-
1
-
-
85022334903
-
Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals
-
Yang, D., Cho, J.S., Choi, K.R., Kim, H.U., Lee, S.Y., Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals. Microb Biotechnol 10 (2017), 1254–1258.
-
(2017)
Microb Biotechnol
, vol.10
, pp. 1254-1258
-
-
Yang, D.1
Cho, J.S.2
Choi, K.R.3
Kim, H.U.4
Lee, S.Y.5
-
2
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains. Nat Biotechnol 33 (2015), 1061–1072.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
3
-
-
85061013548
-
Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering
-
This paper reviews the state-of-the-art methods and strategies in systems metabolic engineering, which cover the project design, selection of host strains, metabolic pathway reconstruction, tolerance enhancement, metabolic flux optimization, fermentation, recovery, purification, and scale-up.
-
Choi, K.R., Jang, W.D., Yang, D., Cho, J.S., Park, D., Lee, S.Y., Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37 (2019), 817–837 This paper reviews the state-of-the-art methods and strategies in systems metabolic engineering, which cover the project design, selection of host strains, metabolic pathway reconstruction, tolerance enhancement, metabolic flux optimization, fermentation, recovery, purification, and scale-up.
-
(2019)
Trends Biotechnol
, vol.37
, pp. 817-837
-
-
Choi, K.R.1
Jang, W.D.2
Yang, D.3
Cho, J.S.4
Park, D.5
Lee, S.Y.6
-
4
-
-
85047752833
-
Next-generation machine learning for biological networks
-
Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., Collins, J.J., Next-generation machine learning for biological networks. Cell 173 (2018), 1581–1592.
-
(2018)
Cell
, vol.173
, pp. 1581-1592
-
-
Camacho, D.M.1
Collins, K.M.2
Powers, R.K.3
Costello, J.C.4
Collins, J.J.5
-
5
-
-
85064803940
-
From genotype to phenotype: augmenting deep learning with networks and systems biology
-
Gazestani, V.H., Lewis, N.E., From genotype to phenotype: augmenting deep learning with networks and systems biology. Curr Opin Syst Biol 15 (2019), 68–73.
-
(2019)
Curr Opin Syst Biol
, vol.15
, pp. 68-73
-
-
Gazestani, V.H.1
Lewis, N.E.2
-
6
-
-
85065410633
-
Systems metabolic engineering meets machine learning: a new era for data-driven metabolic engineering
-
Presnell, K.V., Alper, H.S., Systems metabolic engineering meets machine learning: a new era for data-driven metabolic engineering. Biotechnol J, 2019, e1800416.
-
(2019)
Biotechnol J
-
-
Presnell, K.V.1
Alper, H.S.2
-
7
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
8
-
-
84979984875
-
Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites
-
Kim, H.U., Charusanti, P., Lee, S.Y., Weber, T., Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat Prod Rep 33 (2016), 933–941.
-
(2016)
Nat Prod Rep
, vol.33
, pp. 933-941
-
-
Kim, H.U.1
Charusanti, P.2
Lee, S.Y.3
Weber, T.4
-
9
-
-
85064489973
-
DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns
-
Clauwaert, J., Menschaert, G., Waegeman, W., DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic Acids Res, 47, 2019, e36.
-
(2019)
Nucleic Acids Res
, vol.47
-
-
Clauwaert, J.1
Menschaert, G.2
Waegeman, W.3
-
10
-
-
85072699177
-
Genome functional annotation across species using deep convolutional neural networks
-
330308
-
Khodabandelou, G., Routhier, E., Mozziconacci, J., Genome functional annotation across species using deep convolutional neural networks. bioRxiv, 2019 330308.
-
(2019)
bioRxiv
-
-
Khodabandelou, G.1
Routhier, E.2
Mozziconacci, J.3
-
11
-
-
85068580079
-
Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers
-
DeepEC allows high-quality and high-throughput prediction of enzyme commission (EC) numbers using a protein sequence as an input, which is critical for understanding enzyme functions and metabolism.
-
Ryu, J.Y., Kim, H.U., Lee, S.Y., Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc Natl Acad Sci U S A 116 (2019), 13996–14001 DeepEC allows high-quality and high-throughput prediction of enzyme commission (EC) numbers using a protein sequence as an input, which is critical for understanding enzyme functions and metabolism.
