–185.
-
(2017)
Metab. Eng.
, vol.40
, pp. 176-185
-
-
Kim, S.R.1
Skerker, J.M.2
Kong, I.I.3
Kim, H.4
Maurer, M.J.5
Zhang, G.C.6
Peng, D.7
Wei, N.8
Arkin, A.P.9
Jin, Y.S.10
-
48
-
-
77953329895
-
Prediction of novel synthetic pathways for the production of desired chemicals
-
Cho, A., Yun, H., Park, J.H., Lee, S.Y., Park, S., Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst. Biol., 4(1), 2010, 35.
-
(2010)
BMC Syst. Biol.
, vol.4
, Issue.1
, pp. 35
-
-
Cho, A.1
Yun, H.2
Park, J.H.3
Lee, S.Y.4
Park, S.5
-
49
-
-
77954268488
-
Pathpred: an enzyme-catalyzed metabolic pathway prediction server
-
Moriya, Y., Shigemizu, D., Hattori, M., Tokimatsu, T., Kotera, M., Goto, S., Kanehisa, M., Pathpred: an enzyme-catalyzed metabolic pathway prediction server. Nucl. Acids Res. 38:suppl_2 (2010), W138–W143.
-
(2010)
Nucl. Acids Res.
, vol.38
, pp. W138-W143
-
-
Moriya, Y.1
Shigemizu, D.2
Hattori, M.3
Tokimatsu, T.4
Kotera, M.5
Goto, S.6
Kanehisa, M.7
-
50
-
-
0141850380
-
Pathminer: predicting metabolic pathways by heuristic search
-
McShan, D.C., Rao, S., Shah, I., Pathminer: predicting metabolic pathways by heuristic search. Bioinformatics 19:13 (2003), 1692–1698.
-
(2003)
Bioinformatics
, vol.19
, Issue.13
, pp. 1692-1698
-
-
McShan, D.C.1
Rao, S.2
Shah, I.3
-
51
-
-
0034615791
-
Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective
-
Schilling, C.H., Letscher, D., Palsson, B.O., Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203:3 (2000), 229–248.
-
(2000)
J. Theor. Biol.
, vol.203
, Issue.3
, pp. 229-248
-
-
Schilling, C.H.1
Letscher, D.2
Palsson, B.O.3
-
52
-
-
17544366029
-
Expa: a program for calculating extreme pathways in biochemical reaction networks
-
Bell, S.L., Palsson, B.O., Expa: a program for calculating extreme pathways in biochemical reaction networks. Bioinformatics 21:8 (2004), 1739–1740.
-
(2004)
Bioinformatics
, vol.21
, Issue.8
, pp. 1739-1740
-
-
Bell, S.L.1
Palsson, B.O.2
-
53
-
-
0000029295
-
On elementary flux modes in biochemical reaction systems at steady state
-
Schuster, S., Hilgetag, C., On elementary flux modes in biochemical reaction systems at steady state. J. Biological Syst. 2:02 (1994), 165–182.
-
(1994)
J. Biological Syst.
, vol.2
, Issue.2
, pp. 165-182
-
-
Schuster, S.1
Hilgetag, C.2
-
54
-
-
77953578214
-
Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate
-
Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol. Bioeng. 106:3 (2010), 462–473.
-
(2010)
Biotechnol. Bioeng.
, vol.106
, Issue.3
, pp. 462-473
-
-
Henry, C.S.1
Broadbelt, L.J.2
Hatzimanikatis, V.3
-
55
-
-
84904757169
-
A comprehensive view on metabolic pathway analysis methodologies
-
Tomar, N., K. De, R., A comprehensive view on metabolic pathway analysis methodologies. Curr. Bioinform. 9:3 (2014), 295–305.
-
(2014)
Curr. Bioinform.
, vol.9
, Issue.3
, pp. 295-305
-
-
Tomar, N.1
De, R.K.2
-
56
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
Segre, D., Vitkup, D., Church, G.M., Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. 99:23 (2002), 15112–15117.
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, Issue.23
, pp. 15112-15117
-
-
Segre, D.1
Vitkup, D.2
Church, G.M.3
-
57
-
-
19644386033
-
Regulatory on/off minimization of metabolic flux changes after genetic perturbations
-
Shlomi, T., Berkman, O., Ruppin, E., Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. 102:21 (2005), 7695–7700.
-
(2005)
Proc. Natl. Acad. Sci.
, vol.102
, Issue.21
, pp. 7695-7700
-
-
Shlomi, T.1
Berkman, O.2
Ruppin, E.3
-
58
-
-
8744224466
-
Optstrain: a computational framework for redesign of microbial production systems
-
Pharkya, P., Burgard, A.P., Maranas, C.D., Optstrain: a computational framework for redesign of microbial production systems. Genome Res. 14:11 (2004), 2367–2376.
-
(2004)
Genome Res.
, vol.14
, Issue.11
, pp. 2367-2376
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
59
-
-
0242487787
-
Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard, A.P., Pharkya, P., Maranas, C.D., Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84:6 (2003), 647–657.
-
(2003)
Biotechnol. Bioeng.
, vol.84
, Issue.6
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
60
-
-
84871463200
-
In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates
-
Poblete-Castro, I., Binger, D., Rodrigues, A., Becker, J., dos Santos, V.A.M., Wittmann, C., In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab. Eng. 15 (2013), 113–123.
-
(2013)
Metab. Eng.
, vol.15
, pp. 113-123
-
-
Poblete-Castro, I.1
Binger, D.2
Rodrigues, A.3
Becker, J.4
dos Santos, V.A.M.5
Wittmann, C.6
-
61
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker, J., Zelder, O., Häfner, S., Schröder, H., Wittmann, C., From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab. Eng. 13:2 (2011), 159–168.
-
(2011)
Metab. Eng.
, vol.13
, Issue.2
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
62
-
-
73949094856
-
Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
-
Jung, Y.K., Kim, T.Y., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105:1 (2010), 161–171.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, Issue.1
, pp. 161-171
-
-
Jung, Y.K.1
Kim, T.Y.2
Park, S.J.3
Lee, S.Y.4
-
63
-
-
85010908796
-
Synthetic metabolism: metabolic engineering meets enzyme design
-
Erb, T.J., Jones, P.R., Bar-Even, A., Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37 (2017), 56–62.
-
(2017)
Curr. Opin. Chem. Biol.
, vol.37
, pp. 56-62
-
-
Erb, T.J.1
Jones, P.R.2
Bar-Even, A.3
-
64
-
-
0032253961
-
Theozymes and compuzymes: theoretical models for biological catalysis
-
Tantillo, D.J., Jiangang, C., Houk, K.N., Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2:6 (1998), 743–750.
-
(1998)
Curr. Opin. Chem. Biol.
, vol.2
, Issue.6
, pp. 743-750
-
-
Tantillo, D.J.1
Jiangang, C.2
Houk, K.N.3
-
65
-
-
84859780045
-
Spatial organization of enzymes for metabolic engineering
-
Lee, H., DeLoache, W.C., Dueber, J.E., Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14:3 (2012), 242–251.
-
(2012)
Metab. Eng.
, vol.14
, Issue.3
, pp. 242-251
-
-
Lee, H.1
DeLoache, W.C.2
Dueber, J.E.3
-
66
-
-
43449098518
-
Kemp elimination catalysts by computational enzyme design
-
Röthlisberger, D., Khersonsky, O., Wollacott, A.M., Jiang, L., DeChancie, J., Betker, J., Gallaher, J.L., Althoff, E.A., Zanghellini, A., Dym, O., et al. Kemp elimination catalysts by computational enzyme design. Nature, 453(7192), 2008, 190.
-
(2008)
Nature
, vol.453
, Issue.7192
, pp. 190
-
-
Röthlisberger, D.1
Khersonsky, O.2
Wollacott, A.M.3
Jiang, L.4
DeChancie, J.5
Betker, J.6
Gallaher, J.L.7
Althoff, E.A.8
Zanghellini, A.9
Dym, O.10
-
67
-
-
77954811495
-
Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction
-
Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., Lambert, A.R., Clair, J.L.S., Gallaher, J.L., Hilvert, D., Gelb, M.H., Stoddard, B.L., et al. Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science 329:5989 (2010), 309–313.
-
(2010)
Science
, vol.329
, Issue.5989
, pp. 309-313
-
-
Siegel, J.B.1
Zanghellini, A.2
Lovick, H.M.3
Kiss, G.4
Lambert, A.R.5
Clair, J.L.S.6
Gallaher, J.L.7
Hilvert, D.8
Gelb, M.H.9
Stoddard, B.L.10
-
68
-
-
40449116114
-
De novo computational design of retro-aldol enzymes
-
Jiang, L., Althoff, E.A., Clemente, F.R., Doyle, L., Röthlisberger, D., Zanghellini, A., Gallaher, J.L., Betker, J.L., Tanaka, F., Barbas, C.F., et al. De novo computational design of retro-aldol enzymes. Science 319:5868 (2008), 1387–1391.
-
(2008)
Science
, vol.319
, Issue.5868
, pp. 1387-1391
-
-
Jiang, L.1
Althoff, E.A.2
Clemente, F.R.3
Doyle, L.4
Röthlisberger, D.5
Zanghellini, A.6
Gallaher, J.L.7
Betker, J.L.8
Tanaka, F.9
Barbas, C.F.10
-
69
-
-
79956088540
-
De novo enzyme design using rosetta3
-
Richter, F., Leaver-Fay, A., Khare, S.D., Bjelic, S., Baker, D., De novo enzyme design using rosetta3. PLoS One, 6(5), 2011, e19230.
-
(2011)
PLoS One
, vol.6
, Issue.5
, pp. e19230
-
-
Richter, F.1
Leaver-Fay, A.2
Khare, S.D.3
Bjelic, S.4
Baker, D.5
-
70
-
-
77955716950
-
Metabolic engineering of Escherichia coli for the production of succinate from glycerol
-
Blankschien, M.D., Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 12:5 (2010), 409–419.
-
(2010)
Metab. Eng.
, vol.12
, Issue.5
, pp. 409-419
-
-
Blankschien, M.D.1
Clomburg, J.M.2
Gonzalez, R.3
-
71
-
-
79958283261
-
Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases
-
Lindner, S.N., Seibold, G.M., Henrich, A., Krämer, R., Wendisch, V.F., Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl. Environ. Microbiol. 77:11 (2011), 3571–3581.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.11
, pp. 3571-3581
-
-
Lindner, S.N.1
Seibold, G.M.2
Henrich, A.3
Krämer, R.4
Wendisch, V.F.5
-
72
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiaestrain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2r, 3r)-butanediol
-
Lian, J., Chao, R., Zhao, H., Metabolic engineering of a Saccharomyces cerevisiaestrain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2r, 3r)-butanediol. Metab. Eng. 23 (2014), 92–99.
