메뉴 건너뛰기




Volumn 33, Issue 1, 2015, Pages 15-26

Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes

Author keywords

Actinomycetes; Antibiotics; Metabolic engineering; Secondary metabolites

Indexed keywords

ANTIBIOTICS; BACTERIA; GENES; METABOLISM; METABOLITES;

EID: 84918813440     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.10.009     Document Type: Review
Times cited : (162)

References (111)
  • 1
    • 84865683314 scopus 로고    scopus 로고
    • Thoughts and facts about antibiotics: where we are now and where we are heading
    • Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo) 2012, 65:385-395.
    • (2012) J. Antibiot. (Tokyo) , vol.65 , pp. 385-395
    • Bérdy, J.1
  • 2
    • 84895072793 scopus 로고    scopus 로고
    • Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?
    • Bachmann B.O., et al. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?. J. Ind. Microbiol. Biotechnol. 2014, 41:175-184.
    • (2014) J. Ind. Microbiol. Biotechnol. , vol.41 , pp. 175-184
    • Bachmann, B.O.1
  • 3
    • 58149190072 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms: general strategies and drug production
    • Lee S.Y., et al. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov. Today 2009, 14:78-88.
    • (2009) Drug Discov. Today , vol.14 , pp. 78-88
    • Lee, S.Y.1
  • 4
    • 84895453461 scopus 로고    scopus 로고
    • Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites
    • Hwang K.S., et al. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 2014, 32:255-268.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 255-268
    • Hwang, K.S.1
  • 5
    • 84899651850 scopus 로고    scopus 로고
    • In silico tools for the analysis of antibiotic biosynthetic pathways
    • Weber T. In silico tools for the analysis of antibiotic biosynthetic pathways. Int. J. Med. Microbiol. 2014, 304:230-235.
    • (2014) Int. J. Med. Microbiol. , vol.304 , pp. 230-235
    • Weber, T.1
  • 6
    • 84883353135 scopus 로고    scopus 로고
    • AntiSMASH 2.0 - a versatile platform for genome mining of secondary metabolite producers
    • Blin K., et al. antiSMASH 2.0 - a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013, 41:W204-W212.
    • (2013) Nucleic Acids Res. , vol.41 , pp. W204-W212
    • Blin, K.1
  • 7
    • 84901009939 scopus 로고    scopus 로고
    • Recent advances in genome-based polyketide discovery
    • Helfrich E.J., et al. Recent advances in genome-based polyketide discovery. Curr. Opin. Biotechnol. 2014, 29C:107-115.
    • (2014) Curr. Opin. Biotechnol. , vol.29 C , pp. 107-115
    • Helfrich, E.J.1
  • 8
    • 84900859146 scopus 로고    scopus 로고
    • Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products
    • Krug D., Müller R. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat. Prod. Rep. 2014, 31:768-783.
    • (2014) Nat. Prod. Rep. , vol.31 , pp. 768-783
    • Krug, D.1    Müller, R.2
  • 9
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms
    • Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 2006, 106:3468-3496.
    • (2006) Chem. Rev. , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 10
    • 69249202590 scopus 로고    scopus 로고
    • The biosynthetic logic of polyketide diversity
    • Hertweck C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 2009, 48:4688-4716.
    • (2009) Angew. Chem. Int. Ed. Engl. , vol.48 , pp. 4688-4716
    • Hertweck, C.1
  • 11
    • 80054865417 scopus 로고    scopus 로고
    • A mass spectrometry-guided genome mining approach for natural product peptidogenomics
    • Kersten R.D., et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 2011, 7:794-802.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 794-802
    • Kersten, R.D.1
  • 12
    • 84888095812 scopus 로고    scopus 로고
    • Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules
    • Kersten R.D., et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E4407-E4416.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E4407-E4416
    • Kersten, R.D.1
  • 13
    • 84862907959 scopus 로고    scopus 로고
    • A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria
    • Chen Y., et al. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria. J. Proteome Res. 2012, 11:85-94.
