-
1
-
-
84862198590
-
The sequence read archive: Explosive growth of sequencing data
-
Y. Kodama, M. Shumway, R. Leinonen; International Nucleotide Sequence Database Collaboration, The Sequence Read Archive: Explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D54-D56
-
-
Kodama, Y.1
Shumway, M.2
Leinonen, R.3
-
2
-
-
33748776559
-
Automated protein function prediction–The genomic challenge
-
I. Friedberg, Automated protein function prediction–The genomic challenge. Brief. Bioinform. 7, 225–242 (2006).
-
(2006)
Brief. Bioinform.
, vol.7
, pp. 225-242
-
-
Friedberg, I.1
-
3
-
-
84994100940
-
Stoichiometric representation of gene-protein-reaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction
-
D. Machado, M. J. Herrgård, I. Rocha, Stoichiometric representation of gene-protein-reaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction. PLoS Comput. Biol. 12, e1005140 (2016).
-
(2016)
PLoS Comput. Biol.
, vol.12
-
-
Machado, D.1
Herrgård, M.J.2
Rocha, I.3
-
5
-
-
85045348745
-
Current state and applications of microbial genome-scale metabolic models
-
W. J. Kim, H. U. Kim, S. Y. Lee, Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 (2017).
-
(2017)
Curr. Opin. Syst. Biol.
, vol.2
, pp. 10-18
-
-
Kim, W.J.1
Kim, H.U.2
Lee, S.Y.3
-
6
-
-
77956696072
-
High-throughput generation, optimization and analysis of genome-scale metabolic models
-
C. S. Henry et al., High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 977-982
-
-
Henry, C.S.1
-
7
-
-
85047224318
-
A review of computational tools for design and reconstruction of metabolic pathways
-
L. Wang, S. Dash, C. Y. Ng, C. D. Maranas, A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252 (2017).
-
(2017)
Synth. Syst. Biotechnol.
, vol.2
, pp. 243-252
-
-
Wang, L.1
Dash, S.2
Ng, C.Y.3
Maranas, C.D.4
-
9
-
-
2942612447
-
Metabolic networks: Enzyme function and metabolite structure
-
V. Hatzimanikatis, C. Li, J. A. Ionita, L. J. Broadbelt, Metabolic networks: Enzyme function and metabolite structure. Curr. Opin. Struct. Biol. 14, 300–306 (2004).
-
(2004)
Curr. Opin. Struct. Biol.
, vol.14
, pp. 300-306
-
-
Hatzimanikatis, V.1
Li, C.2
Ionita, J.A.3
Broadbelt, L.J.4
-
10
-
-
0043122944
-
Expasy: The proteomics server for in-depth protein knowledge and analysis
-
E. Gasteiger et al., ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3784-3788
-
-
Gasteiger, E.1
-
11
-
-
0345531106
-
Enzyme-specific profiles for genome annotation: Priam
-
C. Claudel-Renard, C. Chevalet, T. Faraut, D. Kahn, Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res. 31, 6633–6639 (2003).
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 6633-6639
-
-
Claudel-Renard, C.1
Chevalet, C.2
Faraut, T.3
Kahn, D.4
-
12
-
-
35348973511
-
Ezypred: A top-down approach for predicting enzyme functional classes and subclasses
-
H. B. Shen, K. C. Chou, EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun. 364, 53–59 (2007).
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.364
, pp. 53-59
-
-
Shen, H.B.1
Chou, K.C.2
-
13
-
-
59449104222
-
Genome-wide enzyme annotation with precision control: Catalytic families (CatFam) databases
-
C. Yu, N. Zavaljevski, V. Desai, J. Reifman, Genome-wide enzyme annotation with precision control: Catalytic families (CatFam) databases. Proteins 74, 449–460 (2009).
-
(2009)
Proteins
, vol.74
, pp. 449-460
-
-
Yu, C.1
Zavaljevski, N.2
Desai, V.3
Reifman, J.4
-
14
-
-
84860154266
-
EnzML: Multi-label prediction of enzyme classes using InterPro signatures
-
L. De Ferrari, S. Aitken, J. van Hemert, I. Goryanin, EnzML: Multi-label prediction of enzyme classes using InterPro signatures. BMC Bioinformatics 13, 61 (2012).
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 61
-
-
De Ferrari, L.1
Aitken, S.2
Van Hemert, J.3
Goryanin, I.4
-
15
-
-
84870431146
-
EFICAZ2.5: Application of a high-precision enzyme function predictor to 396 proteomes
-
N. Kumar, J. Skolnick, EFICAz2.5: Application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics 28, 2687–2688 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. 2687-2688
-
-
Kumar, N.1
Skolnick, J.2
-
16
-
-
84946865959
-
EnZDP: Improved enzyme annotation for metabolic network reconstruction based on domain composition profiles
-
N. N. Nguyen, S. Srihari, H. W. Leong, K. F. Chong, EnzDP: Improved enzyme annotation for metabolic network reconstruction based on domain composition profiles. J. Bioinform. Comput. Biol. 13, 1543003 (2015).
