-
1
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. 2014;32:1262-7.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
Hegde, M.5
Smith, I.6
Sullender, M.7
Ebert, B.L.8
Xavier, R.J.9
Root, D.E.10
-
2
-
-
84957605863
-
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
-
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016:34(2):184-91.
-
(2016)
Nat Biotechnol.
, vol.34
, Issue.2
, pp. 184-191
-
-
Doench, J.G.1
Fusi, N.2
Sullender, M.3
Hegde, M.4
Vaimberg, E.W.5
Donovan, K.F.6
Smith, I.7
Tothova, Z.8
Wilen, C.9
Orchard, R.10
-
3
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-23.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
-
4
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
-
(2014)
Science
, vol.346
-
-
Doudna, J.A.1
Charpentier, E.2
-
5
-
-
84938829555
-
Sequence determinants of improved CRISPR sgRNA design
-
Xu H, Xiao T, Chen C-H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu JS. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015:25(8):1147-57.
-
(2015)
Genome Res.
, vol.25
, Issue.8
, pp. 1147-1157
-
-
Xu, H.1
Xiao, T.2
Chen, C.-H.3
Li, W.4
Meyer, C.5
Wu, Q.6
Wu, D.7
Cong, L.8
Zhang, F.9
Liu, J.S.10
-
6
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827-32.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
Agarwala, V.6
Li, Y.7
Fine, E.J.8
Wu, X.9
Shalem, O.10
-
7
-
-
84997848522
-
In silico meets in vivo: towards computational CRISPR-based sgRNA design
-
Chuai G-h, Wang Q-L, Liu Q. In silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol. 2017;35:12-21.
-
(2017)
Trends Biotechnol
, vol.35
, pp. 12-21
-
-
Chuai, G.-H.1
Wang, Q.-L.2
Liu, Q.3
-
8
-
-
84925434302
-
CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes
-
Aach J, Mali P, Church GM. CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv. 2014:005074. https://doi.org/10.1101/005074.
-
(2014)
bioRxiv
-
-
Aach, J.1
Mali, P.2
Church, G.M.3
-
9
-
-
84893287073
-
E-CRISP: fast CRISPR target site identification
-
Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods. 2014;11:122-3.
-
(2014)
Nat Methods
, vol.11
, pp. 122-123
-
-
Heigwer, F.1
Kerr, G.2
Boutros, M.3
-
10
-
-
85011312299
-
CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
-
Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016;44(Issue W1):gkw398.
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.W1
-
-
Labun, K.1
Montague, T.G.2
Gagnon, J.A.3
Thyme, S.B.4
Valen, E.5
-
11
-
-
85017363648
-
GuideScan software for improved single and paired CRISPR guide RNA design
-
Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, Ventura A. GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol. 2017:35(4):347-9.
-
(2017)
Nat Biotechnol.
, vol.35
, Issue.4
, pp. 347-349
-
-
Perez, A.R.1
Pritykin, Y.2
Vidigal, J.A.3
Chhangawala, S.4
Zamparo, L.5
Leslie, C.S.6
Ventura, A.7
-
12
-
-
84940501210
-
Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
-
Chari R, Mali P, Moosburner M, Church GM. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. 2015;12:823-6.
-
(2015)
Nat Methods
, vol.12
, pp. 823-826
-
-
Chari, R.1
Mali, P.2
Moosburner, M.3
Church, G.M.4
-
13
-
-
85019592417
-
sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity
-
Chari R, Yeo NC, Chavez A, Church GM. sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol. 2017:6(5):902-4.
-
(2017)
ACS Synth Biol.
, vol.6
, Issue.5
, pp. 902-904
-
-
Chari, R.1
Yeo, N.C.2
Chavez, A.3
Church, G.M.4
-
14
-
-
84959123021
-
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
-
Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015;12:982-8.