    • (2012) J. Proteome Res. , vol.11 , pp. 85-94
    • Chen, Y.1
  • 14
    • 84903172568 scopus 로고    scopus 로고
    • Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products
    • Gubbens J., et al. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products. Chem. Biol. 2014, 21:707-718.
    • (2014) Chem. Biol. , vol.21 , pp. 707-718
    • Gubbens, J.1
  • 15
    • 84872353481 scopus 로고    scopus 로고
    • New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters
    • Ochi K., Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 2013, 97:87-98.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 87-98
    • Ochi, K.1    Hosaka, T.2
  • 16
    • 84863359225 scopus 로고    scopus 로고
    • Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction
    • Charusanti P., et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS ONE 2012, 7:e33727.
    • (2012) PLoS ONE , vol.7 , pp. e33727
    • Charusanti, P.1
  • 17
    • 84907259451 scopus 로고    scopus 로고
    • Overproduction of ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17
    • Spohn M., et al. Overproduction of ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob. Agents Chemother. 2014, 58:6185-6196.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 6185-6196
    • Spohn, M.1
  • 18
    • 84897952067 scopus 로고    scopus 로고
    • Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074
    • Olano C., et al. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb. Biotechnol. 2014, 7:242-256.
    • (2014) Microb. Biotechnol. , vol.7 , pp. 242-256
    • Olano, C.1
  • 19
    • 0345550239 scopus 로고    scopus 로고
    • Exploiting the genetic potential of polyketide producing streptomycetes
    • Weber T., et al. Exploiting the genetic potential of polyketide producing streptomycetes. J. Biotechnol. 2003, 106:221-232.
    • (2003) J. Biotechnol. , vol.106 , pp. 221-232
    • Weber, T.1
  • 20
    • 60349101699 scopus 로고    scopus 로고
    • Investigations into viomycin biosynthesis by using heterologous production in Streptomyces lividans
    • Barkei J.J., et al. Investigations into viomycin biosynthesis by using heterologous production in Streptomyces lividans. Chembiochem 2009, 10:366-376.
    • (2009) Chembiochem , vol.10 , pp. 366-376
    • Barkei, J.J.1
  • 21
    • 77954630177 scopus 로고    scopus 로고
    • Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR
    • Kim J.H., et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 2010, 93:833-844.
    • (2010) Biopolymers , vol.93 , pp. 833-844
    • Kim, J.H.1
  • 22
    • 40649092126 scopus 로고    scopus 로고
    • Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae
    • Kouprina N., Larionov V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 2008, 3:371-377.
    • (2008) Nat. Protoc. , vol.3 , pp. 371-377
    • Kouprina, N.1    Larionov, V.2
  • 23
    • 84860778298 scopus 로고    scopus 로고
    • Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting
    • Fu J., et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 2012, 30:440-446.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 440-446
    • Fu, J.1
  • 24
    • 84893456760 scopus 로고    scopus 로고
    • Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A
    • Yamanaka K., et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:1957-1962.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 1957-1962
    • Yamanaka, K.1
  • 25
    • 3042791271 scopus 로고    scopus 로고
    • Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces
    • Gust B., et al. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 2004, 54:107-128.
    • (2004) Adv. Appl. Microbiol. , vol.54 , pp. 107-128
    • Gust, B.1
  • 26
    • 48849100401 scopus 로고    scopus 로고
    • Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using Red/ET recombineering
    • Binz T.M., et al. Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using Red/ET recombineering. Chembiochem 2008, 9:447-454.
    • (2008) Chembiochem , vol.9 , pp. 447-454
    • Binz, T.M.1
  • 27
    • 67349270900 scopus 로고    scopus 로고
    • Enzymatic assembly of DNA molecules up to several hundred kilobases
    • Gibson D.G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6:343-345.
    • (2009) Nat. Methods , vol.6 , pp. 343-345
    • Gibson, D.G.1
  • 28
    • 33847608289 scopus 로고    scopus 로고
    • Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC
    • Li M.Z., Elledge S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 2007, 4:251-256.