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
73
-
-
84992321320
-
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
-
Whitaker, W.B., Jones, J.A., Bennett, R.K., Gonzalez, J.E., Vernacchio, V.R., Collins, S.M., Palmer, M.A., Schmidt, S., Antoniewicz, M.R., Koffas, M.A., et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab. Eng. 39 (2017), 49–59.
-
(2017)
Metab. Eng.
, vol.39
, pp. 49-59
-
-
Whitaker, W.B.1
Jones, J.A.2
Bennett, R.K.3
Gonzalez, J.E.4
Vernacchio, V.R.5
Collins, S.M.6
Palmer, M.A.7
Schmidt, S.8
Antoniewicz, M.R.9
Koffas, M.A.10
-
74
-
-
85020547969
-
Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks
-
D-Espaux, L., Ghosh, A., Runguphan, W., Wehrs, M., Xu, F., Konzock, O., Dev, I., Nhan, M., Gin, J., Apel, A.R., et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab. Eng. 42 (2017), 115–125.
-
(2017)
Metab. Eng.
, vol.42
, pp. 115-125
-
-
D-Espaux, L.1
Ghosh, A.2
Runguphan, W.3
Wehrs, M.4
Xu, F.5
Konzock, O.6
Dev, I.7
Nhan, M.8
Gin, J.9
Apel, A.R.10
-
75
-
-
84856074574
-
An engineered microbial platform for direct biofuel production from brown macroalgae
-
Wargacki, A.J., Leonard, E., Win, M.N., Regitsky, D.D., Santos, C.N.S., Kim, P.B., Cooper, S.R., Raisner, R.M., Herman, A., Sivitz, A.B., et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:6066 (2012), 308–313.
-
(2012)
Science
, vol.335
, Issue.6066
, pp. 308-313
-
-
Wargacki, A.J.1
Leonard, E.2
Win, M.N.3
Regitsky, D.D.4
Santos, C.N.S.5
Kim, P.B.6
Cooper, S.R.7
Raisner, R.M.8
Herman, A.9
Sivitz, A.B.10
-
76
-
-
0034911540
-
Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
-
Nichols, N., Dien, B., Bothast, R., Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl. Microbiol. Biotechnol. 56:1–2 (2001), 120–125.
-
(2001)
Appl. Microbiol. Biotechnol.
, vol.56
, Issue.1-2
, pp. 120-125
-
-
Nichols, N.1
Dien, B.2
Bothast, R.3
-
77
-
-
70449592325
-
Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
-
Asadollahi, M.A., Maury, J., Patil, K.R., Schalk, M., Clark, A., Nielsen, J., Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 11:6 (2009), 328–334.
-
(2009)
Metab. Eng.
, vol.11
, Issue.6
, pp. 328-334
-
-
Asadollahi, M.A.1
Maury, J.2
Patil, K.R.3
Schalk, M.4
Clark, A.5
Nielsen, J.6
-
78
-
-
30044437327
-
Evolutionary programming as a platform for in silicometabolic engineering
-
Patil, K.R., Rocha, I., Förster, J., Nielsen, J., Evolutionary programming as a platform for in silicometabolic engineering. BMC Bioinform., 6(1), 2005, 308.
-
(2005)
BMC Bioinform.
, vol.6
, Issue.1
, pp. 308
-
-
Patil, K.R.1
Rocha, I.2
Förster, J.3
Nielsen, J.4
-
79
-
-
78649434619
-
Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine
-
Qian, Z.G., Xia, X.X., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108:1 (2011), 93–103.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.1
, pp. 93-103
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
80
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian, S., Liu, X., Meyerowitz, J.T., Snow, C.D., Chen, M.M., Arnold, F.H., Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 13:3 (2011), 345–352.
-
(2011)
Metab. Eng.
, vol.13
, Issue.3
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
Snow, C.D.4
Chen, M.M.5
Arnold, F.H.6
-
81
-
-
70349319678
-
Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis
-
Ehsani, M., Fernández, M.R., Biosca, J.A., Dequin, S., Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis. Biotechnol. Bioeng. 104:2 (2009), 381–389.
-
(2009)
Biotechnol. Bioeng.
, vol.104
, Issue.2
, pp. 381-389
-
-
Ehsani, M.1
Fernández, M.R.2
Biosca, J.A.3
Dequin, S.4
-
82
-
-
80555123167
-
Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases
-
Ma, S.M., Garcia, D.E., Redding-Johanson, A.M., Friedland, G.D., Chan, R., Batth, T.S., Haliburton, J.R., Chivian, D., Keasling, J.D., Petzold, C.J., et al. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab. Eng. 13:5 (2011), 588–597.
-
(2011)
Metab. Eng.
, vol.13
, Issue.5
, pp. 588-597
-
-
Ma, S.M.1
Garcia, D.E.2
Redding-Johanson, A.M.3
Friedland, G.D.4
Chan, R.5
Batth, T.S.6
Haliburton, J.R.7
Chivian, D.8
Keasling, J.D.9
Petzold, C.J.10
-
83
-
-
84902946445
-
Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803
-
Angermayr, S.A., Van der Woude, A.D., Correddu, D., Vreugdenhil, A., Verrone, V., Hellingwerf, K.J., Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels, 7(1), 2014, 99.
-
(2014)
Biotechnol Biofuels
, vol.7
, Issue.1
, pp. 99
-
-
Angermayr, S.A.1
Van der Woude, A.D.2
Correddu, D.3
Vreugdenhil, A.4
Verrone, V.5
Hellingwerf, K.J.6
-
84
-
-
76749151341
-
Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
Chemler, J.A., Fowler, Z.L., McHugh, K.P., Koffas, M.A., Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12:2 (2010), 96–104.
-
(2010)
Metab. Eng.
, vol.12
, Issue.2
, pp. 96-104
-
-
Chemler, J.A.1
Fowler, Z.L.2
McHugh, K.P.3
Koffas, M.A.4
-
85
-
-
57049150799
-
Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from clostridium acetobutylicum facilitates NADPH dependent pathways
-
Martínez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y., Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10:6 (2008), 352–359.
-
(2008)
Metab. Eng.
, vol.10
, Issue.6
, pp. 352-359
-
-
Martínez, I.1
Zhu, J.2
Lin, H.3
Bennett, G.N.4
San, K.Y.5
-
86
-
-
70350508288
-
Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
-
Qian, Z.G., Xia, X.X., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 104:4 (2009), 651–662.
-
(2009)
Biotechnol. Bioeng.
, vol.104
, Issue.4
, pp. 651-662
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
87
-
-
79955806186
-
Engineering microbial biofuel tolerance and export using efflux pumps
-
Dunlop, M.J., Dossani, Z.Y., Szmidt, H.L., Chu, H.C., Lee, T.S., Keasling, J.D., Hadi, M.Z., Mukhopadhyay, A., Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol., 7(1), 2011, 487.
-
(2011)
Mol. Syst. Biol.
, vol.7
, Issue.1
, pp. 487
-
-
Dunlop, M.J.1
Dossani, Z.Y.2
Szmidt, H.L.3
Chu, H.C.4
Lee, T.S.5
Keasling, J.D.6
Hadi, M.Z.7
Mukhopadhyay, A.8
-
88
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R., Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature, 476(7360), 2011, 355.
-
(2011)
Nature
, vol.476
, Issue.7360
, pp. 355
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
89
-
-
63649137435
-
Improving cellular malonyl-COA level in escherichia coli via metabolic engineering
-
Zha, W., Rubin-Pitel, S.B., Shao, Z., Zhao, H., Improving cellular malonyl-COA level in escherichia coli via metabolic engineering. Metab. Eng. 11:3 (2009), 192–198.
-
(2009)
Metab. Eng.
, vol.11
, Issue.3
, pp. 192-198
-
-
Zha, W.1
Rubin-Pitel, S.B.2
Shao, Z.3
Zhao, H.4
-
90
-
-
70450221933
-
Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production
-
Cripps, R., Eley, K., Leak, D.J., Rudd, B., Taylor, M., Todd, M., Boakes, S., Martin, S., Atkinson, T., Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 11:6 (2009), 398–408.
-
(2009)
Metab. Eng.
, vol.11
, Issue.6
, pp. 398-408
-
-
Cripps, R.1
Eley, K.2
Leak, D.J.3
Rudd, B.4
Taylor, M.5
Todd, M.6
Boakes, S.7
Martin, S.8
Atkinson, T.9
-
91
-
-
84867600525
-
Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis
-
De, R.K., Tomar, N., Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis. J Bioinform Comput Biol, 10(6), 2012, 1250019.
-
(2012)
J Bioinform Comput Biol
, vol.10
, Issue.6
, pp. 1250019
-
-
De, R.K.1
Tomar, N.2
-
92
-
-
49749091999
-
Incorporation of enzyme concentrations into fba and identification of optimal metabolic pathways
-
De, R.K., Das, M., Mukhopadhyay, S., Incorporation of enzyme concentrations into fba and identification of optimal metabolic pathways. BMC Syst. Biol., 2(1), 2008, 65.
-
(2008)
BMC Syst. Biol.
, vol.2
, Issue.1
, pp. 65
-
-
De, R.K.1
Das, M.2
Mukhopadhyay, S.3
-
93
-
-
33847797256
-
Thermodynamics-based metabolic flux analysis
-
Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., Thermodynamics-based metabolic flux analysis. Biophys. J. 92:5 (2007), 1792–1805.
-
(2007)
Biophys. J.
, vol.92
, Issue.5
, pp. 1792-1805
-
-
Henry, C.S.1
Broadbelt, L.J.2
Hatzimanikatis, V.3
-
94
-
-
77957061890
-
Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses
-
Park, J.M., Kim, T.Y., Lee, S.Y., Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Proc. Natl. Acad. Sci. 107:33 (2010), 14931–14936.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, Issue.33
, pp. 14931-14936
-
-
Park, J.M.1
Kim, T.Y.2
Lee, S.Y.3
-
95
-
-
44949247269
-
Dynamic analysis of integrated signaling, metabolic, and regulatory networks
-
Lee, J.M., Gianchandani, E.P., Eddy, J.A., Papin, J.A., Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol., 4(5), 2008, e1000086.