-
(2019)
Proc Natl Acad Sci U S A
, vol.116
, pp. 13996-14001
-
-
Ryu, J.Y.1
Kim, H.U.2
Lee, S.Y.3
-
12
-
-
85039860437
-
REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes
-
Ndah, E., Jonckheere, V., Giess, A., Valen, E., Menschaert, G., Van Damme, P., REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res, 45, 2017, e168.
-
(2017)
Nucleic Acids Res
, vol.45
-
-
Ndah, E.1
Jonckheere, V.2
Giess, A.3
Valen, E.4
Menschaert, G.5
Van Damme, P.6
-
13
-
-
85034608709
-
Recent development of computational resources for new antibiotics discovery
-
Kim, H.U., Blin, K., Lee, S.Y., Weber, T., Recent development of computational resources for new antibiotics discovery. Curr Opin Microbiol 39 (2017), 113–120.
-
(2017)
Curr Opin Microbiol
, vol.39
, pp. 113-120
-
-
Kim, H.U.1
Blin, K.2
Lee, S.Y.3
Weber, T.4
-
14
-
-
85068818263
-
antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline
-
Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., Weber, T., antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47 (2019), W81–W87.
-
(2019)
Nucleic Acids Res
, vol.47
, pp. W81-W87
-
-
Blin, K.1
Shaw, S.2
Steinke, K.3
Villebro, R.4
Ziemert, N.5
Lee, S.Y.6
Medema, M.H.7
Weber, T.8
-
15
-
-
85023161576
-
PRISM 3: expanded prediction of natural product chemical structures from microbial genomes
-
Skinnider, M.A., Merwin, N.J., Johnston, C.W., Magarvey, N.A., PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res 45 (2017), W49–W54.
-
(2017)
Nucleic Acids Res
, vol.45
, pp. W49-W54
-
-
Skinnider, M.A.1
Merwin, N.J.2
Johnston, C.W.3
Magarvey, N.A.4
-
16
-
-
85060331549
-
A comprehensive metabolic map for production of bio-based chemicals
-
Lee, S.Y., Kim, H.U., Chae, T.U., Cho, J.S., Kim, J.W., Shin, J.H., Kim, D.I., Ko, Y.-S., Jang, W.D., Jang, Y.-S., A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2 (2019), 18–33.
-
(2019)
Nat Catal
, vol.2
, pp. 18-33
-
-
Lee, S.Y.1
Kim, H.U.2
Chae, T.U.3
Cho, J.S.4
Kim, J.W.5
Shin, J.H.6
Kim, D.I.7
Ko, Y.-S.8
Jang, W.D.9
Jang, Y.-S.10
-
17
-
-
85067169925
-
Retrosynthetic design of metabolic pathways to chemicals not found in nature
-
Lin, G.-M., Warden-Rothman, R., Voigt, C.A., Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr Opin Syst Biol 14 (2019), 82–107.
-
(2019)
Curr Opin Syst Biol
, vol.14
, pp. 82-107
-
-
Lin, G.-M.1
Warden-Rothman, R.2
Voigt, C.A.3
-
18
-
-
85044660186
-
Planning chemical syntheses with deep neural networks and symbolic AI
-
This study explores the power of Monte Carlo tree search (MCTS) combined with three different neural networks to design retrosynthetic routes of various target chemicals. Double-blind AB test performed in this study shows that MCTS-driven routes are considered to be as reasonable as those reported in literature.
-
Segler, M.H.S., Preuss, M., Waller, M.P., Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 (2018), 604–610 This study explores the power of Monte Carlo tree search (MCTS) combined with three different neural networks to design retrosynthetic routes of various target chemicals. Double-blind AB test performed in this study shows that MCTS-driven routes are considered to be as reasonable as those reported in literature.
-
(2018)
Nature
, vol.555
, pp. 604-610
-
-
Segler, M.H.S.1
Preuss, M.2
Waller, M.P.3
-
19
-
-
84883001788
-
Production of bulk chemicals via novel metabolic pathways in microorganisms
-
Shin, J.H., Kim, H.U., Kim, D.I., Lee, S.Y., Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31 (2013), 925–935.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 925-935
-
-
Shin, J.H.1
Kim, H.U.2
Kim, D.I.3
Lee, S.Y.4
-
20
-
-
84936966835
-
Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways
-
Hadadi, N., Hatzimanikatis, V., Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr Opin Chem Biol 28 (2015), 99–104.