    • (2007) Nat. Methods , vol.4 , pp. 251-256
    • Li, M.Z.1    Elledge, S.J.2
  • 29
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z., et al. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37:e16.
    • (2009) Nucleic Acids Res. , vol.37 , pp. e16
    • Shao, Z.1
  • 30
    • 34249854159 scopus 로고    scopus 로고
    • USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products
    • Geu-Flores F., et al. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007, 35:e55.
    • (2007) Nucleic Acids Res. , vol.35 , pp. e55
    • Geu-Flores, F.1
  • 31
    • 84896836282 scopus 로고    scopus 로고
    • Rapid and reliable DNA assembly via ligase cycling reaction
    • Kok S.D., et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 2014, 3:97-106.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 97-106
    • Kok, S.D.1
  • 32
    • 84856251172 scopus 로고    scopus 로고
    • In vitro assembly of multiple DNA fragments using successive hybridization
    • Jiang X., et al. In vitro assembly of multiple DNA fragments using successive hybridization. PLoS ONE 2012, 7:e30267.
    • (2012) PLoS ONE , vol.7 , pp. e30267
    • Jiang, X.1
  • 33
    • 84937816186 scopus 로고    scopus 로고
    • Recent advances in DNA assembly technologies
    • Published online June 23, 2014
    • Chao R., et al. Recent advances in DNA assembly technologies. FEMS Yeast Res. 2014, Published online June 23, 2014. 10.1111/1567-1364.12171.
    • (2014) FEMS Yeast Res.
    • Chao, R.1
  • 34
    • 84880518252 scopus 로고    scopus 로고
    • Synthetic biology of antimicrobial discovery
    • Zakeri B., Lu T.K. Synthetic biology of antimicrobial discovery. ACS Synth. Biol. 2012, 2:358-372.
    • (2012) ACS Synth. Biol. , vol.2 , pp. 358-372
    • Zakeri, B.1    Lu, T.K.2
  • 35
    • 84867628983 scopus 로고    scopus 로고
    • Streptomyces coelicolor as an expression host for heterologous gene clusters
    • Gomez-Escribano J.P., Bibb M.J. Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol. 2012, 517:279-300.
    • (2012) Methods Enzymol. , vol.517 , pp. 279-300
    • Gomez-Escribano, J.P.1    Bibb, M.J.2
  • 36
    • 84872287714 scopus 로고    scopus 로고
    • Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites
    • Komatsu M., et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2013, 2:384-396.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 384-396
    • Komatsu, M.1
  • 37
    • 0036804584 scopus 로고    scopus 로고
    • Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes
    • Chen C.W., et al. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet. 2002, 18:522-529.
    • (2002) Trends Genet. , vol.18 , pp. 522-529
    • Chen, C.W.1
  • 38
    • 79951846247 scopus 로고    scopus 로고
    • Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters
    • Gomez-Escribano J.P., Bibb M.J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 2011, 4:207-215.
    • (2011) Microb. Biotechnol. , vol.4 , pp. 207-215
    • Gomez-Escribano, J.P.1    Bibb, M.J.2
  • 39
    • 84864138531 scopus 로고    scopus 로고
    • Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor
    • Zhou M., et al. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol. Lett. 2012, 333:169-179.
    • (2012) FEMS Microbiol. Lett. , vol.333 , pp. 169-179
    • Zhou, M.1
  • 40
    • 84895074462 scopus 로고    scopus 로고
    • Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters
    • Ikeda H., et al. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J. Ind. Microbiol. Biotechnol. 2014, 41:233-250.
    • (2014) J. Ind. Microbiol. Biotechnol. , vol.41 , pp. 233-250
    • Ikeda, H.1
  • 41
    • 77249153701 scopus 로고    scopus 로고
    • Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism
    • Komatsu M., et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2646-2651.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2646-2651
    • Komatsu, M.1
  • 42
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj T., et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31:397-405.