-
(2015)
Nat Methods
, vol.12
, pp. 982-988
-
-
Moreno-Mateos, M.A.1
Vejnar, C.E.2
Beaudoin, J.-D.3
Fernandez, J.P.4
Mis, E.K.5
Khokha, M.K.6
Giraldez, A.J.7
-
15
-
-
85049151184
-
Benchmarking CRISPR on-target sgRNA design
-
Yan J, Chuai G, Zhou C, Zhu C, Yang J, Zhang C, Gu F, Xu H, Wei J, Liu Q. Benchmarking CRISPR on-target sgRNA design. Brief Bioinform. 2017:15:1-4.
-
(2017)
Brief Bioinform
, vol.15
, pp. 1-4
-
-
Yan, J.1
Chuai, G.2
Zhou, C.3
Zhu, C.4
Yang, J.5
Zhang, C.6
Gu, F.7
Xu, H.8
Wei, J.9
Liu, Q.10
-
16
-
-
84977522458
-
Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR
-
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148.
-
(2016)
Genome Biol
, vol.17
, pp. 148
-
-
Haeussler, M.1
Schönig, K.2
Eckert, H.3
Eschstruth, A.4
Mianné, J.5
Renaud, J.-B.6
Schneider-Maunoury, S.7
Shkumatava, A.8
Teboul, L.9
Kent, J.10
-
17
-
-
84960407885
-
Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing
-
Lee CM, Cradick TJ, Fine EJ, Bao G. Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol Ther. 2016;24(3):475-87.
-
(2016)
Mol Ther.
, vol.24
, Issue.3
, pp. 475-487
-
-
Lee, C.M.1
Cradick, T.J.2
Fine, E.J.3
Bao, G.4
-
18
-
-
84938836171
-
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
-
O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 2015;43:3389-404.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3389-3404
-
-
O'Geen, H.1
Henry, I.M.2
Bhakta, M.S.3
Meckler, J.F.4
Segal, D.J.5
-
19
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822-6.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
20
-
-
84896308706
-
Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
-
Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473-5.
-
(2014)
Bioinformatics
, vol.30
, pp. 1473-1475
-
-
Bae, S.1
Park, J.2
Kim, J.-S.3
-
21
-
-
84994666838
-
CRISPR-DO for genome-wide CRISPR design and optimization
-
Ma J, Köster J, Qin Q, Hu S, Li W, Chen C, Cao Q, Wang J, Mei S, Liu Q. CRISPR-DO for genome-wide CRISPR design and optimization. Bioinformatics. 2016;32:3336-8.
-
(2016)
Bioinformatics
, vol.32
, pp. 3336-3338
-
-
Ma, J.1
Köster, J.2
Qin, Q.3
Hu, S.4
Li, W.5
Chen, C.6
Cao, Q.7
Wang, J.8
Mei, S.9
Liu, Q.10
-
22
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187-97.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
Topkar, V.V.5
Thapar, V.6
Wyvekens, N.7
Khayter, C.8
Iafrate, A.J.9
Le, L.P.10
-
23
-
-
84960392032
-
Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq
-
Kim D, Kim S, Kim S, Park J, Jin-Soo K. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 2016:26(3):406-15.
-
(2016)
Genome Res.
, vol.26
, Issue.3
, pp. 406-415
-
-
Kim, D.1
Kim, S.2
Kim, S.3
Park, J.4
Jin-Soo, K.5
-
24
-
-
84923846574
-
Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim J-I, Kim J-S. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237-43.
-
(2015)
Nat Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
Kim, S.5
Yu, H.R.6
Hwang, J.7
Kim, J.-I.8
Kim, J.-S.9
-
25
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
Frock RL, Hu J, Meyers RM, Ho Y-J, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33:179-86.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
Hu, J.2
Meyers, R.M.3
Ho, Y.-J.4
Kii, E.5
Alt, F.W.6
-
26
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186-91.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
-
27
-
-
84923221641
-
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
-
Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin R-J, Yee J-K. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33:175-8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 175-178
-
-
Wang, X.1
Wang, Y.2
Wu, X.3
Wang, J.4
Wang, Y.5
Qiu, Z.6
Chang, T.7
Huang, H.8
Lin, R.-J.9
Yee, J.-K.10
-
28
-
-
85032645372
-
A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action
-
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13:e1005807.
