-
1
-
-
10044242601
-
Metabolic engineering challenges in the post-genomic era
-
Alper H., and Stephanopoulos G. Metabolic engineering challenges in the post-genomic era. Chem. Eng. Sci. 59 (2004) 5009-5017
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 5009-5017
-
-
Alper, H.1
Stephanopoulos, G.2
-
2
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
-
Alper H. JinY.-S., Moxley J.F., and Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7 (2005) 155-164
-
(2005)
Metab. Eng.
, vol.7
, pp. 155-164
-
-
Alper H., JinY.-S.1
Moxley, J.F.2
Stephanopoulos, G.3
-
3
-
-
38449112770
-
Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis
-
Asadollahi M.A., Maury J., Møller K., Nielsen K.F., Schalk M., Clark A., and Nielsen J. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99 (2008) 666-677
-
(2008)
Biotechnol. Bioeng.
, vol.99
, pp. 666-677
-
-
Asadollahi, M.A.1
Maury, J.2
Møller, K.3
Nielsen, K.F.4
Schalk, M.5
Clark, A.6
Nielsen, J.7
-
4
-
-
0030885616
-
GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae
-
Avendaño A., Deluna A., Olivera H., Valenzuela L., and Gonzalez A. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 179 (1997) 5594-5597
-
(1997)
J. Bacteriol.
, vol.179
, pp. 5594-5597
-
-
Avendaño, A.1
Deluna, A.2
Olivera, H.3
Valenzuela, L.4
Gonzalez, A.5
-
5
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C., Regenberg B., Förster J., and Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8 (2006) 102-111
-
(2006)
Metab. Eng.
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
6
-
-
0020614458
-
A theoretical analysis of NADPH production and consumption in yeasts
-
Bruinenberg P.M., van Dijken J.P., and Scheffers A. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129 (1983) 953-964
-
(1983)
J. Gen. Microbiol.
, vol.129
, pp. 953-964
-
-
Bruinenberg, P.M.1
van Dijken, J.P.2
Scheffers, A.3
-
7
-
-
0242487787
-
Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard A.P., Pharkya P., and Maranas C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84 (2003) 647-657
-
(2003)
Biotechnol. Bioeng.
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
8
-
-
0035281870
-
Metabolic modeling of microbial strains in silico
-
Covert M.W., Schilling C.H., Famili I., Edwards J.S., Goryanin I.I., Selkov E., and Palsson B.Ø. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26 (2001) 179-186
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 179-186
-
-
Covert, M.W.1
Schilling, C.H.2
Famili, I.3
Edwards, J.S.4
Goryanin, I.I.5
Selkov, E.6
Palsson, B.Ø.7
-
9
-
-
1642316901
-
Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability
-
dos Santos M.M., Thygesen G., Kötter P., Olsson L., and Nielsen J. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res. 4 (2003) 59-68
-
(2003)
FEMS Yeast Res.
, vol.4
, pp. 59-68
-
-
dos Santos, M.M.1
Thygesen, G.2
Kötter, P.3
Olsson, L.4
Nielsen, J.5
-
10
-
-
0031730379
-
Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose
-
Dynesen J., Smits H.P., Olsson L., and Nielsen J. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl. Microbiol. Biotechnol. 50 (1998) 579-582
-
(1998)
Appl. Microbiol. Biotechnol.
, vol.50
, pp. 579-582
-
-
Dynesen, J.1
Smits, H.P.2
Olsson, L.3
Nielsen, J.4
-
11
-
-
0033580813
-
Systems properties of the Haemophilus influenzae Rd metabolic genotype
-
Edwards J.S., and Palsson B.Ø. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274 (1999) 17410-17416
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 17410-17416
-
-
Edwards, J.S.1
Palsson, B.Ø.2
-
12
-
-
0034625143
-
The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
-
Edwards J.S., and Palsson B.Ø. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97 (2000) 5528-5533
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 5528-5533
-
-
Edwards, J.S.1
Palsson, B.Ø.2
-
13
-
-
44749083814
-
Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production
-
Engels B., Dahm P., and Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10 (2008) 201-206
-
(2008)
Metab. Eng.