    • (2013) Trends Biotechnol. , vol.31 , pp. 397-405
    • Gaj, T.1
  • 43
    • 33750969392 scopus 로고    scopus 로고
    • Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor
    • Ryu Y.G., et al. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 2006, 72:7132-7139.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 7132-7139
    • Ryu, Y.G.1
  • 44
    • 77955655055 scopus 로고    scopus 로고
    • Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster
    • Thykaer J., et al. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab. Eng. 2010, 12:455-461.
    • (2010) Metab. Eng. , vol.12 , pp. 455-461
    • Thykaer, J.1
  • 45
    • 84876669673 scopus 로고    scopus 로고
    • Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011
    • Mo S., et al. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. Appl. Microbiol. Biotechnol. 2013, 97:3053-3062.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 3053-3062
    • Mo, S.1
  • 46
    • 84881089361 scopus 로고    scopus 로고
    • Engineering polyketide synthases and nonribosomal peptide synthetases
    • Williams G.J. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Struct. Biol. 2013, 23:603-612.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 603-612
    • Williams, G.J.1
  • 47
    • 0033515090 scopus 로고    scopus 로고
    • Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel 'unnatural' natural products
    • McDaniel R., et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel 'unnatural' natural products. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:1846-1851.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 1846-1851
    • McDaniel, R.1
  • 48
    • 84863822575 scopus 로고    scopus 로고
    • Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity
    • Thirlway J., et al. Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Angew. Chem. Int. Ed. Engl. 2012, 51:7181-7184.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 7181-7184
    • Thirlway, J.1
  • 49
    • 84893465357 scopus 로고    scopus 로고
    • Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line
    • Sugimoto Y., et al. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew. Chem. Int. Ed. Engl. 2014, 53:1560-1564.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 1560-1564
    • Sugimoto, Y.1
  • 50
    • 84925633044 scopus 로고    scopus 로고
    • Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity
    • Published online December 17, 2012
    • Thaker M.N., Wright G.D. Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. ACS Synth. Biol. 2012, Published online December 17, 2012. 10.1021/sb300092n.
    • (2012) ACS Synth. Biol.
    • Thaker, M.N.1    Wright, G.D.2
  • 51
    • 0034012110 scopus 로고    scopus 로고
    • A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea
    • Gaisser S., et al. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol. Microbiol. 2000, 36:391-401.
    • (2000) Mol. Microbiol. , vol.36 , pp. 391-401
    • Gaisser, S.1
  • 52
    • 0347384092 scopus 로고    scopus 로고
    • Antibiotic optimization via in vitro glycorandomization
    • Fu X., et al. Antibiotic optimization via in vitro glycorandomization. Nat. Biotechnol. 2003, 21:1467-1469.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1467-1469
    • Fu, X.1
  • 53
    • 79961051540 scopus 로고    scopus 로고
    • Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates
    • Han A.R., et al. Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl. Environ. Microbiol. 2011, 77:4912-4923.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4912-4923
    • Han, A.R.1
  • 54
    • 77956281182 scopus 로고    scopus 로고
    • Structural and operational complexity of the Geobacter sulfurreducens genome
    • Qiu Y., et al. Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res. 2010, 20:1304-1311.
    • (2010) Genome Res. , vol.20 , pp. 1304-1311
    • Qiu, Y.1
  • 55
    • 70449370314 scopus 로고    scopus 로고
    • The transcription unit architecture of the Escherichia coli genome
    • Cho B.K., et al. The transcription unit architecture of the Escherichia coli genome. Nat. Biotechnol. 2009, 27:1043-1049.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1043-1049
    • Cho, B.K.1
  • 56
    • 84903481589 scopus 로고    scopus 로고
    • Structural rearrangements of a polyketide synthase module during its catalytic cycle
    • Whicher J.R., et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 2014, 510:560-564.
    • (2014) Nature , vol.510 , pp. 560-564
    • Whicher, J.R.1
  • 57
    • 84903436332 scopus 로고    scopus 로고
    • Structure of a modular polyketide synthase
    • Dutta S., et al. Structure of a modular polyketide synthase. Nature 2014, 510:512-517.