-
(2015)
Curr Opin Chem Biol
, vol.28
, pp. 99-104
-
-
Hadadi, N.1
Hatzimanikatis, V.2
-
21
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J., Trawick, J.D., Osterhout, R.E., Stephen, R., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7 (2011), 445–452.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
Boldt, J.6
Khandurina, J.7
Trawick, J.D.8
Osterhout, R.E.9
Stephen, R.10
-
22
-
-
84910130469
-
Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering
-
Feher, T., Planson, A.G., Carbonell, P., Fernandez-Castane, A., Grigoras, I., Dariy, E., Perret, A., Faulon, J.L., Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol J 9 (2014), 1446–1457.
-
(2014)
Biotechnol J
, vol.9
, pp. 1446-1457
-
-
Feher, T.1
Planson, A.G.2
Carbonell, P.3
Fernandez-Castane, A.4
Grigoras, I.5
Dariy, E.6
Perret, A.7
Faulon, J.L.8
-
23
-
-
85064110704
-
Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites
-
Hadadi, N., MohammadiPeyhani, H., Miskovic, L., Seijo, M., Hatzimanikatis, V., Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites. Proc Natl Acad Sci U S A 116 (2019), 7298–7307.
-
(2019)
Proc Natl Acad Sci U S A
, vol.116
, pp. 7298-7307
-
-
Hadadi, N.1
MohammadiPeyhani, H.2
Miskovic, L.3
Seijo, M.4
Hatzimanikatis, V.5
-
24
-
-
84975246102
-
Semisupervised Gaussian process for automated enzyme search
-
Mellor, J., Grigoras, I., Carbonell, P., Faulon, J.L., Semisupervised Gaussian process for automated enzyme search. ACS Synth Biol 5 (2016), 518–528.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 518-528
-
-
Mellor, J.1
Grigoras, I.2
Carbonell, P.3
Faulon, J.L.4
-
25
-
-
85067692750
-
Toward machine-guided design of proteins
-
337154
-
Biswas, S., Kuznetsov, G., Ogden, P.J., Conway, N.J., Adams, R.P., Church, G.M., Toward machine-guided design of proteins. bioRxiv, 2018 337154.
-
(2018)
bioRxiv
-
-
Biswas, S.1
Kuznetsov, G.2
Ogden, P.J.3
Conway, N.J.4
Adams, R.P.5
Church, G.M.6
-
26
-
-
85065511410
-
Machine learning-assisted directed protein evolution with combinatorial libraries
-
Machine learning-assisted directed evolution was shown to reach protein variants having the highest fitness more efficiently than representative existing directed evolution approaches, ‘single mutation walk’ and ‘recombining mutations in best variants’. Application of the machine learning-assisted approach was also successfully applied to evolving an enzyme for the selective synthesis of enantiomeric products.
-
Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J., Arnold, F.H., Machine learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad Sci U S A 116 (2019), 8852–8858 Machine learning-assisted directed evolution was shown to reach protein variants having the highest fitness more efficiently than representative existing directed evolution approaches, ‘single mutation walk’ and ‘recombining mutations in best variants’. Application of the machine learning-assisted approach was also successfully applied to evolving an enzyme for the selective synthesis of enantiomeric products.
-
(2019)
Proc Natl Acad Sci U S A
, vol.116
, pp. 8852-8858
-
-
Wu, Z.1
Kan, S.B.J.2
Lewis, R.D.3
Wittmann, B.J.4
Arnold, F.H.5
-
27
-
-
77952753917
-
Machine learning methods for protein structure prediction
-
Cheng, J., Tegge, A.N., Baldi, P., Machine learning methods for protein structure prediction. IEEE Rev Biomed Eng 1 (2008), 41–49.
-
(2008)
IEEE Rev Biomed Eng
, vol.1
, pp. 41-49
-
-
Cheng, J.1
Tegge, A.N.2
Baldi, P.3
-
28
-
-
85064397545
-
End-to-end differentiable learning of protein structure
-
e293
-
AlQuraishi, M., End-to-end differentiable learning of protein structure. Cell Syst 8 (2019), 292–301 e293.
-
(2019)
Cell Syst
, vol.8
, pp. 292-301
-
-
AlQuraishi, M.1
-
29
-
-
85069435877
-
Machine-learning-guided directed evolution for protein engineering
-
Yang, K.K., Wu, Z., Arnold, F.H., Machine-learning-guided directed evolution for protein engineering. Nat Methods 16 (2019), 687–694.
