메뉴 건너뛰기




Volumn 33, Issue 6, 2015, Pages 352-361

Metabolic engineering of cyanobacteria for the synthesis of commodity products

Author keywords

[No Author keywords available]

Indexed keywords

BIOCHEMISTRY; CARBON; METABOLISM; PHOTOSYNTHESIS; PHYSIOLOGY;

EID: 84929504676     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.03.009     Document Type: Review
Times cited : (226)

References (92)
  • 1
    • 78751638661 scopus 로고    scopus 로고
    • Engineering cyanobacteria to generate high-value products
    • Ducat D.C., et al. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 2011, 29:95-103.
    • (2011) Trends Biotechnol. , vol.29 , pp. 95-103
    • Ducat, D.C.1
  • 2
    • 84878651410 scopus 로고    scopus 로고
    • Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae
    • Wijffels R.H., et al. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 2013, 24:405-413.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 405-413
    • Wijffels, R.H.1
  • 3
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330:1355-1358.
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 4
  • 5
    • 84868334617 scopus 로고    scopus 로고
    • Engineering a cyanobacterial cell factory for the production of lactic acid
    • Angermayr S.A., et al. Engineering a cyanobacterial cell factory for the production of lactic acid. Appl. Environ. Microbiol. 2012, 78:7098-7106.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7098-7106
    • Angermayr, S.A.1
  • 6
    • 67649782005 scopus 로고    scopus 로고
    • Energy biotechnology with cyanobacteria
    • Angermayr S.A., et al. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 2009, 20:257-263.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 257-263
    • Angermayr, S.A.1
  • 7
    • 0033986505 scopus 로고    scopus 로고
    • Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803
    • Lagarde D., et al. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl. Env. Microbiol. 2000, 66:64-72.
    • (2000) Appl. Env. Microbiol. , vol.66 , pp. 64-72
    • Lagarde, D.1
  • 8
    • 0031284263 scopus 로고    scopus 로고
    • Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae
    • Sakai M., et al. Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J. Ferment. Bioeng. 1997, 84:434-443.
    • (1997) J. Ferment. Bioeng. , vol.84 , pp. 434-443
    • Sakai, M.1
  • 9
    • 0032976323 scopus 로고    scopus 로고
    • Ethanol synthesis by genetic engineering in cyanobacteria
    • Deng M.D., Coleman J.R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 1999, 65:523-528.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 523-528
    • Deng, M.D.1    Coleman, J.R.2
  • 10
    • 54449090208 scopus 로고    scopus 로고
    • Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "Arthrospira (Spirulina) maxima"
    • Ananyev G., et al. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "Arthrospira (Spirulina) maxima". Appl. Environ. Microbiol. 2008, 74:6102-6113.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 6102-6113
    • Ananyev, G.1
  • 11
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S., et al. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 2009, 27:1177-1180.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1177-1180
    • Atsumi, S.1
  • 12
    • 76049124786 scopus 로고    scopus 로고
    • Nickel-inducible lysis system in Synechocystis sp. PCC 6803
    • Liu X., Curtiss R. Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21550-21554.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21550-21554
    • Liu, X.1    Curtiss, R.2
  • 13
    • 79955564736 scopus 로고    scopus 로고
    • 2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass
    • 2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:6905-6908.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 6905-6908
    • Liu, X.1
  • 14
    • 70349296964 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for ethanol production
    • Dexter J., Fu P. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2009, 2:857.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 857
    • Dexter, J.1    Fu, P.2
  • 15
    • 77952492062 scopus 로고    scopus 로고
    • Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology
    • Huang H-H., et al. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 2010, 38:2577-2593.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2577-2593
    • Huang, H.-H.1
  • 16
    • 84901846248 scopus 로고    scopus 로고
    • Metabolic design for cyanobacterial chemical synthesis
    • Oliver J.W.K., Atsumi S. Metabolic design for cyanobacterial chemical synthesis. Photosynth. Res. 2014, 120:249-261.
