메뉴 건너뛰기




Volumn 9, Issue 3, 2014, Pages 295-305

A comprehensive view on metabolic pathway analysis methodologies

Author keywords

Elementary flux mode analysis; Extreme pathway analysis; Flux balance analysis; Metabolic pathway modeling

Indexed keywords

QUALITY CONTROL;

EID: 84904757169     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/1574893609666140516005147     Document Type: Article
Times cited : (6)

References (109)
  • 2
    • 0034064689 scopus 로고    scopus 로고
    • A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks
    • Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 2000; 18: 326-332.
    • (2000) Nat Biotechnol , vol.18 , pp. 326-332
    • Schuster, S.1    Fell, D.A.2    Dandekar, T.3
  • 3
    • 0028108519 scopus 로고
    • Metabolic flux balancing: Basic concepts, scientific and practical use
    • Varma A. Palsson B. Metabolic flux balancing: basic concepts, scientific and practical use. Biotechnology 1994; 12: 994-998.
    • (1994) Biotechnology , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.2
  • 4
    • 33845877959 scopus 로고    scopus 로고
    • Recovering metabolic pathways via optimization
    • Beasley JE, Planes FJ. Recovering metabolic pathways via optimization. Bioinformatics 2007; 23: 92-98.
    • (2007) Bioinformatics , vol.23 , pp. 92-98
    • Beasley, J.E.1    Planes, F.J.2
  • 5
    • 0000029295 scopus 로고
    • On elementary flux modes in biochemical reaction systems at steady state
    • Schuster S, Hilgetag S. On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 1994; 2: 165-182.
    • (1994) J Biol Syst , vol.2 , pp. 165-182
    • Schuster, S.1    Hilgetag, S.2
  • 6
    • 33746083686 scopus 로고    scopus 로고
    • Quantitative elementary mode analysis of metabolic pathways: The example of yeast glycolysis
    • Schwartz J, Kanehisa M. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinformatics 2006; 7.
    • (2006) BMC Bioinformatics , vol.7
    • Schwartz, J.1    Kanehisa, M.2
  • 7
    • 2942579562 scopus 로고    scopus 로고
    • Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions
    • Edwards J, Palsson B. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 2000; 1.
    • (2000) BMC Bioinformatics , vol.1
    • Edwards, J.1    Palsson, B.2
  • 8
    • 0036350955 scopus 로고    scopus 로고
    • The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy
    • Papin J, Price N, Edwards J, Palsson B. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J Theor Biol 2002; 215: 67-82.
    • (2002) J Theor Biol , vol.215 , pp. 67-82
    • Papin, J.1    Price, N.2    Edwards, J.3    Palsson, B.4
  • 9
    • 0036100243 scopus 로고    scopus 로고
    • Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis
    • Price N, Papin J, Palsson B. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res 2002; 12: 760-769.
    • (2002) Genome Res , vol.12 , pp. 760-769
    • Price, N.1    Papin, J.2    Palsson, B.3
  • 10
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre D, Vitkup D, Church G. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 2002; 99: 15112-15117.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.3
  • 11
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations
    • Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci 2005; 102: 7695-7700.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 12
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A, Pharkya P, Maranas C. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioengin 2003; 84: 647-657.
    • (2003) Biotechnol Bioengin , vol.84 , pp. 647-657
    • Burgard, A.1    Pharkya, P.2    Maranas, C.3
  • 13
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R, Schilling C. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engin 2003; 5: 264-276.
    • (2003) Metabolic Engin , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.2
  • 14
    • 0037142769 scopus 로고    scopus 로고
    • Metabolic pathway analysis of a recombinant yeast for rational strain development
    • Carlson R, Fell D, Srienc F. Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol Bioengin 2002; 79: 121-134.
    • (2002) Biotechnol Bioengin , vol.79 , pp. 121-134
    • Carlson, R.1    Fell, D.2    Srienc, F.3
  • 16
    • 33746954260 scopus 로고    scopus 로고
    • A review on metabolic pathway analysis with emphasis on isotope labeling approach
    • Shimizu A. A review on metabolic pathway analysis with emphasis on isotope labeling approach. Biotechnol Bioprocess Engin2002; 7: 237-251.
    • (2002) Biotechnol Bioprocess Engin , vol.7 , pp. 237-251
    • Shimizu, A.1