-
(2008)
PLoS Comput. Biol.
, vol.4
, Issue.5
, pp. e1000086
-
-
Lee, J.M.1
Gianchandani, E.P.2
Eddy, J.A.3
Papin, J.A.4
-
96
-
-
77954590959
-
Optforce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan, S., Suthers, P.F., Maranas, C.D., Optforce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6(4), 2010, e1000744.
-
(2010)
PLoS Comput. Biol.
, vol.6
, Issue.4
, pp. e1000744
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
97
-
-
77951552860
-
Optorf: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
-
Kim, J., Reed, J.L., Optorf: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol., 4(1), 2010, 53.
-
(2010)
BMC Syst. Biol.
, vol.4
, Issue.1
, pp. 53
-
-
Kim, J.1
Reed, J.L.2
-
98
-
-
84859633048
-
Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
-
Zhang, F., Carothers, J.M., Keasling, J.D., Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol., 30(4), 2012, 354.
-
(2012)
Nat. Biotechnol.
, vol.30
, Issue.4
, pp. 354
-
-
Zhang, F.1
Carothers, J.M.2
Keasling, J.D.3
-
99
-
-
84455174703
-
Model-driven engineering of rna devices to quantitatively program gene expression
-
Carothers, J.M., Goler, J.A., Juminaga, D., Keasling, J.D., Model-driven engineering of rna devices to quantitatively program gene expression. Science 334:6063 (2011), 1716–1719.
-
(2011)
Science
, vol.334
, Issue.6063
, pp. 1716-1719
-
-
Carothers, J.M.1
Goler, J.A.2
Juminaga, D.3
Keasling, J.D.4
-
100
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/CAS9 in Saccharomyces cerevisiae
-
Jakočiūnas, T., Bonde, I., Herrgård, M., Harrison, S.J., Kristensen, M., Pedersen, L.E., Jensen, M.K., Keasling, J.D., Multiplex metabolic pathway engineering using CRISPR/CAS9 in Saccharomyces cerevisiae. Metab. Eng. 28 (2015), 213–222.
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakočiūnas, T.1
Bonde, I.2
Herrgård, M.3
Harrison, S.J.4
Kristensen, M.5
Pedersen, L.E.6
Jensen, M.K.7
Keasling, J.D.8
-
101
-
-
73949115238
-
Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
-
Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T., Ingram, L.O., Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. 106:48 (2009), 20180–20185.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.48
, pp. 20180-20185
-
-
Zhang, X.1
Jantama, K.2
Moore, J.C.3
Jarboe, L.R.4
Shanmugam, K.T.5
Ingram, L.O.6
-
102
-
-
78650647970
-
Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
-
Atsumi, S., Wu, T.Y., Machado, I.M., Huang, W.C., Chen, P.Y., Pellegrini, M., Liao, J.C., Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol., 6(1), 2010, 449.
-
(2010)
Mol. Syst. Biol.
, vol.6
, Issue.1
, pp. 449
-
-
Atsumi, S.1
Wu, T.Y.2
Machado, I.M.3
Huang, W.C.4
Chen, P.Y.5
Pellegrini, M.6
Liao, J.C.7
-
103
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., Church, G.M., Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257), 2009, 894.
-
(2009)
Nature
, vol.460
, Issue.7257
, pp. 894
-
-
Wang, H.H.1
Isaacs, F.J.2
Carr, P.A.3
Sun, Z.Z.4
Xu, G.5
Forest, C.R.6
Church, G.M.7
-
104
-
-
77955459156
-
Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides
-
Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., Gill, R.T., Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat. Biotechnol. 28:8 (2010), 856–862.
-
(2010)
Nat. Biotechnol.
, vol.28
, Issue.8
, pp. 856-862
-
-
Warner, J.R.1
Reeder, P.J.2
Karimpour-Fard, A.3
Woodruff, L.B.4
Gill, R.T.5
-
105
-
-
85016442088
-
A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica
-
Imatoukene, N., Verbeke, J., Beopoulos, A., Taghki, A.I., Thomasset, B., Sarde, C.O., Nonus, M., Nicaud, J.M., A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 101:11 (2017), 4605–4616.
-
(2017)
Appl. Microbiol. Biotechnol.
, vol.101
, Issue.11
, pp. 4605-4616
-
-
Imatoukene, N.1
Verbeke, J.2
Beopoulos, A.3
Taghki, A.I.4
Thomasset, B.5
Sarde, C.O.6
Nonus, M.7
Nicaud, J.M.8
-
106
-
-
0033983338
-
Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm
-
Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I., Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:5451 (2000), 303–305.
-
(2000)
Science
, vol.287
, Issue.5451
, pp. 303-305
-
-
Ye, X.1
Al-Babili, S.2
Klöti, A.3
Zhang, J.4
Lucca, P.5
Beyer, P.6
Potrykus, I.7
-
107
-
-
0035107172
-
Golden rice and beyond
-
Potrykus, I., Golden rice and beyond. Plant Physiol. 125:3 (2001), 1157–1161.
-
(2001)
Plant Physiol.
, vol.125
, Issue.3
, pp. 1157-1161
-
-
Potrykus, I.1
-
108
-
-
23644440517
-
Improving the nutritional value of golden rice through increased pro-vitamin a content
-
Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L., et al. Improving the nutritional value of golden rice through increased pro-vitamin a content. Nat. Biotechnol. 23:4 (2005), 482–487.
-
(2005)
Nat. Biotechnol.
, vol.23
, Issue.4
, pp. 482-487
-
-
Paine, J.A.1
Shipton, C.A.2
Chaggar, S.3
Howells, R.M.4
Kennedy, M.J.5
Vernon, G.6
Wright, S.Y.7
Hinchliffe, E.8
Adams, J.L.9
Silverstone, A.L.10
-
109
-
-
0036193776
-
Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin a deficiency
-
Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., Potrykus, I., Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin a deficiency. J. Nutr. 132:3 (2002), 506S–510S.
-
(2002)
J. Nutr.
, vol.132
, Issue.3
, pp. 506S-510S
-
-
Beyer, P.1
Al-Babili, S.2
Ye, X.3
Lucca, P.4
Schaub, P.5
Welsch, R.6
Potrykus, I.7
-
110
-
-
66849089782
-
Golden rice is an effective source of vitamin a
-
Tang, G., Qin, J., Dolnikowski, G.G., Russell, R.M., Grusak, M.A., Golden rice is an effective source of vitamin a. Am. J. Clin. Nutr. 89:6 (2009), 1776–1783.
-
(2009)
Am. J. Clin. Nutr.
, vol.89
, Issue.6
, pp. 1776-1783
-
-
Tang, G.1
Qin, J.2
Dolnikowski, G.G.3
Russell, R.M.4
Grusak, M.A.5
-
111
-
-
84903312241
-
Key applications of plant metabolic engineering
-
Lau, W., Fischbach, M.A., Osbourn, A., Sattely, E.S., Key applications of plant metabolic engineering. PLoS Biol., 12(6), 2014, e1001879.
-
(2014)
PLoS Biol.
, vol.12
, Issue.6
, pp. e1001879
-
-
Lau, W.1
Fischbach, M.A.2
Osbourn, A.3
Sattely, E.S.4
-
112
-
-
84979716139
-
Plant Pathogen Resistance Biotechnology
-
John Wiley & Sons
-
Collinge, D.B., Plant Pathogen Resistance Biotechnology. 2016, John Wiley & Sons.
-
(2016)
-
-
Collinge, D.B.1
-
113
-
-
84874955245
-
Learning from nature: new approaches to the metabolic engineering of plant defense pathways
-
Jirschitzka, J., Mattern, D.J., Gershenzon, J., D'Auria, J.C., Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr. Opin. Biotechnol. 24:2 (2013), 320–328.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.2
, pp. 320-328
-
-
Jirschitzka, J.1
Mattern, D.J.2
Gershenzon, J.3
D'Auria, J.C.4
-
114
-
-
84874971922
-
The challenges of cellular compartmentalization in plant metabolic engineering
-
Heinig, U., Gutensohn, M., Dudareva, N., Aharoni, A., The challenges of cellular compartmentalization in plant metabolic engineering. Curr. Opin. Biotechnol. 24:2 (2013), 239–246.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.2
, pp. 239-246
-
-
Heinig, U.1
Gutensohn, M.2
Dudareva, N.3
Aharoni, A.4
-
115
-
-
66149155507
-
Mechanism of mo-dependent nitrogenase
-
Seefeldt, L.C., Hoffman, B.M., Dean, D.R., Mechanism of mo-dependent nitrogenase. Annu. Rev. Biochem. 78 (2009), 701–722.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 701-722
-
-
Seefeldt, L.C.1
Hoffman, B.M.2
Dean, D.R.3
-
116
-
-
84860803588
-
Refactoring the nitrogen fixation gene cluster from klebsiella oxytoca
-
Temme, K., Zhao, D., Voigt, C.A., Refactoring the nitrogen fixation gene cluster from klebsiella oxytoca. Proc. Natl. Acad. Sci. 109:18 (2012), 7085–7090.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, Issue.18
, pp. 7085-7090
-
-
Temme, K.1
Zhao, D.2
Voigt, C.A.3
-
117
-
-
84895926490
-
Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters
-
Kolinko, I., Lohße, A., Borg, S., Raschdorf, O., Jogler, C., Tu, Q., Pósfai, M., Tompa, E., Plitzko, J.M., Brachmann, A., et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9:3 (2014), 193–197.
-
(2014)
Nat Nanotechnol
, vol.9
, Issue.3
, pp. 193-197
-
-
Kolinko, I.1
Lohße, A.2
Borg, S.3
Raschdorf, O.4
Jogler, C.5
Tu, Q.6
Pósfai, M.7
Tompa, E.8
Plitzko, J.M.9
Brachmann, A.10
-
118
-
-
34249664967
-
Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana
-
Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H.J., Rosenkranz, R., Stäbler, N., Schönfeld, B., Kreuzaler, F., Peterhänsel, C., Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol. 25:5 (2007), 593–599.
-
(2007)
Nat. Biotechnol.
