메뉴 건너뛰기




Volumn 11, Issue 6, 2009, Pages 328-334

Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

Author keywords

Cubebol; Flux balance analysis; Glutamate dehydrogenase; In silico metabolic engineering; Isoprenoid; Minimization of metabolic adjustments; NADPH availability; Saccharomyces cerevisiae; Sesquiterpene

Indexed keywords

CUBEBOL; FLUX BALANCE ANALYSIS; GLUTAMATE DEHYDROGENASE; IN SILICO METABOLIC ENGINEERING; ISOPRENOID; MINIMIZATION OF METABOLIC ADJUSTMENTS; NADPH AVAILABILITY; SACCHAROMYCES CEREVISIAE; SESQUITERPENE;

EID: 70449592325     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2009.07.001     Document Type: Article
Times cited : (182)

References (50)
  • 1
    • 10044242601 scopus 로고    scopus 로고
    • Metabolic engineering challenges in the post-genomic era
    • Alper H., and Stephanopoulos G. Metabolic engineering challenges in the post-genomic era. Chem. Eng. Sci. 59 (2004) 5009-5017
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 5009-5017
    • Alper, H.1    Stephanopoulos, G.2
  • 2
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • Alper H. JinY.-S., Moxley J.F., and Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7 (2005) 155-164
    • (2005) Metab. Eng. , vol.7 , pp. 155-164
    • Alper H., JinY.-S.1    Moxley, J.F.2    Stephanopoulos, G.3
  • 3
    • 38449112770 scopus 로고    scopus 로고
    • Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis
    • Asadollahi M.A., Maury J., Møller K., Nielsen K.F., Schalk M., Clark A., and Nielsen J. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99 (2008) 666-677
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 666-677
    • Asadollahi, M.A.1    Maury, J.2    Møller, K.3    Nielsen, K.F.4    Schalk, M.5    Clark, A.6    Nielsen, J.7
  • 4
    • 0030885616 scopus 로고    scopus 로고
    • GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae
    • Avendaño A., Deluna A., Olivera H., Valenzuela L., and Gonzalez A. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 179 (1997) 5594-5597
    • (1997) J. Bacteriol. , vol.179 , pp. 5594-5597
    • Avendaño, A.1    Deluna, A.2    Olivera, H.3    Valenzuela, L.4    Gonzalez, A.5
  • 5
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Förster J., and Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8 (2006) 102-111
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 6
    • 0020614458 scopus 로고
    • A theoretical analysis of NADPH production and consumption in yeasts
    • Bruinenberg P.M., van Dijken J.P., and Scheffers A. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129 (1983) 953-964
    • (1983) J. Gen. Microbiol. , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    van Dijken, J.P.2    Scheffers, A.3
  • 7
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A.P., Pharkya P., and Maranas C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84 (2003) 647-657
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 9
    • 1642316901 scopus 로고    scopus 로고
    • Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability
    • dos Santos M.M., Thygesen G., Kötter P., Olsson L., and Nielsen J. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res. 4 (2003) 59-68
    • (2003) FEMS Yeast Res. , vol.4 , pp. 59-68
    • dos Santos, M.M.1    Thygesen, G.2    Kötter, P.3    Olsson, L.4    Nielsen, J.5
  • 10
    • 0031730379 scopus 로고    scopus 로고
    • Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose
    • Dynesen J., Smits H.P., Olsson L., and Nielsen J. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl. Microbiol. Biotechnol. 50 (1998) 579-582
    • (1998) Appl. Microbiol. Biotechnol. , vol.50 , pp. 579-582
    • Dynesen, J.1    Smits, H.P.2    Olsson, L.3    Nielsen, J.4
  • 11
    • 0033580813 scopus 로고    scopus 로고
    • Systems properties of the Haemophilus influenzae Rd metabolic genotype
    • Edwards J.S., and Palsson B.Ø. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274 (1999) 17410-17416
    • (1999) J. Biol. Chem. , vol.274 , pp. 17410-17416
    • Edwards, J.S.1    Palsson, B.Ø.2
  • 12
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
    • Edwards J.S., and Palsson B.Ø. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97 (2000) 5528-5533
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.Ø.2
  • 13
    • 44749083814 scopus 로고    scopus 로고
    • Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production
    • Engels B., Dahm P., and Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10 (2008) 201-206
    • (2008) Metab. Eng. , vol.10 , pp. 201-206
    • Engels, B.1    Dahm, P.2    Jennewein, S.3
  • 14