  • 17
    • 85142123820 scopus 로고    scopus 로고
    • FluxAnalyzer: Exploring structure, pathways, flux distributions in metabolic networks on interactive flux maps
    • Klamt S, Stelling J, Ginkel M, Gilles ED. FluxAnalyzer: exploring structure, pathways, flux distributions in metabolic networks on interactive flux maps. Bioinformatics 2003; 22: 26-269.
    • (2003) Bioinformatics , vol.22 , pp. 26-269
    • Klamt, S.1    Stelling, J.2    Ginkel, M.3    Gilles, E.D.4
  • 18
    • 33748798478 scopus 로고    scopus 로고
    • Graph-based methods for analysing networks in cell biology
    • Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Brief Bioinform 2006; 7: 243-255.
    • (2006) Brief Bioinform , vol.7 , pp. 243-255
    • Aittokallio, T.1    Schwikowski, B.2
  • 19
    • 0347506655 scopus 로고    scopus 로고
    • An overview of data models for the analysis of biochemical pathways
    • Deville Y, Gilbert D, van Helden J, Wodak SJ. An overview of data models for the analysis of biochemical pathways. Brief Bioinform 2003; 4(3): 246-59.
    • (2003) Brief Bioinform , vol.4 , Issue.3 , pp. 246-259
    • Deville, Y.1    Gilbert, D.2    van Helden, J.3    Wodak, S.J.4
  • 21
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis N, Nagarajan H, Palsson B. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012; 10: 291-305.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 291-305
    • Lewis, N.1    Nagarajan, H.2    Palsson, B.3
  • 22
    • 39449095000 scopus 로고    scopus 로고
    • Stoichiometric modelling of cell metabolism
    • Llaner F, Pico J. Stoichiometric modelling of cell metabolism. J Biosci Bioengin 2008; 105: 1-11.
    • (2008) J Biosci Bioengin , vol.105 , pp. 1-11
    • Llaner, F.1    Pico, J.2
  • 23
    • 0001229632 scopus 로고
    • The possible mechanisms of complex reactions involving consecutive steps
    • Milner P. The possible mechanisms of complex reactions involving consecutive steps. J Electrochem Soc 1964; 111: 228-232.
    • (1964) J Electrochem Soc , vol.111 , pp. 228-232
    • Milner, P.1
  • 24
    • 0016038059 scopus 로고
    • Dynamics of open chemical systems and the algebraic structure of the underlying reaction network
    • Feinberg M, Horn FJM. Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem Engin Sci1974; 29: 775-787.
    • (1974) Chem Engin Sci , vol.29 , pp. 775-787
    • Feinberg, M.1    Horn, F.J.M.2
  • 25
    • 0008338866 scopus 로고
    • Complete set of steady states for the general stoichiometric dynamical system
    • Clarke BL. Complete set of steady states for the general stoichiometric dynamical system. J Chem Phys 1981; 75: 4970-4979.
    • (1981) J Chem Phys , vol.75 , pp. 4970-4979
    • Clarke, B.L.1
  • 26
    • 0023714694 scopus 로고
    • Stoichiometric network analysis
    • Clarke BL. Stoichiometric network analysis. Cell Biophys 1988; 237: 237-253.
    • (1988) Cell Biophys , vol.237 , pp. 237-253
    • Clarke, B.L.1
  • 30
    • 37849020261 scopus 로고    scopus 로고
    • Network inference, analysis, modeling in systems biology
    • Albert R. Network inference, analysis, modeling in systems biology. Plant Cell 2007; 19: 3327-3338.
    • (2007) Plant Cell , vol.19 , pp. 3327-3338
    • Albert, R.1
  • 31
    • 79957473580 scopus 로고    scopus 로고
    • Path finding methods accounting for stoichiometry in metabolic networks
    • Pey J, Prada J, Beasley JE, Planes FJ. Path finding methods accounting for stoichiometry in metabolic networks. Genome Biol 2011; 12: R49.
    • (2011) Genome Biol , vol.12
    • Pey, J.1    Prada, J.2    Beasley, J.E.3    Planes, F.J.4
  • 32
    • 0023709196 scopus 로고
    • Metabolic control theory: A structural approach
    • Reder C. Metabolic control theory: a structural approach. J Theor Biol 1988; 135: 175-201.
    • (1988) J Theor Biol , vol.135 , pp. 175-201
    • Reder, C.1
  • 34
    • 0021383728 scopus 로고
    • Equations and calculations for fermentations of butyric acid bacteria
    • Papoutsakis E. Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioengin 1984; 26: 174-187.
    • (1984) Biotechnol Bioengin , vol.26 , pp. 174-187
    • Papoutsakis, E.1
  • 35
    • 84858446762 scopus 로고
    • Metabolic maps for the Apple II
    • Watson MR. Metabolic maps for the Apple II. Biochem Soc Trans 1984; 12: 1093-1094.
    • (1984) Biochem Soc Trans , vol.12 , pp. 1093-1094
    • Watson, M.R.1
  • 36
    • 0022654123 scopus 로고
    • A discrete model of bacterial metabolism
    • Watson MR. A discrete model of bacterial metabolism. Comput Appl Biosci 1986; 2: 23-27.