, vol.25
, Issue.5
, pp. 593-599
-
-
Kebeish, R.1
Niessen, M.2
Thiruveedhi, K.3
Bari, R.4
Hirsch, H.J.5
Rosenkranz, R.6
Stäbler, N.7
Schönfeld, B.8
Kreuzaler, F.9
Peterhänsel, C.10
-
119
-
-
80455174952
-
The rules of engagement in the legume-rhizobial symbiosis
-
Oldroyd, G.E., Murray, J.D., Poole, P.S., Downie, J.A., The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45 (2011), 119–144.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 119-144
-
-
Oldroyd, G.E.1
Murray, J.D.2
Poole, P.S.3
Downie, J.A.4
-
120
-
-
84883205682
-
A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function
-
Armah, C.N., Traka, M.H., Dainty, J.R., Defernez, M., Janssens, A., Leung, W., Doleman, J.F., Potter, J.F., Mithen, R.F., A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. Am. J. Clin. Nutr. 98:3 (2013), 712–722.
-
(2013)
Am. J. Clin. Nutr.
, vol.98
, Issue.3
, pp. 712-722
-
-
Armah, C.N.1
Traka, M.H.2
Dainty, J.R.3
Defernez, M.4
Janssens, A.5
Leung, W.6
Doleman, J.F.7
Potter, J.F.8
Mithen, R.F.9
-
121
-
-
55749105106
-
Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors
-
Butelli, E., Titta, L., Giorgio, M., Mock, H.P., Matros, A., Peterek, S., Schijlen, E.G., Hall, R.D., Bovy, A.G., Luo, J., et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26:11 (2008), 1301–1308.
-
(2008)
Nat. Biotechnol.
, vol.26
, Issue.11
, pp. 1301-1308
-
-
Butelli, E.1
Titta, L.2
Giorgio, M.3
Mock, H.P.4
Matros, A.5
Peterek, S.6
Schijlen, E.G.7
Hall, R.D.8
Bovy, A.G.9
Luo, J.10
-
122
-
-
84992702869
-
Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability
-
Gonzali, S., Kiferle, C., Perata, P., Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 44 (2017), 16–26.
-
(2017)
Curr. Opin. Biotechnol.
, vol.44
, pp. 16-26
-
-
Gonzali, S.1
Kiferle, C.2
Perata, P.3
-
123
-
-
84859741027
-
Metabolic engineering of the iodine content in arabidopsis
-
Landini, M., Gonzali, S., Kiferle, C., Tonacchera, M., Agretti, P., Dimida, A., Vitti, P., Alpi, A., Pinchera, A., Perata, P., Metabolic engineering of the iodine content in arabidopsis. Sci. Rep., 2, 2012, 338.
-
(2012)
Sci. Rep.
, vol.2
, pp. 338
-
-
Landini, M.1
Gonzali, S.2
Kiferle, C.3
Tonacchera, M.4
Agretti, P.5
Dimida, A.6
Vitti, P.7
Alpi, A.8
Pinchera, A.9
Perata, P.10
-
124
-
-
33748481568
-
The breeder's dilemma?yield or nutrition?
-
Morris, C.E., Sands, D.C., The breeder's dilemma?yield or nutrition?. Nat. Biotechnol. 24:9 (2006), 1078–1080.
-
(2006)
Nat. Biotechnol.
, vol.24
, Issue.9
, pp. 1078-1080
-
-
Morris, C.E.1
Sands, D.C.2
-
125
-
-
77955126385
-
Production of the cancer-preventive glucoraphanin in tobacco
-
Mikkelsen, M.D., Olsen, C.E., Halkier, B.A., Production of the cancer-preventive glucoraphanin in tobacco. Mol. Plant 3:4 (2010), 751–759.
-
(2010)
Mol. Plant
, vol.3
, Issue.4
, pp. 751-759
-
-
Mikkelsen, M.D.1
Olsen, C.E.2
Halkier, B.A.3
-
126
-
-
84895184208
-
Metabolic engineering camelina sativa with fish oil-like levels of dha
-
Petrie, J.R., Shrestha, P., Belide, S., Kennedy, Y., Lester, G., Liu, Q., Divi, U.K., Mulder, R.J., Mansour, M.P., Nichols, P.D., et al. Metabolic engineering camelina sativa with fish oil-like levels of dha. PLoS One, 9(1), 2014, e85061.
-
(2014)
PLoS One
, vol.9
, Issue.1
, pp. e85061
-
-
Petrie, J.R.1
Shrestha, P.2
Belide, S.3
Kennedy, Y.4
Lester, G.5
Liu, Q.6
Divi, U.K.7
Mulder, R.J.8
Mansour, M.P.9
Nichols, P.D.10
-
127
-
-
0344329878
-
Health benefits of docosahexaenoic acid (dha)
-
Horrocks, L.A., Yeo, Y.K., Health benefits of docosahexaenoic acid (dha). Pharmacol. Res. 40:3 (1999), 211–225.
-
(1999)
Pharmacol. Res.
, vol.40
, Issue.3
, pp. 211-225
-
-
Horrocks, L.A.1
Yeo, Y.K.2
-
128
-
-
84888103045
-
Trait stacking via targeted genome editing
-
Ainley, W.M., Sastry-Dent, L., Welter, M.E., Murray, M.G., Zeitler, B., Amora, R., Corbin, D.R., Miles, R.R., Arnold, N.L., Strange, T.L., et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 11:9 (2013), 1126–1134.
-
(2013)
Plant Biotechnol. J.
, vol.11
, Issue.9
, pp. 1126-1134
-
-
Ainley, W.M.1
Sastry-Dent, L.2
Welter, M.E.3
Murray, M.G.4
Zeitler, B.5
Amora, R.6
Corbin, D.R.7
Miles, R.R.8
Arnold, N.L.9
Strange, T.L.10
-
129
-
-
84871519181
-
Talens: a widely applicable technology for targeted genome editing
-
Joung, J.K., Sander, J.D., Talens: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:1 (2013), 49–55.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, Issue.1
, pp. 49-55
-
-
Joung, J.K.1
Sander, J.D.2
-
130
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:8 (2013), 686–688.
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.8
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
Zhang, K.7
Liu, J.8
Xi, J.J.9
Qiu, J.L.10
-
131
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:4 (2014), 347–355.
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.4
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
132
-
-
84926645319
-
Application of crispri for prokaryotic metabolic engineering involving multiple genes, a case study: controllable p (3hb-co-4hb) biosynthesis
-
Lv, L., Ren, Y.L., Chen, J.C., Wu, Q., Chen, G.Q., Application of crispri for prokaryotic metabolic engineering involving multiple genes, a case study: controllable p (3hb-co-4hb) biosynthesis. Metab. Eng. 29 (2015), 160–168.
-
(2015)
Metab. Eng.
, vol.29
, pp. 160-168
-
-
Lv, L.1
Ren, Y.L.2
Chen, J.C.3
Wu, Q.4
Chen, G.Q.5
-
133
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing
-
Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Tang, Y.j., Chen, T., Zhao, X., Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 31 (2015), 13–21.
-
(2015)
Metab. Eng.
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
Tang, Y.J.6
Chen, T.7
Zhao, X.8
-
134
-
-
34447101720
-
Steviol glycoside biosynthesis
-
Brandle, J., Telmer, P., Steviol glycoside biosynthesis. Phytochemistry 68:14 (2007), 1855–1863.
-
(2007)
Phytochemistry
, vol.68
, Issue.14
, pp. 1855-1863
-
-
Brandle, J.1
Telmer, P.2
-
135
-
-
79959491147
-
Lignocellulose: a chewy problem
-
Sanderson, K., Lignocellulose: a chewy problem. Nature 474:7352 (2011), S12–S14.
-
(2011)
Nature
, vol.474
, Issue.7352
, pp. S12-S14
-
-
Sanderson, K.1
-
136
-
-
84886302670
-
Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels
-
Zeng, Y., Zhao, S., Yang, S., Ding, S.Y., Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol. 27 (2014), 38–45.
-
(2014)
Curr. Opin. Biotechnol.
, vol.27
, pp. 38-45
-
-
Zeng, Y.1
Zhao, S.2
Yang, S.3
Ding, S.Y.4
-
137
-
-
77953307637
-
The catalytic valorization of lignin for the production of renewable chemicals
-
Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M., The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:6 (2010), 3552–3599.
-
(2010)
Chem. Rev.
, vol.110
, Issue.6
, pp. 3552-3599
-
-
Zakzeski, J.1
Bruijnincx, P.C.2
Jongerius, A.L.3
Weckhuysen, B.M.4
-
138
-
-
81355123362
-
Pathways for degradation of lignin in bacteria and fungi
-
Bugg, T.D., Ahmad, M., Hardiman, E.M., Rahmanpour, R., Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28:12 (2011), 1883–1896.
-
(2011)
Nat. Prod. Rep.
, vol.28
, Issue.12
, pp. 1883-1896
-
-
Bugg, T.D.1
Ahmad, M.2
Hardiman, E.M.3
Rahmanpour, R.4
-
139
-
-
84883489184
-
Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in arabidopsis
-
Vanholme, R., Cesarino, I., Rataj, K., Xiao, Y., Sundin, L., Goeminne, G., Kim, H., Cross, J., Morreel, K., Araujo, P., et al. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in arabidopsis. Science 341:6150 (2013), 1103–1106.
-
(2013)
Science
, vol.341
, Issue.6150
, pp. 1103-1106
-
-
Vanholme, R.1
Cesarino, I.2
Rataj, K.3
Xiao, Y.4
Sundin, L.5
Goeminne, G.6
Kim, H.7
Cross, J.8
Morreel, K.9
Araujo, P.10
-
140
-
-
84874994487
-
Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?
-
Bonawitz, N.D., Chapple, C., Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?. Curr. Opin. Biotechnol. 24:2 (2013), 336–343.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.2
, pp. 336-343
-
-
Bonawitz, N.D.1
Chapple, C.2
-
141
-
-
84865344437
-
An engineered monolignol 4-o-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in arabidopsis
-
Zhang, K., Bhuiya, M.W., Pazo, J.R., Miao, Y., Kim, H., Ralph, J., Liu, C.J., An engineered monolignol 4-o-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in arabidopsis. Plant Cell 24:7 (2012), 3135–3152.
-
(2012)
Plant Cell
, vol.24
, Issue.7
, pp. 3135-3152
-
-
Zhang, K.1
Bhuiya, M.W.2
Pazo, J.R.3
Miao, Y.4
Kim, H.5
Ralph, J.6
Liu, C.J.7
-
142
-
-
0035498333
-
Oxidative mechanisms involved in lignin degradation by white-rot fungi
-
Ten Have, R., Teunissen, P.J., Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101:11 (2001), 3397–3414.
-
(2001)
Chem. Rev.