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J., Famili I., Fu P., Palsson B.Ø., and Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13 (2003) 244-253
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 16
    • 0041728804 scopus 로고    scopus 로고
    • Metabolic engineering to produce sesquiterpenes in yeast
    • Jackson B.E., Hart-Wells E.A., and Matsuda S.P.T. Metabolic engineering to produce sesquiterpenes in yeast. Org. Lett. 5 (2003) 1629-1632
    • (2003) Org. Lett. , vol.5 , pp. 1629-1632
    • Jackson, B.E.1    Hart-Wells, E.A.2    Matsuda, S.P.T.3
  • 18
    • 41549107616 scopus 로고    scopus 로고
    • Engineering triterpene production in Saccharomyces cerevisiae-β-amyrin synthase from Artemisia annua
    • Kirby J., Romanini D.W., Paradise E.M., and Keasling J.D. Engineering triterpene production in Saccharomyces cerevisiae-β-amyrin synthase from Artemisia annua. FEBS J. 275 (2008) 1852-1859
    • (2008) FEBS J. , vol.275 , pp. 1852-1859
    • Kirby, J.1    Romanini, D.W.2    Paradise, E.M.3    Keasling, J.D.4
  • 20
    • 0037094434 scopus 로고    scopus 로고
    • Nitrogen regulation in Saccharomyces cerevisiae
    • Magasanik B., and Kaiser C.A. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290 (2002) 1-18
    • (2002) Gene , vol.290 , pp. 1-18
    • Magasanik, B.1    Kaiser, C.A.2
  • 21
    • 0142153893 scopus 로고    scopus 로고
    • Ammonia assimilation by Saccharomyces cerevisiae
    • Magasanik B. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot. Cell 2 (2003) 827-829
    • (2003) Eukaryot. Cell , vol.2 , pp. 827-829
    • Magasanik, B.1
  • 22
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martinez I., Zhu J., Lin H., Bennett G.N., and San K.-Y. Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10 (2008) 352-359
    • (2008) Metab. Eng. , vol.10 , pp. 352-359
    • Martinez, I.1    Zhu, J.2    Lin, H.3    Bennett, G.N.4    San, K.-Y.5
  • 23
  • 24
    • 0032485906 scopus 로고    scopus 로고
    • Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid
    • Miura Y., Kondo K., Shimada H., Saito T., Nakamura K., and Misawa N. Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol. Bioeng. 58 (1998) 306-308
    • (1998) Biotechnol. Bioeng. , vol.58 , pp. 306-308
    • Miura, Y.1    Kondo, K.2    Shimada, H.3    Saito, T.4    Nakamura, K.5    Misawa, N.6
  • 25
    • 0031980175 scopus 로고    scopus 로고
    • Production of carotenoids lycopene, ß-carotene, and astaxanthin in the food yeast Candida utilis
    • Miura Y., Kondo K., Saito T., Shimada H., Fraser P.D., and Misawa N. Production of carotenoids lycopene, ß-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64 (1998) 1226-1229
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1226-1229
    • Miura, Y.1    Kondo, K.2    Saito, T.3    Shimada, H.4    Fraser, P.D.5    Misawa, N.6
  • 26
    • 0021836835 scopus 로고
    • Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase
    • Moye W.S., Amuro N., Rao J.K., and Zalkin H. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J. Biol. Chem. 260 (1985) 8502-8508
    • (1985) J. Biol. Chem. , vol.260 , pp. 8502-8508
    • Moye, W.S.1    Amuro, N.2    Rao, J.K.3    Zalkin, H.4
  • 27
    • 33750557880 scopus 로고    scopus 로고
    • High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli
    • Newman J.D., Marshall J., Chang M., Nowroozi F., Paradise E., Pitera D., Newman K.L., and Keasling J.D. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95 (2006) 684-691
    • (2006) Biotechnol. Bioeng. , vol.95 , pp. 684-691
    • Newman, J.D.1    Marshall, J.2    Chang, M.3    Nowroozi, F.4    Paradise, E.5    Pitera, D.6    Newman, K.L.7    Keasling, J.D.8
  • 29
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen T.L., Schulze U., Nielsen J., and Villadsen J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143 (1997) 203-218
    • (1997) Microbiology , vol.143 , pp. 203-218
    • Nissen, T.L.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 30
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen T.L., Kielland-Brandt M.C., Nielsen J., and Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2 (2000) 69-77
    • (2000) Metab. Eng. , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 31
    • 23944440242 scopus 로고    scopus 로고
    • Modeling Lactococcus lactis using a genome-scale flux model
    • Oliveira A.P., Nielsen J., and Förster J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5 (2005) 39
    • (2005) BMC Microbiol. , vol.5 , pp. 39
    • Oliveira, A.P.1    Nielsen, J.2    Förster, J.3
  • 32
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation
