메뉴 건너뛰기




Volumn 116, Issue 28, 2019, Pages 13996-14001

Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers

Author keywords

Deep learning; DeepEC; EC number prediction; Enzyme commission number; Metabolism

Indexed keywords

AMINO ACID SEQUENCE; ARTICLE; BINDING SITE; DEEP LEARNING; METABOLISM; MUTATION; PREDICTION; PROTEIN DOMAIN; SOFTWARE; ALGORITHM; BIOLOGY; CHEMISTRY; HUMAN; MACHINE LEARNING; SEQUENCE ANALYSIS;

EID: 85068580079     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1821905116     Document Type: Article
Times cited : (172)

References (33)
  • 1
    • 84862198590 scopus 로고    scopus 로고
    • The sequence read archive: Explosive growth of sequencing data
    • Y. Kodama, M. Shumway, R. Leinonen; International Nucleotide Sequence Database Collaboration, The Sequence Read Archive: Explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. D54-D56
    • Kodama, Y.1    Shumway, M.2    Leinonen, R.3
  • 2
    • 33748776559 scopus 로고    scopus 로고
    • Automated protein function prediction–The genomic challenge
    • I. Friedberg, Automated protein function prediction–The genomic challenge. Brief. Bioinform. 7, 225–242 (2006).
    • (2006) Brief. Bioinform. , vol.7 , pp. 225-242
    • Friedberg, I.1
  • 3
    • 84994100940 scopus 로고    scopus 로고
    • Stoichiometric representation of gene-protein-reaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction
    • D. Machado, M. J. Herrgård, I. Rocha, Stoichiometric representation of gene-protein-reaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction. PLoS Comput. Biol. 12, e1005140 (2016).
    • (2016) PLoS Comput. Biol. , vol.12
    • Machado, D.1    Herrgård, M.J.2    Rocha, I.3
  • 5
    • 85045348745 scopus 로고    scopus 로고
    • Current state and applications of microbial genome-scale metabolic models
    • W. J. Kim, H. U. Kim, S. Y. Lee, Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 (2017).
    • (2017) Curr. Opin. Syst. Biol. , vol.2 , pp. 10-18
    • Kim, W.J.1    Kim, H.U.2    Lee, S.Y.3
  • 6
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • C. S. Henry et al., High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 977-982
    • Henry, C.S.1
  • 7
    • 85047224318 scopus 로고    scopus 로고
    • A review of computational tools for design and reconstruction of metabolic pathways
    • L. Wang, S. Dash, C. Y. Ng, C. D. Maranas, A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252 (2017).
    • (2017) Synth. Syst. Biotechnol. , vol.2 , pp. 243-252
    • Wang, L.1    Dash, S.2    Ng, C.Y.3    Maranas, C.D.4
  • 10
    • 0043122944 scopus 로고    scopus 로고
    • Expasy: The proteomics server for in-depth protein knowledge and analysis
    • E. Gasteiger et al., ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).
    • (2003) Nucleic Acids Res , vol.31 , pp. 3784-3788
    • Gasteiger, E.1
  • 12
    • 35348973511 scopus 로고    scopus 로고
    • Ezypred: A top-down approach for predicting enzyme functional classes and subclasses
    • H. B. Shen, K. C. Chou, EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun. 364, 53–59 (2007).
    • (2007) Biochem. Biophys. Res. Commun. , vol.364 , pp. 53-59
    • Shen, H.B.1    Chou, K.C.2
  • 13
    • 59449104222 scopus 로고    scopus 로고
    • Genome-wide enzyme annotation with precision control: Catalytic families (CatFam) databases
    • C. Yu, N. Zavaljevski, V. Desai, J. Reifman, Genome-wide enzyme annotation with precision control: Catalytic families (CatFam) databases. Proteins 74, 449–460 (2009).
    • (2009) Proteins , vol.74 , pp. 449-460
    • Yu, C.1    Zavaljevski, N.2    Desai, V.3    Reifman, J.4
  • 14
    • 84860154266 scopus 로고    scopus 로고
    • EnzML: Multi-label prediction of enzyme classes using InterPro signatures
    • L. De Ferrari, S. Aitken, J. van Hemert, I. Goryanin, EnzML: Multi-label prediction of enzyme classes using InterPro signatures. BMC Bioinformatics 13, 61 (2012).
    • (2012) BMC Bioinformatics , vol.13 , pp. 61
    • De Ferrari, L.1    Aitken, S.2    Van Hemert, J.3    Goryanin, I.4
  • 15
    • 84870431146 scopus 로고    scopus 로고
    • EFICAZ2.5: Application of a high-precision enzyme function predictor to 396 proteomes
    • N. Kumar, J. Skolnick, EFICAz2.5: Application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics 28, 2687–2688 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2687-2688
    • Kumar, N.1    Skolnick, J.2
  • 16
    • 84946865959 scopus 로고    scopus 로고
    • EnZDP: Improved enzyme annotation for metabolic network reconstruction based on domain composition profiles
    • N. N. Nguyen, S. Srihari, H. W. Leong, K. F. Chong, EnzDP: Improved enzyme annotation for metabolic network reconstruction based on domain composition profiles. J. Bioinform. Comput. Biol. 13, 1543003 (2015).