-
(2019)
Nat Methods
, vol.16
, pp. 687-694
-
-
Yang, K.K.1
Wu, Z.2
Arnold, F.H.3
-
30
-
-
85063475207
-
SelProm: a queryable and predictive expression vector selection tool for Escherichia coli
-
Jervis, A.J., Carbonell, P., Taylor, S., Sung, R., Dunstan, M.S., Robinson, C.J., Breitling, R., Takano, E., Scrutton, N.S., SelProm: a queryable and predictive expression vector selection tool for Escherichia coli. ACS Synth Biol 8 (2019), 1478–1483.
-
(2019)
ACS Synth Biol
, vol.8
, pp. 1478-1483
-
-
Jervis, A.J.1
Carbonell, P.2
Taylor, S.3
Sung, R.4
Dunstan, M.S.5
Robinson, C.J.6
Breitling, R.7
Takano, E.8
Scrutton, N.S.9
-
31
-
-
84875670972
-
Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network
-
Meng, H., Wang, J., Xiong, Z., Xu, F., Zhao, G., Wang, Y., Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network. PLoS One, 8, 2013, e60288.
-
(2013)
PLoS One
, vol.8
-
-
Meng, H.1
Wang, J.2
Xiong, Z.3
Xu, F.4
Zhao, G.5
Wang, Y.6
-
32
-
-
85060013523
-
Tuning the performance of synthetic riboswitches using machine learning
-
Groher, A.C., Jager, S., Schneider, C., Groher, F., Hamacher, K., Suess, B., Tuning the performance of synthetic riboswitches using machine learning. ACS Synth Biol 8 (2019), 34–44.
-
(2019)
ACS Synth Biol
, vol.8
, pp. 34-44
-
-
Groher, A.C.1
Jager, S.2
Schneider, C.3
Groher, F.4
Hamacher, K.5
Suess, B.6
-
33
-
-
85059806983
-
An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals
-
Carbonell, P., Jervis, A.J., Robinson, C.J., Yan, C., Dunstan, M., Swainston, N., Vinaixa, M., Hollywood, K.A., Currin, A., Rattray, N.J.W., et al. An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals. Commun Biol, 1, 2018, 66.
-
(2018)
Commun Biol
, vol.1
, pp. 66
-
-
Carbonell, P.1
Jervis, A.J.2
Robinson, C.J.3
Yan, C.4
Dunstan, M.5
Swainston, N.6
Vinaixa, M.7
Hollywood, K.A.8
Currin, A.9
Rattray, N.J.W.10
-
34
-
-
85049146901
-
DeepCRISPR: optimized CRISPR guide RNA design by deep learning
-
Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol, 19, 2018, 80.
-
(2018)
Genome Biol
, vol.19
, pp. 80
-
-
Chuai, G.1
Ma, H.2
Yan, J.3
Chen, M.4
Hong, N.5
Xue, D.6
Zhou, C.7
Zhu, C.8
Chen, K.9
Duan, B.10
-
35
-
-
85019592417
-
sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity
-
Chari, R., Yeo, N.C., Chavez, A., Church, G.M., sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6 (2017), 902–904.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 902-904
-
-
Chari, R.1
Yeo, N.C.2
Chavez, A.3
Church, G.M.4
-
36
-
-
85042934649
-
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
-
Kim, H.K., Min, S., Song, M., Jung, S., Choi, J.W., Kim, Y., Lee, S., Yoon, S., Kim, H.H., Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol 36 (2018), 239–241.
-
(2018)
Nat Biotechnol
, vol.36
, pp. 239-241
-
-
Kim, H.K.1
Min, S.2
Song, M.3
Jung, S.4
Choi, J.W.5
Kim, Y.6
Lee, S.7
Yoon, S.8
Kim, H.H.9
-
37
-
-
85045642536
-
MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae
-
A Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) was developed to accelerate the optimization procedure of heterologous biosynthetic pathways in Saccharomyces cerevisiae. The MiYA was validated by experimentally producing β-carotene and violacein using S. cerevisiae, which require the expression of heterologous genes.