-
(2017)
PLoS Comput Biol
, vol.13
-
-
Abadi, S.1
Yan, W.X.2
Amar, D.3
Mayrose, I.4
-
29
-
-
85049146486
-
CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling
-
Peng H, Zheng Y, Blumenstein M, Tao D, Li J. CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling. Bioinformatics. 2018:4:1-9.
-
(2018)
Bioinformatics.
, vol.4
, pp. 1-9
-
-
Peng, H.1
Zheng, Y.2
Blumenstein, M.3
Tao, D.4
Li, J.5
-
30
-
-
85042934649
-
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
-
Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, Lee S, Yoon S, Kim H. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol. 2018;36:239.
-
(2018)
Nat Biotechnol
, vol.36
, pp. 239
-
-
Kim, H.K.1
Min, S.2
Song, M.3
Jung, S.4
Choi, J.W.5
Kim, Y.6
Lee, S.7
Yoon, S.8
Kim, H.9
-
31
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831-8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
33
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12:931-4.
-
(2015)
Nat Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
35
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85-117.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
36
-
-
84949233942
-
High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities
-
Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163:1515-26.
-
(2015)
Cell
, vol.163
, pp. 1515-1526
-
-
Hart, T.1
Chandrashekhar, M.2
Aregger, M.3
Steinhart, Z.4
Brown, K.R.5
MacLeod, G.6
Mis, M.7
Zimmermann, M.8
Fradet-Turcotte, A.9
Sun, S.10
-
37
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80-4.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
38
-
-
84929377243
-
CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences
-
Prykhozhij SV, Rajan V, Gaston D, Berman JN. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. 2015;10:e0119372.
-
(2015)
PLoS One
, vol.10
-
-
Prykhozhij, S.V.1
Rajan, V.2
Gaston, D.3
Berman, J.N.4
-
39
-
-
84950292610
-
Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites
-
Park J, Bae S, Kim J-S. Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics. 2015;31:4014-6.
-
(2015)
Bioinformatics
, vol.31
, pp. 4014-4016
-
-
Park, J.1
Bae, S.2
Kim, J.-S.3
-
40
-
-
84945926658
-
WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system
-
Wong N, Liu W, Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16:1-8.
-
(2015)
Genome Biol
, vol.16
, pp. 1-8
-
-
Wong, N.1
Liu, W.2
Wang, X.3
-
41
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30:1145-59.
-
(1997)
Pattern Recogn
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
42
-
-
85049124701
-
Predicting off-target effects for end-to-end CRISPR guide design
-
Listgarten J, Weinstein M, Elibol M, Hoang L, Doench J, Fusi N. Predicting off-target effects for end-to-end CRISPR guide design. bioRxiv. 2016:078253. https://doi.org/10.1101/078253.
-
(2016)
bioRxiv
-
-
Listgarten, J.1
Weinstein, M.2
Elibol, M.3
Hoang, L.4
Doench, J.5
Fusi, N.6
-
43
-
-
85044625711
-
Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications
-
Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann J-H, Heckl D. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 2018;46:1375-85.
-
(2018)
Nucleic Acids Res
, vol.46
, pp. 1375-1385
-
-
Labuhn, M.1
Adams, F.F.2
Ng, M.3
Knoess, S.4
Schambach, A.5
Charpentier, E.M.6
Schwarzer, A.7
Mateo, J.L.8
Klusmann, J.-H.9
Heckl, D.10
-
44
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132-41.