, vol.101
, Issue.11
, pp. 3397-3414
-
-
Ten Have, R.1
Teunissen, P.J.2
-
143
-
-
41149130138
-
Using C4 photosynthesis to increase the yield of rice-rationale and feasibility
-
Hibberd, J.M., Sheehy, J.E., Langdale, J.A., Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr. Opin. Plant Biol. 11:2 (2008), 228–231.
-
(2008)
Curr. Opin. Plant Biol.
, vol.11
, Issue.2
, pp. 228-231
-
-
Hibberd, J.M.1
Sheehy, J.E.2
Langdale, J.A.3
-
144
-
-
84862991239
-
The development of C4 rice: current progress and future challenges
-
von Caemmerer, S., Quick, W.P., Furbank, R.T., The development of C4 rice: current progress and future challenges. Science 336:6089 (2012), 1671–1672.
-
(2012)
Science
, vol.336
, Issue.6089
, pp. 1671-1672
-
-
von Caemmerer, S.1
Quick, W.P.2
Furbank, R.T.3
-
145
-
-
0037001967
-
Rubisco: structure, regulatory interactions, and possibilities for a better enzyme
-
Spreitzer, R.J., Salvucci, M.E., Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol., 53, 2002.
-
(2002)
Annu. Rev. Plant Biol.
, vol.53
-
-
Spreitzer, R.J.1
Salvucci, M.E.2
-
146
-
-
79958842311
-
Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants
-
Peterhansel, C., Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J. Exp. Bot. 62:9 (2011), 3011–3019.
-
(2011)
J. Exp. Bot.
, vol.62
, Issue.9
, pp. 3011-3019
-
-
Peterhansel, C.1
-
147
-
-
57649135035
-
Molecular engineering of resveratrol in plants
-
Delaunois, B., Cordelier, S., Conreux, A., Clément, C., Jeandet, P., Molecular engineering of resveratrol in plants. Plant Biotechnol. J. 7:1 (2009), 2–12.
-
(2009)
Plant Biotechnol. J.
, vol.7
, Issue.1
, pp. 2-12
-
-
Delaunois, B.1
Cordelier, S.2
Conreux, A.3
Clément, C.4
Jeandet, P.5
-
148
-
-
84874992963
-
Recent progress in the metabolic engineering of alkaloids in plant systems
-
Glenn, W.S., Runguphan, W., O?Connor, S.E., Recent progress in the metabolic engineering of alkaloids in plant systems. Curr. Opin. Biotechnol. 24:2 (2013), 354–365.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.2
, pp. 354-365
-
-
Glenn, W.S.1
Runguphan, W.2
O?Connor, S.E.3
-
149
-
-
84862983651
-
Mining the biodiversity of plants: a revolution in the making
-
De Luca, V., Salim, V., Atsumi, S.M., Yu, F., Mining the biodiversity of plants: a revolution in the making. Science 336:6089 (2012), 1658–1661.
-
(2012)
Science
, vol.336
, Issue.6089
, pp. 1658-1661
-
-
De Luca, V.1
Salim, V.2
Atsumi, S.M.3
Yu, F.4
-
150
-
-
84878460164
-
Gene discovery of modular diterpene metabolism in nonmodel systems
-
Zerbe, P., Hamberger, B., Yuen, M.M., Chiang, A., Sandhu, H.K., Madilao, L.L., Nguyen, A., Hamberger, B., Bach, S.S., Bohlmann, J., Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol. 162:2 (2013), 1073–1091.
-
(2013)
Plant Physiol.
, vol.162
, Issue.2
, pp. 1073-1091
-
-
Zerbe, P.1
Hamberger, B.2
Yuen, M.M.3
Chiang, A.4
Sandhu, H.K.5
Madilao, L.L.6
Nguyen, A.7
Hamberger, B.8
Bach, S.S.9
Bohlmann, J.10
-
151
-
-
79953237139
-
From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants
-
Chu, H.Y., Wegel, E., Osbourn, A., From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J. 66:1 (2011), 66–79.
-
(2011)
Plant J.
, vol.66
, Issue.1
, pp. 66-79
-
-
Chu, H.Y.1
Wegel, E.2
Osbourn, A.3
-
152
-
-
84862866158
-
Why biosynthetic genes for chemical defense compounds cluster
-
Takos, A.M., Rook, F., Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci. 17:7 (2012), 383–388.
-
(2012)
Trends Plant Sci.
, vol.17
, Issue.7
, pp. 383-388
-
-
Takos, A.M.1
Rook, F.2
-
153
-
-
84862983375
-
A papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine
-
Winzer, T., Gazda, V., He, Z., Kaminski, F., Kern, M., Larson, T.R., Li, Y., Meade, F., Teodor, R., Vaistij, F.E., et al. A papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336:6089 (2012), 1704–1708.
-
(2012)
Science
, vol.336
, Issue.6089
, pp. 1704-1708
-
-
Winzer, T.1
Gazda, V.2
He, Z.3
Kaminski, F.4
Kern, M.5
Larson, T.R.6
Li, Y.7
Meade, F.8
Teodor, R.9
Vaistij, F.E.10
-
154
-
-
80053967849
-
Overexpression of a resveratrol synthase gene (PCRS) from polygonum cuspidatum in transgenic arabidopsis causes the accumulation of trans-piceid with antifungal activity
-
Liu, Z., Zhuang, C., Sheng, S., Shao, L., Zhao, W., Zhao, S., Overexpression of a resveratrol synthase gene (PCRS) from polygonum cuspidatum in transgenic arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep., 30(11), 2011, 2027.
-
(2011)
Plant Cell Rep.
, vol.30
, Issue.11
, pp. 2027
-
-
Liu, Z.1
Zhuang, C.2
Sheng, S.3
Shao, L.4
Zhao, W.5
Zhao, S.6
-
155
-
-
84886092842
-
Advanced genetic tools for plant biotechnology
-
Liu, W., Yuan, J.S., Stewart, C.N. Jr., Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 14:11 (2013), 781–793.
-
(2013)
Nat. Rev. Genet.
, vol.14
, Issue.11
, pp. 781-793
-
-
Liu, W.1
Yuan, J.S.2
Stewart, C.N.3
-
156
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj, T., Gersbach, C.A., Barbas, C.F., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:7 (2013), 397–405.
-
(2013)
Trends Biotechnol.
, vol.31
, Issue.7
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
157
-
-
27744464483
-
Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology
-
Halpin, C., Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3:2 (2005), 141–155.
-
(2005)
Plant Biotechnol. J.
, vol.3
, Issue.2
, pp. 141-155
-
-
Halpin, C.1
-
158
-
-
78651385722
-
Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain
-
Vishnevetsky, J., White, T.L., Palmateer, A.J., Flaishman, M., Cohen, Y., Elad, Y., Velcheva, M., Hanania, U., Sahar, N., Dgani, O., et al. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res. 20:1 (2011), 61–72.
-
(2011)
Transgenic Res.
, vol.20
, Issue.1
, pp. 61-72
-
-
Vishnevetsky, J.1
White, T.L.2
Palmateer, A.J.3
Flaishman, M.4
Cohen, Y.5
Elad, Y.6
Velcheva, M.7
Hanania, U.8
Sahar, N.9
Dgani, O.10
-
159
-
-
0346328227
-
Metabolic engineering for drug discovery and development
-
Khosla, C., Keasling, J.D., Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov., 2(12), 2003, 1019.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, Issue.12
, pp. 1019
-
-
Khosla, C.1
Keasling, J.D.2
-
160
-
-
84872353481
-
New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters
-
Ochi, K., Hosaka, T., New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97:1 (2013), 87–98.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.1
, pp. 87-98
-
-
Ochi, K.1
Hosaka, T.2
-
161
-
-
84918813440
-
Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes
-
Weber, T., Charusanti, P., Musiol-Kroll, E.M., Jiang, X., Tong, Y., Kim, H.U., Lee, S.Y., Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol. 33:1 (2015), 15–26.
-
(2015)
Trends Biotechnol.
, vol.33
, Issue.1
, pp. 15-26
-
-
Weber, T.1
Charusanti, P.2
Musiol-Kroll, E.M.3
Jiang, X.4
Tong, Y.5
Kim, H.U.6
Lee, S.Y.7
-
162
-
-
84899051891
-
Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
-
Paddon, C.J., Keasling, J.D., Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol., 12(5), 2014, 355.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, Issue.5
, pp. 355
-
-
Paddon, C.J.1
Keasling, J.D.2
-
163
-
-
84895918390
-
Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery
-
Kell, D.B., Goodacre, R., Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov. Today 19:2 (2014), 171–182.
-
(2014)
Drug Discov. Today
, vol.19
, Issue.2
, pp. 171-182
-
-
Kell, D.B.1
Goodacre, R.2
-
164
-
-
84976345862
-
Recon 2.2: from reconstruction to model of human metabolism
-
Swainston, N., Smallbone, K., Hefzi, H., Dobson, P.D., Brewer, J., Hanscho, M., Zielinski, D.C., Ang, K.S., Gardiner, N.J., Gutierrez, J.M., et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics, 12(7), 2016, 109.
-
(2016)
Metabolomics
, vol.12
, Issue.7
, pp. 109
-
-
Swainston, N.1
Smallbone, K.2
Hefzi, H.3
Dobson, P.D.4
Brewer, J.5
Hanscho, M.6
Zielinski, D.C.7
Ang, K.S.8
Gardiner, N.J.9
Gutierrez, J.M.10
-
165
-
-
84902181907
-
Combinatorial approaches for inverse metabolic engineering applications
-
Skretas, G., Kolisis, F.N., Combinatorial approaches for inverse metabolic engineering applications. Comput. Struct. Biotechnol. J. 3:4 (2012), 1–12.
-
(2012)
Comput. Struct. Biotechnol. J.
, vol.3
, Issue.4
, pp. 1-12
-
-
Skretas, G.1
Kolisis, F.N.2
-
166
-
-
85013466590
-
Microfluidic Methods for Molecular Biology
-
Springer
-
Lu, C., Verbridge, S.S., Microfluidic Methods for Molecular Biology. 2016, Springer.
-
(2016)
-
-
Lu, C.1
Verbridge, S.S.2
-
167
-
-
40149109321
-
A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae
-
Jones, G.M., Stalker, J., Humphray, S., West, A., Cox, T., Rogers, J., Dunham, I., Prelich, G., A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods, 5(3), 2008, 239.