-
Zhou, Y., Li, G., Dong, J., Xing, X.H., Dai, J., Zhang, C., MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab Eng 47 (2018), 294–302 A Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) was developed to accelerate the optimization procedure of heterologous biosynthetic pathways in Saccharomyces cerevisiae. The MiYA was validated by experimentally producing β-carotene and violacein using S. cerevisiae, which require the expression of heterologous genes.
-
(2018)
Metab Eng
, vol.47
, pp. 294-302
-
-
Zhou, Y.1
Li, G.2
Dong, J.3
Xing, X.H.4
Dai, J.5
Zhang, C.6
-
38
-
-
85059811943
-
Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli
-
Jervis, A.J., Carbonell, P., Vinaixa, M., Dunstan, M.S., Hollywood, K.A., Robinson, C.J., Rattray, N.J.W., Yan, C., Swainston, N., Currin, A., et al. Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli. ACS Synth Biol 8 (2019), 127–136.
-
(2019)
ACS Synth Biol
, vol.8
, pp. 127-136
-
-
Jervis, A.J.1
Carbonell, P.2
Vinaixa, M.3
Dunstan, M.S.4
Hollywood, K.A.5
Robinson, C.J.6
Rattray, N.J.W.7
Yan, C.8
Swainston, N.9
Currin, A.10
-
39
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O'Brien, E.J., Monk, J.M., Palsson, B.O., Using genome-scale models to predict biological capabilities. Cell 161 (2015), 971–987.
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O'Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
40
-
-
85058107207
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
-
Heckmann, D., Lloyd, C.J., Mih, N., Ha, Y., Zielinski, D.C., Haiman, Z.B., Desouki, A.A., Lercher, M.J., Palsson, B.O., Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat Commun, 9, 2018, 5252.
-
(2018)
Nat Commun
, vol.9
-
-
Heckmann, D.1
Lloyd, C.J.2
Mih, N.3
Ha, Y.4
Zielinski, D.C.5
Haiman, Z.B.6
Desouki, A.A.7
Lercher, M.J.8
Palsson, B.O.9
-
41
-
-
85065862749
-
A white-box machine learning approach for revealing antibiotic mechanisms of action
-
e1649
-
Yang, J.H., Wright, S.N., Hamblin, M., McCloskey, D., Alcantar, M.A., Schrubbers, L., Lopatkin, A.J., Satish, S., Nili, A., Palsson, B.O., et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177 (2019), 1649–1661 e1649.
-
(2019)
Cell
, vol.177
, pp. 1649-1661
-
-
Yang, J.H.1
Wright, S.N.2
Hamblin, M.3
McCloskey, D.4
Alcantar, M.A.5
Schrubbers, L.6
Lopatkin, A.J.7
Satish, S.8
Nili, A.9
Palsson, B.O.10
-
42
-
-
85069783975
-
Machine and deep learning meet genome-scale metabolic modeling
-
Zampieri, G., Vijayakumar, S., Yaneske, E., Angione, C., Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput Biol, 15, 2019, e1007084.
-
(2019)
PLoS Comput Biol
, vol.15
-
-
Zampieri, G.1
Vijayakumar, S.2
Yaneske, E.3
Angione, C.4
-
43
-
-
84864584520
-
Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters
-
Adadi, R., Volkmer, B., Milo, R., Heinemann, M., Shlomi, T., Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput Biol, 8, 2012, e1002575.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Adadi, R.1
Volkmer, B.2
Milo, R.3
Heinemann, M.4
Shlomi, T.5
-
44
-
-
84864843180
-
In silico method for modelling metabolism and gene product expression at genome scale
-
Lerman, J.A., Hyduke, D.R., Latif, H., Portnoy, V.A., Lewis, N.E., Orth, J.D., Schrimpe-Rutledge, A.C., Smith, R.D., Adkins, J.N., Zengler, K., et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun, 3, 2012, 929.
-
(2012)
Nat Commun
, vol.3
-
-
Lerman, J.A.1
Hyduke, D.R.2
Latif, H.3
Portnoy, V.A.4
Lewis, N.E.5
Orth, J.D.6
Schrimpe-Rutledge, A.C.7
Smith, R.D.8
Adkins, J.N.9
Zengler, K.10
-
45
-
-
85052702486
-
A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
-
Costello, Z., Martin, H.G., A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst Biol Appl, 4, 2018, 19.