    • (2014) Nature , vol.510 , pp. 512-517
    • Dutta, S.1
  • 58
    • 84881664990 scopus 로고    scopus 로고
    • Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases
    • Bloudoff K., et al. Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J. Mol. Biol. 2013, 425:3137-3150.
    • (2013) J. Mol. Biol. , vol.425 , pp. 3137-3150
    • Bloudoff, K.1
  • 59
    • 84871225307 scopus 로고    scopus 로고
    • Prediction of inter domain interactions in modular polyketide synthases by docking and correlated mutation analysis
    • Yadav G., et al. Prediction of inter domain interactions in modular polyketide synthases by docking and correlated mutation analysis. J. Biomol. Struct. Dyn. 2013, 31:17-29.
    • (2013) J. Biomol. Struct. Dyn. , vol.31 , pp. 17-29
    • Yadav, G.1
  • 60
    • 84899717202 scopus 로고    scopus 로고
    • Perspective: synthetic biology revives antibiotics
    • Wright G. Perspective: synthetic biology revives antibiotics. Nature 2014, 509:S13.
    • (2014) Nature , vol.509 , pp. S13
    • Wright, G.1
  • 61
    • 78651517511 scopus 로고    scopus 로고
    • Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms
    • Medema M.H., et al. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat. Rev. Microbiol. 2011, 9:131-137.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 131-137
    • Medema, M.H.1
  • 62
    • 21044448952 scopus 로고    scopus 로고
    • Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry
    • Miao V., et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 2005, 151:1507-1523.
    • (2005) Microbiology , vol.151 , pp. 1507-1523
    • Miao, V.1
  • 63
    • 84865541446 scopus 로고    scopus 로고
    • Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering
    • Bian X., et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. Chembiochem 2012, 13:1946-1952.
    • (2012) Chembiochem , vol.13 , pp. 1946-1952
    • Bian, X.1
  • 64
    • 0035793858 scopus 로고    scopus 로고
    • Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli
    • Pfeifer B.A., et al. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 2001, 291:1790-1792.
    • (2001) Science , vol.291 , pp. 1790-1792
    • Pfeifer, B.A.1
  • 65
    • 78649386219 scopus 로고    scopus 로고
    • Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host
    • Zhang H.R., et al. Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host. Chem. Biol. 2010, 17:1232-1240.
    • (2010) Chem. Biol. , vol.17 , pp. 1232-1240
    • Zhang, H.R.1
  • 66
    • 84877274681 scopus 로고    scopus 로고
    • The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly
    • Chen W-H., et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly. Nucleic Acids Res. 2013, 41:e93.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e93
    • Chen, W.-H.1
  • 67
    • 84887870749 scopus 로고    scopus 로고
    • Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold
    • Shao Z., et al. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol. 2013, 2:662-669.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 662-669
    • Shao, Z.1
  • 68
    • 84859739756 scopus 로고    scopus 로고
    • Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination
    • Zhang L., et al. Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. Sci. Rep. 2011, 1:141.
    • (2011) Sci. Rep. , vol.1 , pp. 141
    • Zhang, L.1
  • 69
    • 84902318915 scopus 로고    scopus 로고
    • Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin
    • Schimming O., et al. Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin. Chembiochem 2014, 15:1290-1294.
    • (2014) Chembiochem , vol.15 , pp. 1290-1294
    • Schimming, O.1
  • 70
    • 77949913523 scopus 로고    scopus 로고
    • Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius
    • Malla S., et al. Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res. Microbiol. 2010, 161:109-117.
    • (2010) Res. Microbiol. , vol.161 , pp. 109-117
    • Malla, S.1
  • 71
    • 0038236521 scopus 로고    scopus 로고
    • Deletion of scbA enhances antibiotic production in Streptomyces lividans
    • Butler M.J., et al. Deletion of scbA enhances antibiotic production in Streptomyces lividans. Appl. Microbiol. Biotechnol. 2003, 61:512-516.