    • (2014) Photosynth. Res. , vol.120 , pp. 249-261
    • Oliver, J.W.K.1    Atsumi, S.2
  • 17
    • 84922064018 scopus 로고    scopus 로고
    • Terpenoids and their biosynthesis in cyanobacteria
    • Pattanaik B., Lindberg P. Terpenoids and their biosynthesis in cyanobacteria. Life (Basel) 2015, 5:269-293.
    • (2015) Life (Basel) , vol.5 , pp. 269-293
    • Pattanaik, B.1    Lindberg, P.2
  • 18
    • 84884227283 scopus 로고    scopus 로고
    • Synthetic biology of cyanobacteria: unique challenges and opportunities
    • Berla B.M., et al. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 2013, 4:246.
    • (2013) Front. Microbiol. , vol.4 , pp. 246
    • Berla, B.M.1
  • 19
    • 84929507978 scopus 로고    scopus 로고
    • Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production
    • Dempo Y., et al. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 2014, 4:499-516.
    • (2014) Metabolites , vol.4 , pp. 499-516
    • Dempo, Y.1
  • 20
    • 80555122963 scopus 로고    scopus 로고
    • 13C flux analysis
    • 13C flux analysis. Metab. Eng. 2011, 13:656-665.
    • (2011) Metab. Eng. , vol.13 , pp. 656-665
    • Young, J.D.1
  • 21
    • 84870863904 scopus 로고    scopus 로고
    • Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria
    • Gao Z., et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci. 2012, 5:9857-9865.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9857-9865
    • Gao, Z.1
  • 22
    • 84872862096 scopus 로고    scopus 로고
    • Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
    • Oliver J.W.K., et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1249-1254.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1249-1254
    • Oliver, J.W.K.1
  • 23
    • 84884923719 scopus 로고    scopus 로고
    • On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories
    • Angermayr S.A., Hellingwerf K.J. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys. Chem. B 2013, 117:11169-11175.
    • (2013) J. Phys. Chem. B , vol.117 , pp. 11169-11175
    • Angermayr, S.A.1    Hellingwerf, K.J.2
  • 24
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
    • Varman A.M., et al. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 2013, 12:117.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 117
    • Varman, A.M.1
  • 25
    • 84861172182 scopus 로고    scopus 로고
    • Rerouting carbon flux to enhance photosynthetic productivity
    • Ducat D.C., et al. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 2012, 78:2660-2668.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 2660-2668
    • Ducat, D.C.1
  • 26
    • 84929519460 scopus 로고    scopus 로고
    • Photosynthetic production of glycerol by a recombinant cyanobacterium
    • Savakis P., et al. Photosynthetic production of glycerol by a recombinant cyanobacterium. J. Biotechnol. 2014, 195C:46-51.
    • (2014) J. Biotechnol. , vol.195 C , pp. 46-51
    • Savakis, P.1
  • 29
    • 78650006123 scopus 로고    scopus 로고
    • Molecular biology of cyanobacterial salt acclimation
    • Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol. Rev. 2011, 35:87-123.
    • (2011) FEMS Microbiol. Rev. , vol.35 , pp. 87-123
    • Hagemann, M.1
  • 30
    • 0028263625 scopus 로고
    • Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803
    • Hagemann M., Erdmann N. Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 1994, 140:1427-1431.
    • (1994) Microbiology , vol.140 , pp. 1427-1431
    • Hagemann, M.1    Erdmann, N.2
  • 31
    • 84928743184 scopus 로고    scopus 로고
    • Glycogen, a dynamic cellular sink and reservoir for carbon
    • Caister Academic Press
    • Zilliges Y. Glycogen, a dynamic cellular sink and reservoir for carbon. The Cell Biology of Cyanobacteria 2014, 189-210. Caister Academic Press.
    • (2014) The Cell Biology of Cyanobacteria , pp. 189-210
    • Zilliges, Y.1
  • 32
    • 84870344980 scopus 로고    scopus 로고
    • Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803
    • Gründel M., et al. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 2012, 158:3032-3043.