-
(2018)
NPJ Syst Biol Appl
, vol.4
, pp. 19
-
-
Costello, Z.1
Martin, H.G.2
-
46
-
-
85044948558
-
Using deep learning to model the hierarchical structure and function of a cell
-
A deep neural network model, called DCell, was developed to structurally mimic biological hierarchy of Saccharomyces cerevisiae in terms of the Gene Ontology. DCell accurately simulates the S. cerevisiae phenotype, and also allows examining molecular mechanisms behind genotype–phenotype associations through the DCell's model structure.
-
Ma, J., Yu, M.K., Fong, S., Ono, K., Sage, E., Demchak, B., Sharan, R., Ideker, T., Using deep learning to model the hierarchical structure and function of a cell. Nat Methods 15 (2018), 290–298 A deep neural network model, called DCell, was developed to structurally mimic biological hierarchy of Saccharomyces cerevisiae in terms of the Gene Ontology. DCell accurately simulates the S. cerevisiae phenotype, and also allows examining molecular mechanisms behind genotype–phenotype associations through the DCell's model structure.
-
(2018)
Nat Methods
, vol.15
, pp. 290-298
-
-
Ma, J.1
Yu, M.K.2
Fong, S.3
Ono, K.4
Sage, E.5
Demchak, B.6
Sharan, R.7
Ideker, T.8
-
47
-
-
0032678154
-
Control of fed-batch fermentations
-
Lee, J., Lee, S.Y., Park, S., Middelberg, A.P., Control of fed-batch fermentations. Biotechnol Adv 17 (1999), 29–48.
-
(1999)
Biotechnol Adv
, vol.17
, pp. 29-48
-
-
Lee, J.1
Lee, S.Y.2
Park, S.3
Middelberg, A.P.4
-
48
-
-
85011954307
-
Strategies for fermentation medium optimization: an in-depth review
-
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., Tripathi, C.K., Strategies for fermentation medium optimization: an in-depth review. Front Microbiol, 7, 2016, 2087.
-
(2016)
Front Microbiol
, vol.7
, pp. 2087
-
-
Singh, V.1
Haque, S.2
Niwas, R.3
Srivastava, A.4
Pasupuleti, M.5
Tripathi, C.K.6
-
49
-
-
85010817822
-
Artificial neural network – genetic algorithm to optimize wheat germ fermentation condition: application to the production of two anti-tumor benzoquinones
-
Zheng, Z.Y., Guo, X.N., Zhu, K.X., Peng, W., Zhou, H.M., Artificial neural network – genetic algorithm to optimize wheat germ fermentation condition: application to the production of two anti-tumor benzoquinones. Food Chem 227 (2017), 264–270.
-
(2017)
Food Chem
, vol.227
, pp. 264-270
-
-
Zheng, Z.Y.1
Guo, X.N.2
Zhu, K.X.3
Peng, W.4
Zhou, H.M.5
-
50
-
-
85007199207
-
Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony
-
Sebayang, A.H., Masjuki, H.H., Ong, H.C., Dharma, S., Silitonga, A.S., Kusumo, F., Milano, J., Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind Crops Prod 97 (2017), 146–155.
-
(2017)
Ind Crops Prod
, vol.97
, pp. 146-155
-
-
Sebayang, A.H.1
Masjuki, H.H.2
Ong, H.C.3
Dharma, S.4
Silitonga, A.S.5
Kusumo, F.6
Milano, J.7
-
51
-
-
85010781177
-
Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor
-
Pappu, S.M.J., Gummadi, S.N., Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor. Biochem Eng J 120 (2017), 136–145.
-
(2017)
Biochem Eng J
, vol.120
, pp. 136-145
-
-
Pappu, S.M.J.1
Gummadi, S.N.2
-
52
-
-
85062767006
-
Cascade Gaussian process regression framework for biomass prediction in a fed-batch reactor
-
Masampally, V.S., Pareek, A., Runkana, V., Cascade Gaussian process regression framework for biomass prediction in a fed-batch reactor. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2018, 128–135.
-
(2018)
2018 IEEE Symposium Series on Computational Intelligence (SSCI)
, pp. 128-135
-
-
Masampally, V.S.1
Pareek, A.2
Runkana, V.3
-
53
-
-
85066975467
-
Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima
-
A set of linear and nonlinear regression models are examined to select the one that best performs for predicting the optimal growth temperature (OGT) of microorganisms and optimal catalytic temperature of enzymes. Support vector regression and random forest performed the best for each case, respectively.