-
(2008)
Nat. Methods
, vol.5
, Issue.3
, pp. 239
-
-
Jones, G.M.1
Stalker, J.2
Humphray, S.3
West, A.4
Cox, T.5
Rogers, J.6
Dunham, I.7
Prelich, G.8
-
168
-
-
85049033128
-
Yes1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics
-
Fan, P.D., Narzisi, G., Jayaprakash, A.D., Venturini, E., Robine, N., Smibert, P., Germer, S., Helena, A.Y., Jordan, E.J., Paik, P.K., et al. Yes1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc. Natl. Acad. Sci., 2018, 201717782.
-
(2018)
Proc. Natl. Acad. Sci.
, pp. 201717782
-
-
Fan, P.D.1
Narzisi, G.2
Jayaprakash, A.D.3
Venturini, E.4
Robine, N.5
Smibert, P.6
Germer, S.7
Helena, A.Y.8
Jordan, E.J.9
Paik, P.K.10
-
169
-
-
85062092809
-
Site-directed mutagenesis for in vitro and in vivoexperiments exemplified with rna interactions in Escherichia coli
-
Andreassen, P.R., Pettersen, J.S., Jørgensen, M., Site-directed mutagenesis for in vitro and in vivoexperiments exemplified with rna interactions in Escherichia coli. JVE (J. Vis. Exp.)(144), 2019, e58996.
-
(2019)
JVE (J. Vis. Exp.)
, Issue.144
, pp. e58996
-
-
Andreassen, P.R.1
Pettersen, J.S.2
Jørgensen, M.3
-
170
-
-
33646542650
-
High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803
-
Tyo, K.E., Zhou, H., Stephanopoulos, G.N., High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 72:5 (2006), 3412–3417.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, Issue.5
, pp. 3412-3417
-
-
Tyo, K.E.1
Zhou, H.2
Stephanopoulos, G.N.3
-
171
-
-
0031923093
-
Isolation and characterization of ethanol-tolerant mutants of Escherichia coli ko11 for fuel ethanol production
-
Yomano, L., York, S., Ingram, L., Isolation and characterization of ethanol-tolerant mutants of Escherichia coli ko11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20:2 (1998), 132–138.
-
(1998)
J. Ind. Microbiol. Biotechnol.
, vol.20
, Issue.2
, pp. 132-138
-
-
Yomano, L.1
York, S.2
Ingram, L.3
-
172
-
-
70350141657
-
Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803
-
Tyo, K.E., Jin, Y.S., Espinoza, F.A., Stephanopoulos, G., Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol. Prog. 25:5 (2009), 1236–1243.
-
(2009)
Biotechnol. Prog.
, vol.25
, Issue.5
, pp. 1236-1243
-
-
Tyo, K.E.1
Jin, Y.S.2
Espinoza, F.A.3
Stephanopoulos, G.4
-
173
-
-
80555150662
-
An evolutionary strategy for isobutanol production strain development in Escherichia coli
-
Smith, K.M., Liao, J.C., An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 13:6 (2011), 674–681.
-
(2011)
Metab. Eng.
, vol.13
, Issue.6
, pp. 674-681
-
-
Smith, K.M.1
Liao, J.C.2
-
174
-
-
33847083318
-
Global transcription machinery engineering: a new approach for improving cellular phenotype
-
Alper, H., Stephanopoulos, G., Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9:3 (2007), 258–267.
-
(2007)
Metab. Eng.
, vol.9
, Issue.3
, pp. 258-267
-
-
Alper, H.1
Stephanopoulos, G.2
-
175
-
-
40649093316
-
Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains
-
Klein-Marcuschamer, D., Stephanopoulos, G., Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc. Natl. Acad. Sci. 105:7 (2008), 2319–2324.
-
(2008)
Proc. Natl. Acad. Sci.
, vol.105
, Issue.7
, pp. 2319-2324
-
-
Klein-Marcuschamer, D.1
Stephanopoulos, G.2
-
176
-
-
0037034007
-
Genome shuffling leads to rapid phenotypic improvement in bacteria
-
Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P., del Cardayré, S.B., Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:6872 (2002), 644–646.
-
(2002)
Nature
, vol.415
, Issue.6872
, pp. 644-646
-
-
Zhang, Y.X.1
Perry, K.2
Vinci, V.A.3
Powell, K.4
Stemmer, W.P.5
del Cardayré, S.B.6
-
177
-
-
3543063259
-
Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by sphingobium chlorophenolicum atcc 39723
-
Dai, M., Copley, S.D., Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by sphingobium chlorophenolicum atcc 39723. Appl. Environ. Microbiol. 70:4 (2004), 2391–2397.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, Issue.4
, pp. 2391-2397
-
-
Dai, M.1
Copley, S.D.2
-
178
-
-
84867069705
-
Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method
-
Zhang, W., Geng, A., Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol. Biofuels, 5(1), 2012, 46.
-
(2012)
Biotechnol. Biofuels
, vol.5
, Issue.1
, pp. 46
-
-
Zhang, W.1
Geng, A.2
-
179
-
-
84862984706
-
Strategy for directing combinatorial genome engineering in Escherichia coli
-
Sandoval, N.R., Kim, J.Y., Glebes, T.Y., Reeder, P.J., Aucoin, H.R., Warner, J.R., Gill, R.T., Strategy for directing combinatorial genome engineering in Escherichia coli. Proc. Natl. Acad. Sci. 109:26 (2012), 10540–10545.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, Issue.26
, pp. 10540-10545
-
-
Sandoval, N.R.1
Kim, J.Y.2
Glebes, T.Y.3
Reeder, P.J.4
Aucoin, H.R.5
Warner, J.R.6
Gill, R.T.7
-
180
-
-
34248349446
-
Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3 (2)
-
Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S., Ochi, K., Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3 (2). J. Bacteriol. 189:10 (2007), 3876–3883.
-
(2007)
J. Bacteriol.
, vol.189
, Issue.10
, pp. 3876-3883
-
-
Nishimura, K.1
Hosaka, T.2
Tokuyama, S.3
Okamoto, S.4
Ochi, K.5
-
181
-
-
66149185679
-
Antibacterial discovery in actinomycetes strains with mutations in rna polymerase or ribosomal protein S12
-
Hosaka, T., Ohnishi-Kameyama, M., Muramatsu, H., Murakami, K., Tsurumi, Y., Kodani, S., Yoshida, M., Fujie, A., Ochi, K., Antibacterial discovery in actinomycetes strains with mutations in rna polymerase or ribosomal protein S12. Nat. Biotechnol. 27:5 (2009), 462–464.
-
(2009)
Nat. Biotechnol.
, vol.27
, Issue.5
, pp. 462-464
-
-
Hosaka, T.1
Ohnishi-Kameyama, M.2
Muramatsu, H.3
Murakami, K.4
Tsurumi, Y.5
Kodani, S.6
Yoshida, M.7
Fujie, A.8
Ochi, K.9
-
182
-
-
84916931896
-
Review of methods to probe single cell metabolism and bioenergetics
-
Vasdekis, A.E., Stephanopoulos, G., Review of methods to probe single cell metabolism and bioenergetics. Metab. Eng. 27 (2015), 115–135.
-
(2015)
Metab. Eng.
, vol.27
, pp. 115-135
-
-
Vasdekis, A.E.1
Stephanopoulos, G.2
-
183
-
-
84889246623
-
Single-cell metabolomics: analytical and biological perspectives
-
Zenobi, R., Single-cell metabolomics: analytical and biological perspectives. Science, 342(6163), 2013, 1243259.
-
(2013)
Science
, vol.342
, Issue.6163
, pp. 1243259
-
-
Zenobi, R.1
-
184
-
-
0032485833
-
Metabolic engineering: techniques for analysis of targets for genetic manipulations
-
Nielsen, J., Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58:2–3 (1998), 125–132.
-
(1998)
Biotechnol. Bioeng.
, vol.58
, Issue.2-3
, pp. 125-132
-
-
Nielsen, J.1
-
185
-
-
0036526636
-
The mathematics of metabolic control analysis revisited
-
Visser, D., Heijnen, J.J., The mathematics of metabolic control analysis revisited. Metab. Eng. 4:2 (2002), 114–123.
-
(2002)
Metab. Eng.
, vol.4
, Issue.2
, pp. 114-123
-
-
Visser, D.1
Heijnen, J.J.2
-
186
-
-
0142122303
-
Advances in flux balance analysis
-
Kauffman, K.J., Prakash, P., Edwards, J.S., Advances in flux balance analysis. Curr. Opin. Biotechnol. 14:5 (2003), 491–496.
-
(2003)
Curr. Opin. Biotechnol.
, vol.14
, Issue.5
, pp. 491-496
-
-
Kauffman, K.J.1
Prakash, P.2
Edwards, J.S.3
-
187
-
-
0026802334
-
Metabolic control analysis: a survey of its theoretical and experimental development
-
Fell, D.A., Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J, 286(Pt 2), 1992, 313.
-
(1992)
Biochem. J
, vol.286
, pp. 313
-
-
Fell, D.A.1
-
188
-
-
0036195958
-
Metabolic control analysis in drug discovery and disease
-
Cascante, M., Boros, L.G., Comin-Anduix, B., de Atauri, P., Centelles, J.J., Lee, P.W.N., Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20:3 (2002), 243–249.
-
(2002)
Nat. Biotechnol.
, vol.20
, Issue.3
, pp. 243-249
-
-
Cascante, M.1
Boros, L.G.2
Comin-Anduix, B.3
de Atauri, P.4
Centelles, J.J.5
Lee, P.W.N.6
-
189
-
-
0004277661
-
Understanding the Control of Metabolism
-
Portland Press London
-
Fell, D., Cornish-Bowden, A., Understanding the Control of Metabolism. 2, 1997, Portland Press London.
-
(1997)
, vol.2
-
-
Fell, D.1
Cornish-Bowden, A.2
-
190
-
-
0003647465
-
Technological and Medical Implications of Metabolic Control Analysis
-
Springer Science & Business Media
-
Cornish-Bowden, A., Cárdenas, M.L., Technological and Medical Implications of Metabolic Control Analysis. 74, 2012, Springer Science & Business Media.
-
(2012)
, vol.74
-
-
Cornish-Bowden, A.1
Cárdenas, M.L.2
-
191
-
-
0036229317
-
Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis
-
Hoefnagel, M.H., Starrenburg, M.J., Martens, D.E., Hugenholtz, J., Kleerebezem, M., Van Swam, I.I., Bongers, R., Westerhoff, H.V., Snoep, J.L., Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:4 (2002), 1003–1013.