    • (2003) Appl. Microbiol. Biotechnol. , vol.61 , pp. 512-516
    • Butler, M.J.1
  • 72
    • 50249084003 scopus 로고    scopus 로고
    • Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering
    • Olano C., et al. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 2008, 10:281-292.
    • (2008) Metab. Eng. , vol.10 , pp. 281-292
    • Olano, C.1
  • 73
    • 84884353163 scopus 로고    scopus 로고
    • Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies
    • Huang D., et al. Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J. Ind. Microbiol. Biotechnol. 2013, 40:1023-1037.
    • (2013) J. Ind. Microbiol. Biotechnol. , vol.40 , pp. 1023-1037
    • Huang, D.1
  • 74
    • 71249154019 scopus 로고    scopus 로고
    • Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor
    • Mo S., et al. Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J. Ind. Microbiol. Biotechnol. 2009, 36:1473-1482.
    • (2009) J. Ind. Microbiol. Biotechnol. , vol.36 , pp. 1473-1482
    • Mo, S.1
  • 75
    • 34249301015 scopus 로고    scopus 로고
    • Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production
    • Reeves A.R., et al. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab. Eng. 2007, 9:293-303.
    • (2007) Metab. Eng. , vol.9 , pp. 293-303
    • Reeves, A.R.1
  • 76
    • 40849100148 scopus 로고    scopus 로고
    • Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation
    • Chen Y., et al. Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation. Appl. Environ. Microbiol. 2008, 74:1820-1828.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 1820-1828
    • Chen, Y.1
  • 77
    • 43049129603 scopus 로고    scopus 로고
    • Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations
    • Wang G., et al. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbiol. 2008, 74:2834-2840.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2834-2840
    • Wang, G.1
  • 78
    • 77954460353 scopus 로고    scopus 로고
    • Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement
    • Malla S., et al. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol. Res. 2010, 165:259-267.
    • (2010) Microbiol. Res. , vol.165 , pp. 259-267
    • Malla, S.1
  • 79
    • 82455167863 scopus 로고    scopus 로고
    • Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis
    • Qiu J., et al. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl. Microbiol. Biotechnol. 2011, 92:337-345.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , pp. 337-345
    • Qiu, J.1
  • 80
    • 0030266007 scopus 로고    scopus 로고
    • A hybrid modular polyketide synthase obtained by domain swapping
    • Oliynyk M., et al. A hybrid modular polyketide synthase obtained by domain swapping. Chem. Biol. 1996, 3:833-839.
    • (1996) Chem. Biol. , vol.3 , pp. 833-839
    • Oliynyk, M.1
  • 81
    • 10644292744 scopus 로고    scopus 로고
    • Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition
    • Patel K., et al. Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem. Biol. 2004, 11:1625-1633.
    • (2004) Chem. Biol. , vol.11 , pp. 1625-1633
    • Patel, K.1
  • 82
    • 0041818332 scopus 로고    scopus 로고
    • Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC31272
    • Gaisser S., et al. Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC31272. Org. Biomol. Chem. 2003, 1:2840-2847.
    • (2003) Org. Biomol. Chem. , vol.1 , pp. 2840-2847
    • Gaisser, S.1
  • 83
    • 0021844476 scopus 로고
    • Production of 'hybrid' antibiotics by genetic engineering
    • Hopwood D.A., et al. Production of 'hybrid' antibiotics by genetic engineering. Nature 1985, 314:642-644.
    • (1985) Nature , vol.314 , pp. 642-644
    • Hopwood, D.A.1
  • 84
    • 0022646755 scopus 로고
    • Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain
    • Omura S., et al. Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain. Antimicrob. Agents Chemother. 1986, 29:13-19.
    • (1986) Antimicrob. Agents Chemother. , vol.29 , pp. 13-19
    • Omura, S.1
  • 85
    • 5444219634 scopus 로고    scopus 로고
    • Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts
    • Reeves C.D., et al. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts. Chem. Biol. 2004, 11:1465-1472.