, vol.10
, pp. 201-206
-
-
Engels, B.1
Dahm, P.2
Jennewein, S.3
-
14
-
-
0037313750
-
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
-
Förster J., Famili I., Fu P., Palsson B.Ø., and Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13 (2003) 244-253
-
(2003)
Genome Res.
, vol.13
, pp. 244-253
-
-
Förster, J.1
Famili, I.2
Fu, P.3
Palsson, B.Ø.4
Nielsen, J.5
-
16
-
-
0041728804
-
Metabolic engineering to produce sesquiterpenes in yeast
-
Jackson B.E., Hart-Wells E.A., and Matsuda S.P.T. Metabolic engineering to produce sesquiterpenes in yeast. Org. Lett. 5 (2003) 1629-1632
-
(2003)
Org. Lett.
, vol.5
, pp. 1629-1632
-
-
Jackson, B.E.1
Hart-Wells, E.A.2
Matsuda, S.P.T.3
-
18
-
-
41549107616
-
Engineering triterpene production in Saccharomyces cerevisiae-β-amyrin synthase from Artemisia annua
-
Kirby J., Romanini D.W., Paradise E.M., and Keasling J.D. Engineering triterpene production in Saccharomyces cerevisiae-β-amyrin synthase from Artemisia annua. FEBS J. 275 (2008) 1852-1859
-
(2008)
FEBS J.
, vol.275
, pp. 1852-1859
-
-
Kirby, J.1
Romanini, D.W.2
Paradise, E.M.3
Keasling, J.D.4
-
19
-
-
33645851015
-
Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae
-
Lindahl A.-L., Olsson M.E., Mercke P., Tollbom O., Schelin J., Brodelius M., and Brodelius P.E. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol. Lett. 28 (2006) 571-580
-
(2006)
Biotechnol. Lett.
, vol.28
, pp. 571-580
-
-
Lindahl, A.-L.1
Olsson, M.E.2
Mercke, P.3
Tollbom, O.4
Schelin, J.5
Brodelius, M.6
Brodelius, P.E.7
-
20
-
-
0037094434
-
Nitrogen regulation in Saccharomyces cerevisiae
-
Magasanik B., and Kaiser C.A. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290 (2002) 1-18
-
(2002)
Gene
, vol.290
, pp. 1-18
-
-
Magasanik, B.1
Kaiser, C.A.2
-
21
-
-
0142153893
-
Ammonia assimilation by Saccharomyces cerevisiae
-
Magasanik B. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot. Cell 2 (2003) 827-829
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 827-829
-
-
Magasanik, B.1
-
22
-
-
57049150799
-
Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
-
Martinez I., Zhu J., Lin H., Bennett G.N., and San K.-Y. Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10 (2008) 352-359
-
(2008)
Metab. Eng.
, vol.10
, pp. 352-359
-
-
Martinez, I.1
Zhu, J.2
Lin, H.3
Bennett, G.N.4
San, K.-Y.5
-
23
-
-
32944474480
-
Microbial isoprenoid production: an example of green chemistry through metabolic engineering
-
Maury J., Asadollahi M.A., Møller K., Clark A., and Nielsen J. Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv. Biochem. Eng. Biotechnol. 100 (2005) 19-51
-
(2005)
Adv. Biochem. Eng. Biotechnol.
, vol.100
, pp. 19-51
-
-
Maury, J.1
Asadollahi, M.A.2
Møller, K.3
Clark, A.4
Nielsen, J.5
-
24
-
-
0032485906
-
Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid
-
Miura Y., Kondo K., Shimada H., Saito T., Nakamura K., and Misawa N. Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol. Bioeng. 58 (1998) 306-308
-
(1998)
Biotechnol. Bioeng.