-
Li, G., Rabe, K.S., Nielsen, J., Engqvist, M.K.M., Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synth Biol 8 (2019), 1411–1420 A set of linear and nonlinear regression models are examined to select the one that best performs for predicting the optimal growth temperature (OGT) of microorganisms and optimal catalytic temperature of enzymes. Support vector regression and random forest performed the best for each case, respectively.
-
(2019)
ACS Synth Biol
, vol.8
, pp. 1411-1420
-
-
Li, G.1
Rabe, K.S.2
Nielsen, J.3
Engqvist, M.K.M.4
-
54
-
-
85067668950
-
Predicting the optimal growth temperatures of prokaryotes using only genome derived features
-
Sauer, D.B., Wang, D.N., Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 35 (2019), 3224–3231.
-
(2019)
Bioinformatics
, vol.35
, pp. 3224-3231
-
-
Sauer, D.B.1
Wang, D.N.2
-
55
-
-
85024396712
-
Digital-to-biological converter for on-demand production of biologics
-
Boles, K.S., Kannan, K., Gill, J., Felderman, M., Gouvis, H., Hubby, B., Kamrud, K.I., Venter, J.C., Gibson, D.G., Digital-to-biological converter for on-demand production of biologics. Nat Biotechnol 35 (2017), 672–675.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 672-675
-
-
Boles, K.S.1
Kannan, K.2
Gill, J.3
Felderman, M.4
Gouvis, H.5
Hubby, B.6
Kamrud, K.I.7
Venter, J.C.8
Gibson, D.G.9
-
56
-
-
85020710659
-
Engineering biological systems using automated biofoundries
-
Chao, R., Mishra, S., Si, T., Zhao, H., Engineering biological systems using automated biofoundries. Metab Eng 42 (2017), 98–108.
-
(2017)
Metab Eng
, vol.42
, pp. 98-108
-
-
Chao, R.1
Mishra, S.2
Si, T.3
Zhao, H.4
-
57
-
-
33947095042
-
Improving catalytic function by ProSAR-driven enzyme evolution
-
Fox, R.J., Davis, S.C., Mundorff, E.C., Newman, L.M., Gavrilovic, V., Ma, S.K., Chung, L.M., Ching, C., Tam, S., Muley, S., et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25 (2007), 338–344.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 338-344
-
-
Fox, R.J.1
Davis, S.C.2
Mundorff, E.C.3
Newman, L.M.4
Gavrilovic, V.5
Ma, S.K.6
Chung, L.M.7
Ching, C.8
Tam, S.9
Muley, S.10
-
59
-
-
85072711250
-
-
Methods, systems, and software for identifying functional biomolecules. US patent 2010, US8762066B2.
-
Gustafsson C, Govindarajan S, Emig RA, Fox RJ, Roy AK, Minshull JS, Davis SC, Cox AR, Patten PA, Castle LA: Methods, systems, and software for identifying functional biomolecules. US patent 2010, US8762066B2.
-
-
-
Gustafsson, C.1
Govindarajan, S.2
Emig, R.A.3
Fox, R.J.4
Roy, A.K.5
Minshull, J.S.6
Davis, S.C.7
Cox, A.R.8
Patten, P.A.9
Castle, L.A.10
-
60
-
-
84921266847
-
Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase
-
Govindarajan, S., Mannervik, B., Silverman, J.A., Wright, K., Regitsky, D., Hegazy, U., Purcell, T.J., Welch, M., Minshull, J., Gustafsson, C., Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase. ACS Synth Biol 4 (2015), 221–227.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 221-227
-
-
Govindarajan, S.1
Mannervik, B.2
Silverman, J.A.3
Wright, K.4
Regitsky, D.5
Hegazy, U.6
Purcell, T.J.7
Welch, M.8
Minshull, J.9
Gustafsson, C.10
-
61
-
-
85072703706
-
-
Methods and systems for engineering collagen. PCT patent 2019, WO2019103981A1.
-
Persikov AV, Ouzounov N, Lorestani A: Methods and systems for engineering collagen. PCT patent 2019, WO2019103981A1.
-
-
-
Persikov, A.V.1
Ouzounov, N.2
Lorestani, A.3
-
62
-
-
85072695504
-
-
Multifactorial process optimisation method and system. US patent 2017, US20170016079A1.