    • Park J.H., Lee K.H., Kim T.Y., and Lee S.Y. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA 104 (2007) 7797-7802
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 33
    • 1242283921 scopus 로고    scopus 로고
    • Use of genome-scale microbial models for metabolic engineering
    • Patil K.R., Åkesson M., and Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15 (2004) 64-69
    • (2004) Curr. Opin. Biotechnol. , vol.15 , pp. 64-69
    • Patil, K.R.1    Åkesson, M.2    Nielsen, J.3
  • 34
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil K.R., Rocha I., Förster J., and Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6 (2005) 308
    • (2005) BMC Bioinformatics , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 35
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)
    • Reed J.L., Vo T.D., Schilling C.H., and Palsson B.Ø. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4 (2003) R54
    • (2003) Genome Biol. , vol.4
    • Reed, J.L.1    Vo, T.D.2    Schilling, C.H.3    Palsson, B.Ø.4
  • 37
    • 0041528246 scopus 로고    scopus 로고
    • Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
    • Roca C., Nielsen J., and Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 69 (2003) 4732-4736
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4732-4736
    • Roca, C.1    Nielsen, J.2    Olsson, L.3
  • 39
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè D., Vitkup D., and Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99 (2002) 15112-15117
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.M.3
  • 40
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y., Paradise E.M., Kirby J., Ro D.-K., and Keasling J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9 (2007) 160-168
    • (2007) Metab. Eng. , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 41
    • 0031843028 scopus 로고    scopus 로고
    • Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway
    • Shimada H., Kondo K., Fraser P.D., Miura Y., Saito T., and Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64 (1998) 2676-2680
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 2676-2680
    • Shimada, H.1    Kondo, K.2    Fraser, P.D.3    Miura, Y.4    Saito, T.5    Misawa, N.6
  • 44
    • 0033955802 scopus 로고    scopus 로고
    • The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
    • ter Schure E.G., van Riel N.A., and Verrips T. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 24 (2000) 67-83
    • (2000) FEMS Microbiol. Rev. , vol.24 , pp. 67-83
    • ter Schure, E.G.1    van Riel, N.A.2    Verrips, T.3
  • 45
    • 1542329068 scopus 로고    scopus 로고
    • Production of lipid compounds in the yeast Saccharomyces cerevisiae
    • Veen M., and Lang C. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63 (2004) 635-646
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 635-646
    • Veen, M.1    Lang, C.2
  • 46
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C., Postma E., Scheffers W.A., and van Dijken J.P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8 (1992) 501-517
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    van Dijken, J.P.4
  • 47
    • 34447543117 scopus 로고    scopus 로고
    • High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous
    • Verwaal R., Wang J., Meijnen J.-P., Visser H., Sandmann G., van den Berg J.A., and van Ooyen A.J.J. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 73 (2007) 4342-4350
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 4342-4350
    • Verwaal, R.1    Wang, J.2    Meijnen, J.-P.3    Visser, H.4    Sandmann, G.5    van den Berg, J.A.6    van Ooyen, A.J.J.7
  • 48
    • 85007940083 scopus 로고
    • Metabolic engineering for production of ß-carotene and lycopene in Saccharomyces cerevisiae
    • Yamano S., Ishii T., Nakagawa M., Ikenaga H., and Misawa N. Metabolic engineering for production of ß-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58 (1994) 1112-1114
    • (1994) Biosci. Biotechnol. Biochem. , vol.58 , pp. 1112-1114
    • Yamano, S.1    Ishii, T.2    Nakagawa, M.3    Ikenaga, H.4    Misawa, N.5
  • 49
  • 50
    • 34250306816 scopus 로고    scopus 로고
    • Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition
    • Yoon S.-H., Park H.-M., Kim J.-E., Lee S.-H., Choi M.-S., Kim J.-Y., Oh D.-K., Keasling J.D., and Kim S.-W. Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Prog. 23 (2007) 599-605
    • (2007) Biotechnol. Prog. , vol.23 , pp. 599-605
    • Yoon, S.-H.1    Park, H.-M.2    Kim, J.-E.3    Lee, S.-H.4    Choi, M.-S.5    Kim, J.-Y.6    Oh, D.-K.7    Keasling, J.D.8    Kim, S.-W.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.