    • (2004) Chem. Biol. , vol.11 , pp. 1465-1472
    • Reeves, C.D.1
  • 86
    • 14144250854 scopus 로고    scopus 로고
    • Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP
    • Mo S., et al. Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP. Chem. Biol. 2005, 12:191-200.
    • (2005) Chem. Biol. , vol.12 , pp. 191-200
    • Mo, S.1
  • 87
    • 70349387397 scopus 로고    scopus 로고
    • Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues
    • Ito T., et al. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues. Chembiochem 2009, 10:2253-2265.
    • (2009) Chembiochem , vol.10 , pp. 2253-2265
    • Ito, T.1
  • 88
    • 38349068782 scopus 로고    scopus 로고
    • Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics
    • Power P., et al. Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Chem. Biol. 2008, 15:78-86.
    • (2008) Chem. Biol. , vol.15 , pp. 78-86
    • Power, P.1
  • 89
    • 0034802739 scopus 로고    scopus 로고
    • Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases
    • Schwarzer D., et al. Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. Chem. Biol. 2001, 8:997-1010.
    • (2001) Chem. Biol. , vol.8 , pp. 997-1010
    • Schwarzer, D.1
  • 90
    • 19344369476 scopus 로고    scopus 로고
    • Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases
    • Tang Y., et al. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases. PLoS Biol. 2004, 2:E31.
    • (2004) PLoS Biol. , vol.2 , pp. E31
    • Tang, Y.1
  • 91
    • 33751218042 scopus 로고    scopus 로고
    • Combinatorial biosynthesis of novel antibiotics related to daptomycin
    • Nguyen K.T., et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17462-17467.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 17462-17467
    • Nguyen, K.T.1
  • 92
    • 84899439910 scopus 로고    scopus 로고
    • Genome shuffling of Streptomyces roseosporus for improving daptomycin production
    • Yu G., et al. Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl. Biochem. Biotechnol. 2014, 172:2661-2669.
    • (2014) Appl. Biochem. Biotechnol. , vol.172 , pp. 2661-2669
    • Yu, G.1
  • 93
    • 53449085206 scopus 로고    scopus 로고
    • Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus
    • Doekel S., et al. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 2008, 154:2872-2880.
    • (2008) Microbiology , vol.154 , pp. 2872-2880
    • Doekel, S.1
  • 94
    • 84864427303 scopus 로고    scopus 로고
    • Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin
    • Gomez C., et al. Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J. Antibiot. (Tokyo) 2012, 65:341-348.
    • (2012) J. Antibiot. (Tokyo) , vol.65 , pp. 341-348
    • Gomez, C.1
  • 95
    • 79957450871 scopus 로고    scopus 로고
    • Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo
    • Evans B.S., et al. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol. 2011, 18:601-607.
    • (2011) Chem. Biol. , vol.18 , pp. 601-607
    • Evans, B.S.1
  • 96
    • 67650375958 scopus 로고    scopus 로고
    • Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius
    • Malla S., et al. Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J. Biosci. Bioeng. 2009, 108:92-98.
    • (2009) J. Biosci. Bioeng. , vol.108 , pp. 92-98
    • Malla, S.1
  • 97
    • 12244279574 scopus 로고    scopus 로고
    • Combinatorial biosynthesis of antitumor indolocarbazole compounds
    • Sanchez C., et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:461-466.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 461-466
    • Sanchez, C.1
  • 98
    • 70349780552 scopus 로고    scopus 로고
    • Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins
    • Heide L. Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins. Biotechnol. Adv. 2009, 27:1006-1014.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 1006-1014
    • Heide, L.1
  • 99
    • 0035501490 scopus 로고    scopus 로고
    • Altering the glycosylation pattern of bioactive compounds
    • Mendez C., Salas J.A. Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol. 2001, 19:449-456.
    • (2001) Trends Biotechnol. , vol.19 , pp. 449-456
    • Mendez, C.1    Salas, J.A.2
  • 100
    • 47149087571 scopus 로고    scopus 로고
    • Glycosyltransferases, important tools for drug design
    • Luzhetskyy A., et al. Glycosyltransferases, important tools for drug design. Curr. Top. Med. Chem. 2008, 8:680-709.