-
(2015)
J. Bioinform. Comput. Biol.
, vol.13
, pp. 1543003
-
-
Nguyen, N.N.1
Srihari, S.2
Leong, H.W.3
Chong, K.F.4
-
17
-
-
84984783441
-
SVM-prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity
-
Y. H. Li et al., SVM-prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One 11, e0155290 (2016).
-
(2016)
PLoS One
, vol.11
-
-
Li, Y.H.1
-
18
-
-
85042918066
-
Deepre: Sequence-based enzyme EC number prediction by deep learning
-
Y. Li et al., DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics 34, 760–769 (2018).
-
(2018)
Bioinformatics
, vol.34
, pp. 760-769
-
-
Li, Y.1
-
19
-
-
85054072451
-
Improved enzyme annotation with EC-specific cutoffs using DETECT v2
-
N. Nursimulu, L. L. Xu, J. D. Wasmuth, I. Krukov, J. Parkinson, Improved enzyme annotation with EC-specific cutoffs using DETECT v2. Bioinformatics 34, 3393–3395 (2018).
-
(2018)
Bioinformatics
, vol.34
, pp. 3393-3395
-
-
Nursimulu, N.1
Xu, L.L.2
Wasmuth, J.D.3
Krukov, I.4
Parkinson, J.5
-
20
-
-
85053685317
-
Ecpred: A tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
-
A. Dalkiran et al., ECPred: A tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics 19, 334 (2018).
-
(2018)
BMC Bioinformatics
, vol.19
, pp. 334
-
-
Dalkiran, A.1
-
21
-
-
84938888109
-
Predicting the sequence specific-ities of DNA- And RNA-binding proteins by deep learning
-
B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Predicting the sequence specific-ities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
22
-
-
0033957834
-
The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
-
A. Bairoch, R. Apweiler, The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 45-48
-
-
Bairoch, A.1
Apweiler, R.2
-
23
-
-
84946069451
-
Uniprot: A hub for protein information
-
UniProt Consortium, UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D204-D212
-
-
-
24
-
-
84953217068
-
Continuous distributed representation of biological sequences for deep proteomics and genomics
-
E. Asgari, M. R. Mofrad, Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10, e0141287 (2015).
-
(2015)
PLoS One
, vol.10
-
-
Asgari, E.1
Mofrad, M.R.2
-
25
-
-
84891782659
-
PFAM: The protein families database
-
R. D. Finn et al., Pfam: The protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D222-D230
-
-
Finn, R.D.1
-
27
-
-
85033457644
-
Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism
-
J. Y. Ryu, H. U. Kim, S. Y. Lee, Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc. Natl. Acad. Sci. U.S.A. 114, E9740–E9749 (2017).
-
(2017)
Proc. Natl. Acad. Sci. U.S.A.
, vol.114
, pp. E9740-E9749
-
-
Ryu, J.Y.1
Kim, H.U.2
Lee, S.Y.3
-
28
-
-
85040920991
-
Ensembl 2018
-
D. R. Zerbino et al., Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
-
(2018)
Nucleic Acids Res
, vol.46
, pp. D754-D761
-
-
Zerbino, D.R.1
-
29
-
-
84855731050
-
Ensembl biomarts: A hub for data retrieval across taxonomic space
-
R. J. Kinsella et al., Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030 (2011).
-
(2011)
Database (Oxford)
, vol.2011
, pp. bar030
-
-
Kinsella, R.J.1
-
30
-
-
34547560275
-
Wolf Psort: Protein localization predictor
-
P. Horton et al., WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35, W585–W587 (2007).
-
(2007)
Nucleic Acids Res
, vol.35
, pp. W585-W587
-
-
Horton, P.1
-
31
-
-
0345863907
-
BRENDA, the enzyme database: Updates and major new developments
-
I. Schomburg et al., BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 32, D431–D433 (2004).
-
(2004)
Nucleic Acids Res
, vol.32
, pp. D431-D433
-
-
Schomburg, I.1
-
32
-
-
85039049799
-
The human protein atlas: A spatial map of the human pro-teome
-
P. J. Thul, C. Lindskog, The human protein atlas: A spatial map of the human pro-teome. Protein Sci. 27, 233–244 (2018).
-
(2018)
Protein Sci
, vol.27
, pp. 233-244
-
-
Thul, P.J.1
Lindskog, C.2
-
33
-
-
84925021592
-
Fast and sensitive protein alignment using DIAMOND
-
B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 59-60
-
-
Buchfink, B.1
Xie, C.2
Huson, D.H.3
|