-
(2002)
Microbiology
, vol.148
, Issue.4
, pp. 1003-1013
-
-
Hoefnagel, M.H.1
Starrenburg, M.J.2
Martens, D.E.3
Hugenholtz, J.4
Kleerebezem, M.5
Van Swam, I.I.6
Bongers, R.7
Westerhoff, H.V.8
Snoep, J.L.9
-
192
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
Xu, P., Li, L., Zhang, F., Stephanopoulos, G., Koffas, M., Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. 111:31 (2014), 11299–11304.
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, Issue.31
, pp. 11299-11304
-
-
Xu, P.1
Li, L.2
Zhang, F.3
Stephanopoulos, G.4
Koffas, M.5
-
193
-
-
84928724171
-
Identifying promoters for gene expression in clostridium thermocellum
-
Olson, D.G., Maloney, M., Lanahan, A.A., Hon, S., Hauser, L.J., Lynd, L.R., Identifying promoters for gene expression in clostridium thermocellum. Metab. Eng. Commun. 2 (2015), 23–29.
-
(2015)
Metab. Eng. Commun.
, vol.2
, pp. 23-29
-
-
Olson, D.G.1
Maloney, M.2
Lanahan, A.A.3
Hon, S.4
Hauser, L.J.5
Lynd, L.R.6
-
194
-
-
84947775955
-
Exploring the altered dynamics of mammalian central carbon metabolic pathway in cancer cells: a classical control theoretic approach
-
Paul, D., Dasgupta, A., De, R.K., Exploring the altered dynamics of mammalian central carbon metabolic pathway in cancer cells: a classical control theoretic approach. PLoS One, 10(9), 2015, e0137728.
-
(2015)
PLoS One
, vol.10
, Issue.9
, pp. e0137728
-
-
Paul, D.1
Dasgupta, A.2
De, R.K.3
-
195
-
-
84979246868
-
A fuzzy logic controller based approach to model the switching mechanism of the mammalian central carbon metabolic pathway in normal and cancer cells
-
Dasgupta, A., Paul, D., De, R.K., A fuzzy logic controller based approach to model the switching mechanism of the mammalian central carbon metabolic pathway in normal and cancer cells. Mol. Biosyst. 12:8 (2016), 2490–2505.
-
(2016)
Mol. Biosyst.
, vol.12
, Issue.8
, pp. 2490-2505
-
-
Dasgupta, A.1
Paul, D.2
De, R.K.3
-
196
-
-
36248990302
-
Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
-
Hoppe, A., Hoffmann, S., Holzhütter, H.G., Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol., 1(1), 2007, 23.
-
(2007)
BMC Syst. Biol.
, vol.1
, Issue.1
, pp. 23
-
-
Hoppe, A.1
Hoffmann, S.2
Holzhütter, H.G.3
-
197
-
-
84941198229
-
Heading in the right direction: thermodynamics-based network analysis and pathway engineering
-
Ataman, M., Hatzimanikatis, V., Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr. Opin. Biotechnol. 36 (2015), 176–182.
-
(2015)
Curr. Opin. Biotechnol.
, vol.36
, pp. 176-182
-
-
Ataman, M.1
Hatzimanikatis, V.2
-
198
-
-
33745433792
-
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
-
Kümmel, A., Panke, S., Heinemann, M., Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol., 2(1), 2006.
-
(2006)
Mol. Syst. Biol.
, vol.2
, Issue.1
-
-
Kümmel, A.1
Panke, S.2
Heinemann, M.3
-
199
-
-
42549159856
-
Annet: a tool for network-embedded thermodynamic analysis of quantitative metabolome data
-
Zamboni, N., Kümmel, A., Heinemann, M., Annet: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinform., 9(1), 2008, 199.
-
(2008)
BMC Bioinform.
, vol.9
, Issue.1
, pp. 199
-
-
Zamboni, N.1
Kümmel, A.2
Heinemann, M.3
-
200
-
-
84921865747
-
Constraining the flux space using thermodynamics and integration of metabolomics data
-
Springer
-
Soh, K.C., Hatzimanikatis, V., Constraining the flux space using thermodynamics and integration of metabolomics data. Metabolic Flux Analysis, 2014, Springer, 49–63.
-
(2014)
Metabolic Flux Analysis
, pp. 49-63
-
-
Soh, K.C.1
Hatzimanikatis, V.2
-
201
-
-
84929485233
-
A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions
-
Saa, P., Nielsen, L.K., A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions. PLoS Comput. Biol., 11(4), 2015, e1004195.
-
(2015)
PLoS Comput. Biol.
, vol.11
, Issue.4
, pp. e1004195
-
-
Saa, P.1
Nielsen, L.K.2
-
202
-
-
79956207881
-
Robust stability and instability of biochemical networks with parametric uncertainty
-
Waldherr, S., Allgöwer, F., Robust stability and instability of biochemical networks with parametric uncertainty. Automatica 47:6 (2011), 1139–1146.
-
(2011)
Automatica
, vol.47
, Issue.6
, pp. 1139-1146
-
-
Waldherr, S.1
Allgöwer, F.2
-
203
-
-
85065410633
-
Systems metabolic engineering meets machine learning: a new era for data-driven metabolic engineering
-
Presnell, K.V., Alper, H.S., Systems metabolic engineering meets machine learning: a new era for data-driven metabolic engineering. Biotechnol. J., 14(9), 2019, 1800416.
-
(2019)
Biotechnol. J.
, vol.14
, Issue.9
, pp. 1800416
-
-
Presnell, K.V.1
Alper, H.S.2
-
204
-
-
85072808069
-
Recent development of antismash and other computational approaches to mine secondary metabolite biosynthetic gene clusters
-
Blin, K., Kim, H.U., Medema, M.H., Weber, T., Recent development of antismash and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 20:4 (2019), 1103–1113.
-
(2019)
Brief. Bioinform.
, vol.20
, Issue.4
, pp. 1103-1113
-
-
Blin, K.1
Kim, H.U.2
Medema, M.H.3
Weber, T.4
-
205
-
-
85062572857
-
Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering
-
Sekurova, O.N., Schneider, O., Zotchev, S.B., Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb. Biotechnol. 12:5 (2019), 828–844.
-
(2019)
Microb. Biotechnol.
, vol.12
, Issue.5
, pp. 828-844
-
-
Sekurova, O.N.1
Schneider, O.2
Zotchev, S.B.3
-
206
-
-
85023161576
-
Prism 3: expanded prediction of natural product chemical structures from microbial genomes
-
Skinnider, M.A., Merwin, N.J., Johnston, C.W., Magarvey, N.A., Prism 3: expanded prediction of natural product chemical structures from microbial genomes. Nucl. Acids Res. 45:W1 (2017), W49–W54.
-
(2017)
Nucl. Acids Res.
, vol.45
, Issue.W1
, pp. W49-W54
-
-
Skinnider, M.A.1
Merwin, N.J.2
Johnston, C.W.3
Magarvey, N.A.4
-
207
-
-
84883572507
-
Bagel3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides
-
van Heel, A.J., de Jong, A., Montalban-Lopez, M., Kok, J., Kuipers, O.P., Bagel3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucl. Acids Res. 41:W1 (2013), W448–W453.
-
(2013)
Nucl. Acids Res.
, vol.41
, Issue.W1
, pp. W448-W453
-
-
van Heel, A.J.1
de Jong, A.2
Montalban-Lopez, M.3
Kok, J.4
Kuipers, O.P.5
-
208
-
-
85077469851
-
Mibig 2.0: a repository for biosynthetic gene clusters of known function
-
Kautsar, S.A., Blin, K., Shaw, S., Navarro-Muñoz, J.C., Terlouw, B.R., van der Hooft, J.J., Van Santen, J.A., Tracanna, V., Suarez Duran, H.G., Pascal Andreu, V., et al. Mibig 2.0: a repository for biosynthetic gene clusters of known function. Nucl. Acids Res. 48:D1 (2020), D454–D458.
-
(2020)
Nucl. Acids Res.
, vol.48
, Issue.D1
, pp. D454-D458
-
-
Kautsar, S.A.1
Blin, K.2
Shaw, S.3
Navarro-Muñoz, J.C.4
Terlouw, B.R.5
van der Hooft, J.J.6
Van Santen, J.A.7
Tracanna, V.8
Suarez Duran, H.G.9
Pascal Andreu, V.10
-
209
-
-
85017266739
-
CRISPR–Cas9 strategy for activation of silent streptomyces biosynthetic gene clusters
-
Zhang, M.M., Wong, F.T., Wang, Y., Luo, S., Lim, Y.H., Heng, E., Yeo, W.L., Cobb, R.E., Enghiad, B., Ang, E.L., et al. CRISPR–Cas9 strategy for activation of silent streptomyces biosynthetic gene clusters. Nat. Chem. Biol., 13(6), 2017, 607.
-
(2017)
Nat. Chem. Biol.
, vol.13
, Issue.6
, pp. 607
-
-
Zhang, M.M.1
Wong, F.T.2
Wang, Y.3
Luo, S.4
Lim, Y.H.5
Heng, E.6
Yeo, W.L.7
Cobb, R.E.8
Enghiad, B.9
Ang, E.L.10
-
210
-
-
85052702486
-
A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
-
Costello, Z., Martin, H.G., A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 4:1 (2018), 1–14.
-
(2018)
NPJ Syst. Biol. Appl.
, vol.4
, Issue.1
, pp. 1-14
-
-
Costello, Z.1
Martin, H.G.2
-
211
-
-
85061013548
-
Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering
-
August
-
Choi, K.R., Jang, W.D., Yang, D., Cho, J.S., Park, D., Lee, S.Y., Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37:8 (2019), 817–837 August.
-
(2019)
Trends Biotechnol.
, vol.37
, Issue.8
, pp. 817-837
-
-
Choi, K.R.1
Jang, W.D.2
Yang, D.3
Cho, J.S.4
Park, D.5
Lee, S.Y.6
-
212
-
-
85072703976
-
Machine learning applications in systems metabolic engineering
-
Kim, G.B., Kim, W.J., Kim, H.U., Lee, S.Y., Machine learning applications in systems metabolic engineering. Curr. Opin. Biotechnol. 64 (2020), 1–9.
-
(2020)
Curr. Opin. Biotechnol.