    • (2012) Microbiology , vol.158 , pp. 3032-3043
    • Gründel, M.1
  • 33
    • 84901847710 scopus 로고    scopus 로고
    • Carbon sink removal: increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant
    • Van der Woude A.D., et al. Carbon sink removal: increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J. Biotechnol. 2014, 184C:100-102.
    • (2014) J. Biotechnol. , vol.184 C , pp. 100-102
    • Van der Woude, A.D.1
  • 34
    • 84901844777 scopus 로고    scopus 로고
    • Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942
    • Li X., et al. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth. Res. 2014, 120:301-310.
    • (2014) Photosynth. Res. , vol.120 , pp. 301-310
    • Li, X.1
  • 35
    • 84902946445 scopus 로고    scopus 로고
    • Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803
    • Angermayr S.A., et al. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 2014, 7:99.
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 99
    • Angermayr, S.A.1
  • 36
    • 84903124788 scopus 로고    scopus 로고
    • Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-D-xylulose 5-phosphate synthase and carbon allocation analysis
    • Kudoh K., et al. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-D-xylulose 5-phosphate synthase and carbon allocation analysis. J. Biosci. Bioeng. 2014, 118:20-28.
    • (2014) J. Biosci. Bioeng. , vol.118 , pp. 20-28
    • Kudoh, K.1
  • 38
    • 84891764107 scopus 로고    scopus 로고
    • Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene
    • Bentley F.K., et al. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant 2014, 7:71-86.
    • (2014) Mol. Plant , vol.7 , pp. 71-86
    • Bentley, F.K.1
  • 39
    • 33845736982 scopus 로고    scopus 로고
    • Biosynthesis and engineering of isoprenoid small molecules
    • Withers S.T., Keasling J.D. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 2007, 73:980-990.
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 980-990
    • Withers, S.T.1    Keasling, J.D.2
  • 40
    • 84918822904 scopus 로고    scopus 로고
    • Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective
    • Gudmundsson S., Nogales J. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol. Biosyst. 2015, 11:60-70.
    • (2015) Mol. Biosyst. , vol.11 , pp. 60-70
    • Gudmundsson, S.1    Nogales, J.2
  • 41
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan E.I., Liao J.C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6018-6023.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 42
    • 49449098777 scopus 로고    scopus 로고
    • Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry
    • Takahashi H., et al. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J. Exp. Bot. 2008, 59:3009-3018.
    • (2008) J. Exp. Bot. , vol.59 , pp. 3009-3018
    • Takahashi, H.1
  • 43
    • 0034977905 scopus 로고    scopus 로고
    • Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function
    • Cooley J.W., Vermaas W.F. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J. Bacteriol. 2001, 183:4251-4258.
    • (2001) J. Bacteriol. , vol.183 , pp. 4251-4258
    • Cooley, J.W.1    Vermaas, W.F.2
  • 44
    • 77953076264 scopus 로고    scopus 로고
    • Engineering cyanobacteria to synthesize and export hydrophilic products
    • Niederholtmeyer H., et al. Engineering cyanobacteria to synthesize and export hydrophilic products. Appl. Environ. Microbiol. 2010, 76:3462-3466.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 3462-3466
    • Niederholtmeyer, H.1
  • 45
    • 84886418081 scopus 로고    scopus 로고
    • Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria
    • Savakis P.E., et al. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab. Eng. 2013, 20:121-130.
    • (2013) Metab. Eng. , vol.20 , pp. 121-130
    • Savakis, P.E.1
  • 46
    • 77956596196 scopus 로고    scopus 로고
    • Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate
    • Meyer D., et al. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate. Biochemistry 2010, 49:8197-8212.