-
(2014)
Genome Res
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
Kweon, J.4
Kim, H.S.5
Bae, S.6
Kim, J.-S.7
-
45
-
-
84983752643
-
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
-
Singh R, Kuscu C, Quinlan A, Qi Y, Adli M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 2015;43:e118.
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Singh, R.1
Kuscu, C.2
Quinlan, A.3
Qi, Y.4
Adli, M.5
-
46
-
-
84929494345
-
CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool
-
Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One. 2015;10:e0124633.
-
(2015)
PLoS One
, vol.10
-
-
Stemmer, M.1
Thumberger, T.2
del Sol Keyer, M.3
Wittbrodt, J.4
Mateo, J.L.5
-
47
-
-
84905220041
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
arXiv preprint.
-
Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. In: arXiv preprint arXiv:13126034; 2013.
-
(2013)
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
48
-
-
84990862095
-
CRISPR-Cas9 nuclear dynamics and target recognition in living cells
-
Ma H, Tu L-C, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol. 2016;214(5):529-37.
-
(2016)
J Cell Biol
, vol.214
, Issue.5
, pp. 529-537
-
-
Ma, H.1
Tu, L.-C.2
Naseri, A.3
Huisman, M.4
Zhang, S.5
Grunwald, D.6
Pederson, T.7
-
49
-
-
84932137736
-
Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: where a recommendation system meets genome-wide association studies
-
Wang H, Gu Q, Wei J, Cao Z, Liu Q. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: where a recommendation system meets genome-wide association studies. Clin Pharmacol Ther. 2015;97:451-4.
-
(2015)
Clin Pharmacol Ther
, vol.97
, pp. 451-454
-
-
Wang, H.1
Gu, Q.2
Wei, J.3
Cao, Z.4
Liu, Q.5
-
50
-
-
84883732054
-
A hybrid approach with collaborative filtering for recommender systems
-
Sardinia, Italy.
-
Badaro G, Hajj H, El-Hajj W, Nachman L. A hybrid approach with collaborative filtering for recommender systems. In: Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International: IEEE; Sardinia, Italy, 2013. p. 349-54.
-
(2013)
Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International: IEEE
, pp. 349-354
-
-
Badaro, G.1
Hajj, H.2
El-Hajj, W.3
Nachman, L.4
-
51
-
-
84859210032
-
Fast gapped-read alignment with bowtie 2
-
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357-9.
-
(2012)
Nat Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
52
-
-
7444260846
-
The ENCODE (ENCyclopedia of DNA elements) project
-
Consortium EP. The ENCODE (ENCyclopedia of DNA elements) project. Science. 2004;306:636-40.
-
(2004)
Science
, vol.306
, pp. 636-640
-
-
Consortium, E.P.1
-
53
-
-
0000893164
-
Fisher's exact test
-
Upton GJ. Fisher's exact test. J R Stat Soc. 1992;155(3):395-402.
-
(1992)
J R Stat Soc
, vol.155
, Issue.3
, pp. 395-402
-
-
Upton, G.J.1
-
54
-
-
69649109364
-
Circos: an information aesthetic for comparative genomics
-
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639-45.
-
(2009)
Genome Res
, vol.19
, pp. 1639-1645
-
-
Krzywinski, M.1
Schein, J.2
Birol, I.3
Connors, J.4
Gascoyne, R.5
Horsman, D.6
Jones, S.J.7
Marra, M.A.8
-
55
-
-
85049147447
-
-
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. 2018. https://github.com/bm2-lab/DeepCRISPR.
-
(2018)
DeepCRISPR: optimized CRISPR guide RNA design by deep learning
-
-
Chuai, G.1
Ma, H.2
Yan, J.3
Chen, M.4
Hong, N.5
Xue, D.6
Zhou, C.7
Zhu, C.8
Chen, K.9
Duan, B.10
Gu, F.11
Qu, S.12
Huang, D.13
Wei, J.14
Liu, Q.15
|