, vol.64
, pp. 1-9
-
-
Kim, G.B.1
Kim, W.J.2
Kim, H.U.3
Lee, S.Y.4
-
213
-
-
85064489973
-
Deepribo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns
-
e36–e36
-
Clauwaert, J., Menschaert, G., Waegeman, W., Deepribo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic acids research, 47(6), 2019 e36–e36.
-
(2019)
Nucleic acids research
, vol.47
, Issue.6
-
-
Clauwaert, J.1
Menschaert, G.2
Waegeman, W.3
-
214
-
-
85068580079
-
Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers
-
Ryu, J.Y., Kim, H.U., Lee, S.Y., Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. 116:28 (2019), 13996–14001.
-
(2019)
Proc. Natl. Acad. Sci.
, vol.116
, Issue.28
, pp. 13996-14001
-
-
Ryu, J.Y.1
Kim, H.U.2
Lee, S.Y.3
-
215
-
-
85044660186
-
Planning chemical syntheses with deep neural networks and symbolic ai
-
Segler, M.H., Preuss, M., Waller, M.P., Planning chemical syntheses with deep neural networks and symbolic ai. Nature 555:7698 (2018), 604–610.
-
(2018)
Nature
, vol.555
, Issue.7698
, pp. 604-610
-
-
Segler, M.H.1
Preuss, M.2
Waller, M.P.3
-
216
-
-
85063475207
-
Selprom: a queryable and predictive expression vector selection tool for Escherichia coli
-
Jervis, A.J., Carbonell, P., Taylor, S., Sung, R., Dunstan, M.S., Robinson, C.J., Breitling, R., Takano, E., Scrutton, N.S., Selprom: a queryable and predictive expression vector selection tool for Escherichia coli. ACS Synth. Biol. 8:7 (2019), 1478–1483.
-
(2019)
ACS Synth. Biol.
, vol.8
, Issue.7
, pp. 1478-1483
-
-
Jervis, A.J.1
Carbonell, P.2
Taylor, S.3
Sung, R.4
Dunstan, M.S.5
Robinson, C.J.6
Breitling, R.7
Takano, E.8
Scrutton, N.S.9
-
217
-
-
84875670972
-
Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network
-
Meng, H., Wang, J., Xiong, Z., Xu, F., Zhao, G., Wang, Y., Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network. PLoS One, 8(4), 2013.
-
(2013)
PLoS One
, vol.8
, Issue.4
-
-
Meng, H.1
Wang, J.2
Xiong, Z.3
Xu, F.4
Zhao, G.5
Wang, Y.6
-
218
-
-
85060013523
-
Tuning the performance of synthetic riboswitches using machine learning
-
Groher, A.C., Jager, S., Schneider, C., Groher, F., Hamacher, K., Suess, B., Tuning the performance of synthetic riboswitches using machine learning. ACS Synth. Biol. 8:1 (2018), 34–44.
-
(2018)
ACS Synth. Biol.
, vol.8
, Issue.1
, pp. 34-44
-
-
Groher, A.C.1
Jager, S.2
Schneider, C.3
Groher, F.4
Hamacher, K.5
Suess, B.6
-
219
-
-
85059806983
-
An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals
-
Carbonell, P., Jervis, A.J., Robinson, C.J., Yan, C., Dunstan, M., Swainston, N., Vinaixa, M., Hollywood, K.A., Currin, A., Rattray, N.J., et al. An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals. Commun. Biol. 1:1 (2018), 1–10.
-
(2018)
Commun. Biol.
, vol.1
, Issue.1
, pp. 1-10
-
-
Carbonell, P.1
Jervis, A.J.2
Robinson, C.J.3
Yan, C.4
Dunstan, M.5
Swainston, N.6
Vinaixa, M.7
Hollywood, K.A.8
Currin, A.9
Rattray, N.J.10
-
220
-
-
85049146901
-
Deepcrispr: optimized CRISPR guide rna design by deep learning
-
Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., et al. Deepcrispr: optimized CRISPR guide rna design by deep learning. Genome Biol., 19(1), 2018, 80.
-
(2018)
Genome Biol.
, vol.19
, Issue.1
, pp. 80
-
-
Chuai, G.1
Ma, H.2
Yan, J.3
Chen, M.4
Hong, N.5
Xue, D.6
Zhou, C.7
Zhu, C.8
Chen, K.9
Duan, B.10
-
221
-
-
0032678154
-
Control of fed-batch fermentations
-
Lee, J., Lee, S.Y., Park, S., Middelberg, A.P., Control of fed-batch fermentations. Biotechnol. Adv. 17:1 (1999), 29–48.
-
(1999)
Biotechnol. Adv.
, vol.17
, Issue.1
, pp. 29-48
-
-
Lee, J.1
Lee, S.Y.2
Park, S.3
Middelberg, A.P.4
-
222
-
-
85011954307
-
Strategies for fermentation medium optimization: an in-depth review
-
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., Tripathi, C., Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol., 7, 2017, 2087.
-
(2017)
Front. Microbiol.
, vol.7
, pp. 2087
-
-
Singh, V.1
Haque, S.2
Niwas, R.3
Srivastava, A.4
Pasupuleti, M.5
Tripathi, C.6
-
223
-
-
85024396712
-
Digital-to-biological converter for on-demand production of biologics
-
Boles, K.S., Kannan, K., Gill, J., Felderman, M., Gouvis, H., Hubby, B., Kamrud, K.I., Venter, J.C., Gibson, D.G., Digital-to-biological converter for on-demand production of biologics. Nat. Biotechnol., 35(7), 2017, 672.
-
(2017)
Nat. Biotechnol.
, vol.35
, Issue.7
, pp. 672
-
-
Boles, K.S.1
Kannan, K.2
Gill, J.3
Felderman, M.4
Gouvis, H.5
Hubby, B.6
Kamrud, K.I.7
Venter, J.C.8
Gibson, D.G.9
-
224
-
-
85020710659
-
Engineering biological systems using automated biofoundries
-
Chao, R., Mishra, S., Si, T., Zhao, H., Engineering biological systems using automated biofoundries. Metab. Eng. 42 (2017), 98–108.
-
(2017)
Metab. Eng.
, vol.42
, pp. 98-108
-
-
Chao, R.1
Mishra, S.2
Si, T.3
Zhao, H.4
-
225
-
-
85069783975
-
Machine and deep learning meet genome-scale metabolic modeling
-
Zampieri, G., Vijayakumar, S., Yaneske, E., Angione, C., Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol., 15(7), 2019.
-
(2019)
PLoS Comput. Biol.
, vol.15
, Issue.7
-
-
Zampieri, G.1
Vijayakumar, S.2
Yaneske, E.3
Angione, C.4
-
226
-
-
84874991229
-
The interface between plant metabolic engineering and human health
-
Martin, C., The interface between plant metabolic engineering and human health. Curr. Opin. Biotechnol. 24:2 (2013), 344–353.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.2
, pp. 344-353
-
-
Martin, C.1
-
227
-
-
84940592212
-
Dynamic metabolic engineering: new strategies for developing responsive cell factories
-
Brockman, I.M., Prather, K.L., Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol. J. 10:9 (2015), 1360–1369.
-
(2015)
Biotechnol. J.
, vol.10
, Issue.9
, pp. 1360-1369
-
-
Brockman, I.M.1
Prather, K.L.2
-
228
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9. Science 339:6121 (2013), 823–826.
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
229
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., Tsai, J.C., Weissman, J.S., Dueber, J.E., Qi, L.S., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:1–2 (2015), 339–350.
-
(2015)
Cell
, vol.160
, Issue.1-2
, pp. 339-350
-
-
Zalatan, J.G.1
Lee, M.E.2
Almeida, R.3
Gilbert, L.A.4
Whitehead, E.H.5
La Russa, M.6
Tsai, J.C.7
Weissman, J.S.8
Dueber, J.E.9
Qi, L.S.10
-
230
-
-
85008324951
-
Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production
-
Roointan, A., Morowvat, M.H., Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol. Genetic Eng. Rev. 32:1–2 (2016), 74–91.
-
(2016)
Biotechnol. Genetic Eng. Rev.
, vol.32
, Issue.1-2
, pp. 74-91
-
-
Roointan, A.1
Morowvat, M.H.2
-
231
-
-
0027422291
-
Site-specific recombinases: tools for genome engineering
-
Kilby, N.J., Snaith, M.R., Murray, J.A., Site-specific recombinases: tools for genome engineering. Trends Genetics 9:12 (1993), 413–421.
-
(1993)
Trends Genetics
, vol.9
, Issue.12
, pp. 413-421
-
-
Kilby, N.J.1
Snaith, M.R.2
Murray, J.A.3
-
232
-
-
84888059635
-
Expanding the scope of site-specific recombinases for genetic and metabolic engineering
-
Gaj, T., Sirk, S.J., Barbas, C.F. III, Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol. Bioeng. 111:1 (2014), 1–15.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, Issue.1
, pp. 1-15
-
-
Gaj, T.1
Sirk, S.J.2
Barbas, C.F.3
-
233
-
-
84975127165
-
Site-specific recombinases: molecular machines for the genetic revolution
-
Olorunniji, F.J., Rosser, S.J., Stark, W.M., Site-specific recombinases: molecular machines for the genetic revolution. Biochem. J. 473:6 (2016), 673–684.
-
(2016)
Biochem. J.
, vol.473
, Issue.6
, pp. 673-684
-
-
Olorunniji, F.J.1
Rosser, S.J.2
Stark, W.M.3
-
234
-
-
84894135250
-
Metabolic engineering approaches for production of biochemicals in food and medicinal plants
-
Wilson, S.A., Roberts, S.C., Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr. Opin. Biotechnol. 26 (2014), 174–182.
-
(2014)
Curr. Opin. Biotechnol.
, vol.26
, pp. 174-182
-
-
Wilson, S.A.1
Roberts, S.C.2
-
235
-
-
84920896587
-
Next-generation genome-scale models for metabolic engineering
-
King, Z.A., Lloyd, C.J., Feist, A.M., Palsson, B.O., Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35 (2015), 23–29.
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 23-29
-
-
King, Z.A.1
Lloyd, C.J.2
Feist, A.M.3
Palsson, B.O.4
-
236
-
-
84884586013
-
Metabolic engineering: past and future
-
Woolston, B.M., Edgar, S., Stephanopoulos, G., Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4 (2013), 259–288.
-
(2013)
Annu. Rev. Chem. Biomol. Eng.
, vol.4
, pp. 259-288
-
-
Woolston, B.M.1
Edgar, S.2
Stephanopoulos, G.3
|