    • (2015) J. Bioinform. Comput. Biol. , vol.13 , pp. 1543003
    • Nguyen, N.N.1    Srihari, S.2    Leong, H.W.3    Chong, K.F.4
  • 17
    • 84984783441 scopus 로고    scopus 로고
    • SVM-prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity
    • Y. H. Li et al., SVM-prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One 11, e0155290 (2016).
    • (2016) PLoS One , vol.11
    • Li, Y.H.1
  • 18
    • 85042918066 scopus 로고    scopus 로고
    • Deepre: Sequence-based enzyme EC number prediction by deep learning
    • Y. Li et al., DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics 34, 760–769 (2018).
    • (2018) Bioinformatics , vol.34 , pp. 760-769
    • Li, Y.1
  • 19
    • 85054072451 scopus 로고    scopus 로고
    • Improved enzyme annotation with EC-specific cutoffs using DETECT v2
    • N. Nursimulu, L. L. Xu, J. D. Wasmuth, I. Krukov, J. Parkinson, Improved enzyme annotation with EC-specific cutoffs using DETECT v2. Bioinformatics 34, 3393–3395 (2018).
    • (2018) Bioinformatics , vol.34 , pp. 3393-3395
    • Nursimulu, N.1    Xu, L.L.2    Wasmuth, J.D.3    Krukov, I.4    Parkinson, J.5
  • 20
    • 85053685317 scopus 로고    scopus 로고
    • Ecpred: A tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
    • A. Dalkiran et al., ECPred: A tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics 19, 334 (2018).
    • (2018) BMC Bioinformatics , vol.19 , pp. 334
    • Dalkiran, A.1
  • 21
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specific-ities of DNA- And RNA-binding proteins by deep learning
    • B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Predicting the sequence specific-ities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 22
    • 0033957834 scopus 로고    scopus 로고
    • The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    • A. Bairoch, R. Apweiler, The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).
    • (2000) Nucleic Acids Res , vol.28 , pp. 45-48
    • Bairoch, A.1    Apweiler, R.2
  • 23
    • 84946069451 scopus 로고    scopus 로고
    • Uniprot: A hub for protein information
    • UniProt Consortium, UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D204-D212
  • 24
    • 84953217068 scopus 로고    scopus 로고
    • Continuous distributed representation of biological sequences for deep proteomics and genomics
    • E. Asgari, M. R. Mofrad, Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10, e0141287 (2015).
    • (2015) PLoS One , vol.10
    • Asgari, E.1    Mofrad, M.R.2
  • 25
    • 84891782659 scopus 로고    scopus 로고
    • PFAM: The protein families database
    • R. D. Finn et al., Pfam: The protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. D222-D230
    • Finn, R.D.1
  • 27
    • 85033457644 scopus 로고    scopus 로고
    • Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism
    • J. Y. Ryu, H. U. Kim, S. Y. Lee, Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc. Natl. Acad. Sci. U.S.A. 114, E9740–E9749 (2017).
    • (2017) Proc. Natl. Acad. Sci. U.S.A. , vol.114 , pp. E9740-E9749
    • Ryu, J.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 28
    • 85040920991 scopus 로고    scopus 로고
    • Ensembl 2018
    • D. R. Zerbino et al., Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
    • (2018) Nucleic Acids Res , vol.46 , pp. D754-D761
    • Zerbino, D.R.1
  • 29
    • 84855731050 scopus 로고    scopus 로고
    • Ensembl biomarts: A hub for data retrieval across taxonomic space
    • R. J. Kinsella et al., Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030 (2011).
    • (2011) Database (Oxford) , vol.2011 , pp. bar030
    • Kinsella, R.J.1
  • 30
    • 34547560275 scopus 로고    scopus 로고
    • Wolf Psort: Protein localization predictor
    • P. Horton et al., WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35, W585–W587 (2007).
    • (2007) Nucleic Acids Res , vol.35 , pp. W585-W587
    • Horton, P.1
  • 31
    • 0345863907 scopus 로고    scopus 로고
    • BRENDA, the enzyme database: Updates and major new developments
    • I. Schomburg et al., BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 32, D431–D433 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. D431-D433
    • Schomburg, I.1
  • 32
    • 85039049799 scopus 로고    scopus 로고
    • The human protein atlas: A spatial map of the human pro-teome
    • P. J. Thul, C. Lindskog, The human protein atlas: A spatial map of the human pro-teome. Protein Sci. 27, 233–244 (2018).
    • (2018) Protein Sci , vol.27 , pp. 233-244
    • Thul, P.J.1    Lindskog, C.2
  • 33
    • 84925021592 scopus 로고    scopus 로고
    • Fast and sensitive protein alignment using DIAMOND
    • B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 59-60
    • Buchfink, B.1    Xie, C.2    Huson, D.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.