, vol.58
, pp. 306-308
-
-
Miura, Y.1
Kondo, K.2
Shimada, H.3
Saito, T.4
Nakamura, K.5
Misawa, N.6
-
25
-
-
0031980175
-
Production of carotenoids lycopene, ß-carotene, and astaxanthin in the food yeast Candida utilis
-
Miura Y., Kondo K., Saito T., Shimada H., Fraser P.D., and Misawa N. Production of carotenoids lycopene, ß-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64 (1998) 1226-1229
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1226-1229
-
-
Miura, Y.1
Kondo, K.2
Saito, T.3
Shimada, H.4
Fraser, P.D.5
Misawa, N.6
-
26
-
-
0021836835
-
Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase
-
Moye W.S., Amuro N., Rao J.K., and Zalkin H. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J. Biol. Chem. 260 (1985) 8502-8508
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 8502-8508
-
-
Moye, W.S.1
Amuro, N.2
Rao, J.K.3
Zalkin, H.4
-
27
-
-
33750557880
-
High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli
-
Newman J.D., Marshall J., Chang M., Nowroozi F., Paradise E., Pitera D., Newman K.L., and Keasling J.D. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95 (2006) 684-691
-
(2006)
Biotechnol. Bioeng.
, vol.95
, pp. 684-691
-
-
Newman, J.D.1
Marshall, J.2
Chang, M.3
Nowroozi, F.4
Paradise, E.5
Pitera, D.6
Newman, K.L.7
Keasling, J.D.8
-
29
-
-
0031015551
-
Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
-
Nissen T.L., Schulze U., Nielsen J., and Villadsen J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143 (1997) 203-218
-
(1997)
Microbiology
, vol.143
, pp. 203-218
-
-
Nissen, T.L.1
Schulze, U.2
Nielsen, J.3
Villadsen, J.4
-
30
-
-
0033929520
-
Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
-
Nissen T.L., Kielland-Brandt M.C., Nielsen J., and Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2 (2000) 69-77
-
(2000)
Metab. Eng.
, vol.2
, pp. 69-77
-
-
Nissen, T.L.1
Kielland-Brandt, M.C.2
Nielsen, J.3
Villadsen, J.4
-
31
-
-
23944440242
-
Modeling Lactococcus lactis using a genome-scale flux model
-
Oliveira A.P., Nielsen J., and Förster J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5 (2005) 39
-
(2005)
BMC Microbiol.
, vol.5
, pp. 39
-
-
Oliveira, A.P.1
Nielsen, J.2
Förster, J.3
-
32
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park J.H., Lee K.H., Kim T.Y., and Lee S.Y. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA 104 (2007) 7797-7802
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
33
-
-
1242283921
-
Use of genome-scale microbial models for metabolic engineering
-
Patil K.R., Åkesson M., and Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15 (2004) 64-69
-
(2004)
Curr. Opin. Biotechnol.
, vol.15
, pp. 64-69
-
-
Patil, K.R.1
Åkesson, M.2
Nielsen, J.3
-
34
-
-
30044437327
-
Evolutionary programming as a platform for in silico metabolic engineering
-
Patil K.R., Rocha I., Förster J., and Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6 (2005) 308
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 308
-
-
Patil, K.R.1
Rocha, I.2
Förster, J.3
Nielsen, J.4
-
35
-
-
0344328817
-
An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)
-
Reed J.L., Vo T.D., Schilling C.H., and Palsson B.Ø. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4 (2003) R54
-
(2003)
Genome Biol.
, vol.4
-
-
Reed, J.L.1
Vo, T.D.2
Schilling, C.H.3
Palsson, B.Ø.4
-
36
-
-
33645870422
-
Production of the antimalarial drug precursor artemisinic acid in engineered yeast
-
Ro D.-K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., Chang M.C.Y., Withers S.T., Shiba Y., Sarpong R., and Keasling J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440 (2006) 40-943
-
(2006)
Nature
, vol.440
, pp. 40-943
-
-
Ro, D.-K.1
Paradise, E.M.2
Ouellet, M.3
Fisher, K.J.4
Newman, K.L.5
Ndungu, J.M.6
Ho, K.A.7
Eachus, R.A.8
Ham, T.S.9
Kirby, J.10
Chang, M.C.Y.11
Withers, S.T.12
Shiba, Y.13
Sarpong, R.14
Keasling, J.D.15
-
37
-
-
0041528246
-
Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
-
Roca C., Nielsen J., and Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 69 (2003) 4732-4736
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 4732-4736
-
-
Roca, C.1
Nielsen, J.2
Olsson, L.3
-
39
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
Segrè D., Vitkup D., and Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99 (2002) 15112-15117
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 15112-15117
-
-
Segrè, D.1
Vitkup, D.2
Church, G.M.3
-
40
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba Y., Paradise E.M., Kirby J., Ro D.-K., and Keasling J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9 (2007) 160-168
-
(2007)
Metab. Eng.