    • (2010) Biochemistry , vol.49 , pp. 8197-8212
    • Meyer, D.1
  • 47
    • 84901857948 scopus 로고    scopus 로고
    • Solar-powered production of biofuels and other petroleum substitutes by cyanobacteria: stoichiometries of reducing equivalents and chemical energy, and energy conversion efficiency
    • Springer
    • Vermaas W. Solar-powered production of biofuels and other petroleum substitutes by cyanobacteria: stoichiometries of reducing equivalents and chemical energy, and energy conversion efficiency. Photosynthesis Research for Food, Fuel and the Future 2013, 353-357. Springer.
    • (2013) Photosynthesis Research for Food, Fuel and the Future , pp. 353-357
    • Vermaas, W.1
  • 48
    • 84988515801 scopus 로고    scopus 로고
    • Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling
    • Erdrich P., et al. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb. Cell Fact. 2014, 13:128.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 128
    • Erdrich, P.1
  • 49
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan E.I., Liao J.C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 2011, 13:353-363.
    • (2011) Metab. Eng. , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 50
    • 84879393596 scopus 로고    scopus 로고
    • Exploring the photosynthetic production capacity of sucrose by cyanobacteria
    • Du W., et al. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng. 2013, 19:17-25.
    • (2013) Metab. Eng. , vol.19 , pp. 17-25
    • Du, W.1
  • 51
    • 84857137366 scopus 로고    scopus 로고
    • Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis
    • Nogales J., et al. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2678-2683.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2678-2683
    • Nogales, J.1
  • 52
    • 84897668947 scopus 로고    scopus 로고
    • A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803
    • Maarleveld T.R., et al. A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803. Plant Physiol. 2014, 164:1111-1121.
    • (2014) Plant Physiol. , vol.164 , pp. 1111-1121
    • Maarleveld, T.R.1
  • 53
    • 70350141657 scopus 로고    scopus 로고
    • Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803
    • Tyo K.E.J., et al. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol. Prog. 2009, 25:1236-1243.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 1236-1243
    • Tyo, K.E.J.1
  • 54
    • 84893492693 scopus 로고    scopus 로고
    • Combinatorial optimization of cyanobacterial 2,3-butanediol production
    • Oliver J.W.K., et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab. Eng. 2014, 22:76-82.
    • (2014) Metab. Eng. , vol.22 , pp. 76-82
    • Oliver, J.W.K.1
  • 55
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
    • Lan E.I., et al. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ. Sci. 2013, 6:2672.
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2672
    • Lan, E.I.1
  • 56
    • 84873812835 scopus 로고    scopus 로고
    • Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production
    • Varman A.M., et al. Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl. Environ. Microbiol. 2013, 79:908-914.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 908-914
    • Varman, A.M.1
  • 57
    • 84867643979 scopus 로고    scopus 로고
    • 2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase
    • 2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 2012, 5:9574-9583.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9574-9583
    • Shen, C.R.1    Liao, J.C.2
  • 59
    • 84862197287 scopus 로고    scopus 로고
    • Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide
    • Zhou J., et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab. Eng. 2012, 14:394-400.
    • (2012) Metab. Eng. , vol.14 , pp. 394-400
    • Zhou, J.1
  • 60
    • 84885166683 scopus 로고    scopus 로고
    • Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light
    • Kusakabe T., et al. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 2013, 20:101-108.
    • (2013) Metab. Eng. , vol.20 , pp. 101-108
    • Kusakabe, T.1
  • 61
    • 84878692910 scopus 로고    scopus 로고
    • Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid
    • Joseph A., et al. Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Biosci. Biotechnol. Biochem. 2013, 77:966-970.
    • (2013) Biosci. Biotechnol. Biochem. , vol.77 , pp. 966-970
    • Joseph, A.1
  • 62
    • 85050641846 scopus 로고    scopus 로고
    • Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002
    • Davies F.K., et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Synth. Biol. 2014, 2:21.
    • (2014) Synth. Biol. , vol.2 , pp. 21
    • Davies, F.K.1
  • 63
    • 84898721478 scopus 로고    scopus 로고
    • Production of squalene in Synechocystis sp. PCC 6803
    • Englund E., et al. Production of squalene in Synechocystis sp. PCC 6803. PLoS ONE 2014, 9:e90270.