-
Gershater MC, Ward SM, Sadowski MI, Grant CR: Multifactorial process optimisation method and system. US patent 2017, US20170016079A1.
-
-
-
Gershater, M.C.1
Ward, S.M.2
Sadowski, M.I.3
Grant, C.R.4
-
63
-
-
85054892364
-
Efficient flexible backbone protein-protein docking for challenging targets
-
Marze, N.A., Roy Burman, S.S., Sheffler, W., Gray, J.J., Efficient flexible backbone protein-protein docking for challenging targets. Bioinformatics 34 (2018), 3461–3469.
-
(2018)
Bioinformatics
, vol.34
, pp. 3461-3469
-
-
Marze, N.A.1
Roy Burman, S.S.2
Sheffler, W.3
Gray, J.J.4
-
64
-
-
85072690809
-
-
Knight Jr TF, Rettberg RD: Methods and systems for cell state quantification. US patent 2016, US9506167B2.
-
Shetty R, Knight Jr TF, Rettberg RD: Methods and systems for cell state quantification. US patent 2016, US9506167B2.
-
-
-
Shetty, R.1
-
65
-
-
85072711047
-
-
Microbial strain improvement by a HTP genomic engineering platform. US patent 2018, US10047358B1.
-
Serber Z, Dean EJ, Manchester S, Gora K, Flashman M, Shellman E, Kimball A, Szyjka S, Frewen B, Treynor T: Microbial strain improvement by a HTP genomic engineering platform. US patent 2018, US10047358B1.
-
-
-
Serber, Z.1
Dean, E.J.2
Manchester, S.3
Gora, K.4
Flashman, M.5
Shellman, E.6
Kimball, A.7
Szyjka, S.8
Frewen, B.9
Treynor, T.10
-
66
-
-
85072696542
-
-
Methods and compositions for improving plant traits. US patent 2019, US8754289B2.
-
Temme K, Tamsir A, Bloch S, Clark R, Emily T, Hammill K, Higgins D, Davis-Richardson A: Methods and compositions for improving plant traits. US patent 2019, US8754289B2.
-
-
-
Temme, K.1
Tamsir, A.2
Bloch, S.3
Clark, R.4
Emily, T.5
Hammill, K.6
Higgins, D.7
Davis-Richardson, A.8
-
67
-
-
85044448379
-
Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
-
Denby, C.M., Li, R.A., Vu, V.T., Costello, Z., Lin, W., Chan, L.J.G., Williams, J., Donaldson, B., Bamforth, C.W., Petzold, C.J., et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun, 9, 2018, 965.
-
(2018)
Nat Commun
, vol.9
-
-
Denby, C.M.1
Li, R.A.2
Vu, V.T.3
Costello, Z.4
Lin, W.5
Chan, L.J.G.6
Williams, J.7
Donaldson, B.8
Bamforth, C.W.9
Petzold, C.J.10
-
68
-
-
85072690788
-
-
Von Maltzahn GA, Berendes R, Jeck EM, Knight BL, Raymond RA, Trivisvavet P, Wong JYH, Rajdev NH, Meunier M-CJ: Machine learning in agricultural planting, growing, and harvesting contexts. US patent 2019, US20190050948A1.
-
Perry DP, Von Maltzahn GA, Berendes R, Jeck EM, Knight BL, Raymond RA, Trivisvavet P, Wong JYH, Rajdev NH, Meunier M-CJ: Machine learning in agricultural planting, growing, and harvesting contexts. US patent 2019, US20190050948A1.
-
-
-
Perry, D.P.1
-
69
-
-
85072714882
-
-
Enhanced nucleic acid constructs for eukaryotic gene expression. US patent 2017, US9534234B2.
-
Minshull J, Welch M, Govindrajan S, Caves K: Enhanced nucleic acid constructs for eukaryotic gene expression. US patent 2017, US9534234B2.
-
-
-
Minshull, J.1
Welch, M.2
Govindrajan, S.3
Caves, K.4
-
70
-
-
85054071497
-
Optimization of protein expression in mammalian cells
-
Hunter, M., Yuan, P., Vavilala, D., Fox, M., Optimization of protein expression in mammalian cells. Curr Protoc Protein Sci, 95, 2019, e77.
-
(2019)
Curr Protoc Protein Sci
, vol.95
-
-
Hunter, M.1
Yuan, P.2
Vavilala, D.3
Fox, M.4
|