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.-K.4
Keasling, J.D.5
-
41
-
-
0031843028
-
Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway
-
Shimada H., Kondo K., Fraser P.D., Miura Y., Saito T., and Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64 (1998) 2676-2680
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 2676-2680
-
-
Shimada, H.1
Kondo, K.2
Fraser, P.D.3
Miura, Y.4
Saito, T.5
Misawa, N.6
-
43
-
-
34247479948
-
Metabolic engineering of sesquiterpene metabolism in yeast
-
Takahashi S., Yeo Y., Greenhagen B.T., McMullin T., Song L., Maurina-Brunker J., Rosson R., Noel J.P., and Chappell J. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol. Bioeng. 97 (2007) 170-181
-
(2007)
Biotechnol. Bioeng.
, vol.97
, pp. 170-181
-
-
Takahashi, S.1
Yeo, Y.2
Greenhagen, B.T.3
McMullin, T.4
Song, L.5
Maurina-Brunker, J.6
Rosson, R.7
Noel, J.P.8
Chappell, J.9
-
44
-
-
0033955802
-
The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
-
ter Schure E.G., van Riel N.A., and Verrips T. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 24 (2000) 67-83
-
(2000)
FEMS Microbiol. Rev.
, vol.24
, pp. 67-83
-
-
ter Schure, E.G.1
van Riel, N.A.2
Verrips, T.3
-
45
-
-
1542329068
-
Production of lipid compounds in the yeast Saccharomyces cerevisiae
-
Veen M., and Lang C. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63 (2004) 635-646
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.63
, pp. 635-646
-
-
Veen, M.1
Lang, C.2
-
46
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C., Postma E., Scheffers W.A., and van Dijken J.P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8 (1992) 501-517
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
van Dijken, J.P.4
-
47
-
-
34447543117
-
High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous
-
Verwaal R., Wang J., Meijnen J.-P., Visser H., Sandmann G., van den Berg J.A., and van Ooyen A.J.J. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 73 (2007) 4342-4350
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 4342-4350
-
-
Verwaal, R.1
Wang, J.2
Meijnen, J.-P.3
Visser, H.4
Sandmann, G.5
van den Berg, J.A.6
van Ooyen, A.J.J.7
-
48
-
-
85007940083
-
Metabolic engineering for production of ß-carotene and lycopene in Saccharomyces cerevisiae
-
Yamano S., Ishii T., Nakagawa M., Ikenaga H., and Misawa N. Metabolic engineering for production of ß-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58 (1994) 1112-1114
-
(1994)
Biosci. Biotechnol. Biochem.
, vol.58
, pp. 1112-1114
-
-
Yamano, S.1
Ishii, T.2
Nakagawa, M.3
Ikenaga, H.4
Misawa, N.5
-
49
-
-
33747127865
-
Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate
-
Yoon S.-H., Lee Y.-M., Kim J.-E., Lee S.-H., Lee J.-H., Kim J.-Y., Jung K.-H., Shin Y.-C., Keasling J.D., and Kim S.-W. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94 (2006) 1025-1032
-
(2006)
Biotechnol. Bioeng.
, vol.94
, pp. 1025-1032
-
-
Yoon, S.-H.1
Lee, Y.-M.2
Kim, J.-E.3
Lee, S.-H.4
Lee, J.-H.5
Kim, J.-Y.6
Jung, K.-H.7
Shin, Y.-C.8
Keasling, J.D.9
Kim, S.-W.10
-
50
-
-
34250306816
-
Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition
-
Yoon S.-H., Park H.-M., Kim J.-E., Lee S.-H., Choi M.-S., Kim J.-Y., Oh D.-K., Keasling J.D., and Kim S.-W. Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Prog. 23 (2007) 599-605
-
(2007)
Biotechnol. Prog.
, vol.23
, pp. 599-605
-
-
Yoon, S.-H.1
Park, H.-M.2
Kim, J.-E.3
Lee, S.-H.4
Choi, M.-S.5
Kim, J.-Y.6
Oh, D.-K.7
Keasling, J.D.8
Kim, S.-W.9
|