    • (2014) PLoS ONE , vol.9 , pp. e90270
    • Englund, E.1
  • 65
    • 84869757991 scopus 로고    scopus 로고
    • 2 to ethylene in recombinant cyanobacterium Synechocystis 6803
    • 2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ. Sci. 2012, 5:8998-9006.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8998-9006
    • Ungerer, J.1
  • 66
    • 84891764107 scopus 로고    scopus 로고
    • Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene
    • Bentley F.K., et al. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant 2013, 7:71-86.
    • (2013) Mol. Plant , vol.7 , pp. 71-86
    • Bentley, F.K.1
  • 67
    • 81455141383 scopus 로고    scopus 로고
    • Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms
    • Bentley F.K., Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol. Bioeng. 2012, 109:100-109.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 100-109
    • Bentley, F.K.1    Melis, A.2
  • 68
    • 84904980499 scopus 로고    scopus 로고
    • Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants
    • Formighieri C., Melis A. Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 2014, 240:309-324.
    • (2014) Planta , vol.240 , pp. 309-324
    • Formighieri, C.1    Melis, A.2
  • 69
    • 79953105514 scopus 로고    scopus 로고
    • The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis
    • Reinsvold R.E., et al. The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J. Plant Physiol. 2011, 168:848-852.
    • (2011) J. Plant Physiol. , vol.168 , pp. 848-852
    • Reinsvold, R.E.1
  • 70
    • 0037265743 scopus 로고    scopus 로고
    • Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus
    • Takahama K., et al. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J. Biosci. Bioeng. 2003, 95:302-305.
    • (2003) J. Biosci. Bioeng. , vol.95 , pp. 302-305
    • Takahama, K.1
  • 71
    • 28844474830 scopus 로고    scopus 로고
    • Flux balance analysis of photoautotrophic metabolism
    • Shastri A.A., Morgan J.A. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 2005, 21:1617-1626.
    • (2005) Biotechnol. Prog. , vol.21 , pp. 1617-1626
    • Shastri, A.A.1    Morgan, J.A.2
  • 72
    • 0029062674 scopus 로고
    • Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942
    • Geerts D., et al. Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 1995, 141:831-841.
    • (1995) Microbiology , vol.141 , pp. 831-841
    • Geerts, D.1
  • 73
    • 0027688535 scopus 로고
    • A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis
    • Marraccini P., et al. A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. Plant Mol. Biol. 1993, 23:905-909.
    • (1993) Plant Mol. Biol. , vol.23 , pp. 905-909
    • Marraccini, P.1
  • 74
    • 0030438409 scopus 로고    scopus 로고
    • Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: principles and possible biotechnology applications
    • Vermaas W. Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: principles and possible biotechnology applications. J. Appl. Phycol. 1996, 8:263-273.
    • (1996) J. Appl. Phycol. , vol.8 , pp. 263-273
    • Vermaas, W.1
  • 75
    • 79957498811 scopus 로고    scopus 로고
    • Synthetic biology in cyanobacteria engineering and analyzing novel functions
    • Heidorn T., et al. Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol. 2011, 497:539-579.
    • (2011) Methods Enzymol. , vol.497 , pp. 539-579
    • Heidorn, T.1
  • 76
    • 84873027191 scopus 로고    scopus 로고
    • Application of synthetic biology in cyanobacteria and algae
    • Wang B., et al. Application of synthetic biology in cyanobacteria and algae. Front. Microbio. 2012, 3:344.
    • (2012) Front. Microbio. , vol.3 , pp. 344
    • Wang, B.1
  • 77
    • 84869812481 scopus 로고    scopus 로고
    • Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803
    • Guerrero F., et al. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS ONE 2012, 7:e50470.
    • (2012) PLoS ONE , vol.7 , pp. e50470
    • Guerrero, F.1
  • 78
    • 84897129361 scopus 로고    scopus 로고
    • Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria
    • Zhou J., et al. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci. Rep. 2014, 4:4500.