    • (2008) Curr. Top. Med. Chem. , vol.8 , pp. 680-709
    • Luzhetskyy, A.1
  • 101
    • 84885843967 scopus 로고    scopus 로고
    • Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17
    • Shinde P.B., et al. Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. J. Biotechnol. 2013, 168:142-148.
    • (2013) J. Biotechnol. , vol.168 , pp. 142-148
    • Shinde, P.B.1
  • 102
    • 84880606744 scopus 로고    scopus 로고
    • Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens
    • Zhu T., et al. Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab. Eng. 2013, 19:69-78.
    • (2013) Metab. Eng. , vol.19 , pp. 69-78
    • Zhu, T.1
  • 103
    • 0034945645 scopus 로고    scopus 로고
    • Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis
    • Mendes M.V., et al. Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem. Biol. 2001, 8:635-644.
    • (2001) Chem. Biol. , vol.8 , pp. 635-644
    • Mendes, M.V.1
  • 104
    • 0038701795 scopus 로고    scopus 로고
    • Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis
    • Remsing L.L., et al. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J. Am. Chem. Soc. 2003, 125:5745-5753.
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 5745-5753
    • Remsing, L.L.1
  • 105
    • 64349110787 scopus 로고    scopus 로고
    • Functional characterization of ttmM unveils new tautomycin analogs and insight into tautomycin biosynthesis and activity
    • Ju J., et al. Functional characterization of ttmM unveils new tautomycin analogs and insight into tautomycin biosynthesis and activity. Org. Lett. 2009, 11:1639-1642.
    • (2009) Org. Lett. , vol.11 , pp. 1639-1642
    • Ju, J.1
  • 106
    • 52449110026 scopus 로고    scopus 로고
    • Optimizing natural products by biosynthetic engineering: discovery of nonquinone Hsp90 inhibitors
    • Zhang M.Q., et al. Optimizing natural products by biosynthetic engineering: discovery of nonquinone Hsp90 inhibitors. J. Med. Chem. 2008, 51:5494-5497.
    • (2008) J. Med. Chem. , vol.51 , pp. 5494-5497
    • Zhang, M.Q.1
  • 107
    • 2642591970 scopus 로고    scopus 로고
    • Mutational biosynthesis of novel rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase
    • Khaw L.E., et al. Mutational biosynthesis of novel rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase. J. Bacteriol. 1998, 180:809-814.
    • (1998) J. Bacteriol. , vol.180 , pp. 809-814
    • Khaw, L.E.1
  • 108
    • 0037119714 scopus 로고    scopus 로고
    • Fluorobalhimycin - a new chapter in glycopeptide antibiotic research
    • Weist S., et al. Fluorobalhimycin - a new chapter in glycopeptide antibiotic research. Angew. Chem. Int. Ed. Engl. 2002, 41:3383-3385.
    • (2002) Angew. Chem. Int. Ed. Engl. , vol.41 , pp. 3383-3385
    • Weist, S.1
  • 109
    • 1542350250 scopus 로고    scopus 로고
    • In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach
    • Galm U., et al. In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. Chem. Biol. 2004, 11:173-183.
    • (2004) Chem. Biol. , vol.11 , pp. 173-183
    • Galm, U.1
  • 110
    • 34548739529 scopus 로고    scopus 로고
    • Mutasynthesis of geldanamycin by the disruption of a gene producing starter unit: generation of structural diversity at the benzoquinone ring
    • Kim W., et al. Mutasynthesis of geldanamycin by the disruption of a gene producing starter unit: generation of structural diversity at the benzoquinone ring. Chembiochem 2007, 8:1491-1494.
    • (2007) Chembiochem , vol.8 , pp. 1491-1494
    • Kim, W.1
  • 111
    • 84880530282 scopus 로고    scopus 로고
    • Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering
    • Lechner A., et al. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth. Biol. 2013, 2:379-383.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 379-383
    • Lechner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.