    • (2014) Sci. Rep. , vol.4 , pp. 4500
    • Zhou, J.1
  • 79
    • 84876177525 scopus 로고    scopus 로고
    • Use of degradation tags to control protein levels in the cyanobacterium Synechocystis sp. strain PCC 6803
    • Landry B.P., et al. Use of degradation tags to control protein levels in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 2013, 79:2833-2835.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 2833-2835
    • Landry, B.P.1
  • 80
    • 0027415132 scopus 로고
    • Amplified expression of a transcriptional pattern formed during development of Anabaena
    • Wolk C.P., et al. Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol. Microbiol. 1993, 7:441-445.
    • (1993) Mol. Microbiol. , vol.7 , pp. 441-445
    • Wolk, C.P.1
  • 81
    • 0029020047 scopus 로고
    • DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC 6803
    • Barten R., Lill H. DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 1995, 129:83-88.
    • (1995) FEMS Microbiol. Lett. , vol.129 , pp. 83-88
    • Barten, R.1    Lill, H.2
  • 82
    • 84866183352 scopus 로고    scopus 로고
    • Upregulation of plasmid genes during stationary phase in Synechocystis sp. strain PCC 6803, a cyanobacterium
    • Berla B.M., Pakrasi H.B. Upregulation of plasmid genes during stationary phase in Synechocystis sp. strain PCC 6803, a cyanobacterium. Appl. Environ. Microbiol. 2012, 78:5448-5451.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 5448-5451
    • Berla, B.M.1    Pakrasi, H.B.2
  • 83
    • 80052898017 scopus 로고    scopus 로고
    • Ploidy in cyanobacteria
    • Griese M., et al. Ploidy in cyanobacteria. FEMS Microbiol. Lett. 2011, 323:124-131.
    • (2011) FEMS Microbiol. Lett. , vol.323 , pp. 124-131
    • Griese, M.1
  • 84
    • 0020049959 scopus 로고
    • Transformation in the cyanobacterium Synechocystis sp. 6803
    • Grigorieva G., Shestakov S. Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol. Lett. 1982, 13:367-370.
    • (1982) FEMS Microbiol. Lett. , vol.13 , pp. 367-370
    • Grigorieva, G.1    Shestakov, S.2
  • 85
    • 84892155301 scopus 로고    scopus 로고
    • A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803
    • Viola S., et al. A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microb. Cell Fact. 2014, 13:4.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 4
    • Viola, S.1
  • 86
    • 84873313528 scopus 로고    scopus 로고
    • A novel counter-selection method for markerless genetic modification in Synechocystis sp. PCC 6803
    • Cheah Y.E., et al. A novel counter-selection method for markerless genetic modification in Synechocystis sp. PCC 6803. Biotechnol. Prog. 2013, 29:23-30.
    • (2013) Biotechnol. Prog. , vol.29 , pp. 23-30
    • Cheah, Y.E.1
  • 87
    • 84877059594 scopus 로고    scopus 로고
    • Engineering cyanobacteria to improve photosynthetic production of alka(e)nes
    • Wang W., et al. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol. Biofuels 2013, 6:69.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 69
    • Wang, W.1
  • 88
    • 84884920437 scopus 로고    scopus 로고
    • Renewable jet fuel
    • Kallio P., et al. Renewable jet fuel. Curr. Opin. Biotechnol. 2014, 26:50-55.
    • (2014) Curr. Opin. Biotechnol. , vol.26 , pp. 50-55
    • Kallio, P.1
  • 91
    • 84890803970 scopus 로고    scopus 로고
    • The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone
    • Itoh K., et al. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Lett. 2014, 55:435-437.
    • (2014) Tetrahedron Lett. , vol.55 , pp. 435-437
    • Itoh, K.1
  • 92
    • 84903728931 scopus 로고    scopus 로고
    • Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid
    • Xue Y., et al. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9449-9454.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 9449-9454
    • Xue, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.