    • (1986) Comput Appl Biosci , vol.2 , pp. 23-27
    • Watson, M.R.1
  • 37
    • 49749091999 scopus 로고    scopus 로고
    • Incorporation of enzyme concentrations into FBA and identification of optimal metabolic pathways
    • De RK, Das M, Mukhopadhyay S. Incorporation of enzyme concentrations into FBA and identification of optimal metabolic pathways. BMC Syst Biol 2008; 2.
    • (2008) BMC Syst Biol , vol.2
    • De, R.K.1    Das, M.2    Mukhopadhyay, S.3
  • 38
    • 77958577251 scopus 로고    scopus 로고
    • Gradient descent optimization in gene regulatory pathways
    • Das M, Mukhopadhyay S, De RK. Gradient descent optimization in gene regulatory pathways. PLoS ONE 2010; 5: e12475.
    • (2010) PLoS ONE , vol.5
    • Das, M.1    Mukhopadhyay, S.2    De, R.K.3
  • 39
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • Edwards J, Ibarra Palsson B. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001; 19: 125-130.
    • (2001) Nat Biotechnol , vol.19 , pp. 125-130
    • Edwards, J.1    Ibarra Palsson, B.2
  • 40
    • 65649105134 scopus 로고    scopus 로고
    • Constraintbased analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction
    • Raghunathan A, Reed J, Shin S, Palsson B, Daefler S. Constraintbased analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 2009; 3.
    • (2009) BMC Syst Biol , vol.3
    • Raghunathan, A.1    Reed, J.2    Shin, S.3    Palsson, B.4    Daefler, S.5
  • 41
  • 43
    • 84989214204 scopus 로고    scopus 로고
    • Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
    • Kelk SM, Olivier BG, Stougie L, Bruggeman FJ. Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Nature 2012; 2: 1-7.
    • (2012) Nature , vol.2 , pp. 1-7
    • Kelk, S.M.1    Olivier, B.G.2    Stougie, L.3    Bruggeman, F.J.4
  • 44
    • 0034615791 scopus 로고    scopus 로고
    • Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective
    • Schilling C, Letscher D, Palsson B. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000; 203: 229-248.
    • (2000) J Theor Biol , vol.203 , pp. 229-248
    • Schilling, C.1    Letscher, D.2    Palsson, B.3
  • 45
    • 17544366029 scopus 로고    scopus 로고
    • Expa: A program for calculating extreme pathways in biochemical reaction networks
    • Bell SL, Palsson BO. expa: a program for calculating extreme pathways in biochemical reaction networks. Bioinformatics 2004; 21: 1739-1740.
    • (2004) Bioinformatics , vol.21 , pp. 1739-1740
    • Bell, S.L.1    Palsson, B.O.2
  • 46
    • 0035997009 scopus 로고    scopus 로고
    • Extreme pathway analysis of human red blood cell metabolism
    • Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism. Biophys J 2002; 83: 808-818.
    • (2002) Biophys J , vol.83 , pp. 808-818
    • Wiback, S.J.1    Palsson, B.O.2
  • 47
    • 0142092727 scopus 로고    scopus 로고
    • Reconstructing metabolic flux vectors from extreme pathways: Defining the α-spectrum
    • Wiback SJ, Mahadevana R, Palsson BO. Reconstructing metabolic flux vectors from extreme pathways: defining the α-spectrum. J Theor Biol 2003; 224: 313-324.
    • (2003) J Theor Biol , vol.224 , pp. 313-324
    • Wiback, S.J.1    Mahadevana, R.2    Palsson, B.O.3
  • 48
    • 0033080396 scopus 로고    scopus 로고
    • Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering
    • Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999; 17: 53-60.
    • (1999) Trends Biotechnol , vol.17 , pp. 53-60
    • Schuster, S.1    Dandekar, T.2    Fell, D.A.3
  • 49
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 2009; 81: 813-826.
    • (2009) Appl Microbiol Biotechnol , vol.81 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 50
    • 79957650687 scopus 로고    scopus 로고
    • Elementary flux modes-state-of-the-art implementation and scope of application
    • Terzer M, Stelling J. Elementary flux modes-state-of-the-art implementation and scope of application. BMC Syst Biol 2007; 1.
    • (2007) BMC Syst Biol , vol.1
    • Terzer, M.1    Stelling, J.2
  • 51
    • 52949098408 scopus 로고    scopus 로고
    • Large-scale computation of elementary flux modes with bit pattern trees
    • Terzer M, Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 2008; 24: 2229-2235.
    • (2008) Bioinformatics , vol.24 , pp. 2229-2235
    • Terzer, M.1    Stelling, J.2
  • 52
    • 27544434362 scopus 로고    scopus 로고
    • A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes
    • Schwartz J.-M, Kanehisa M. A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes. Bioinformatics 2005; 21(Suppl. 2): ii204-ii205.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Schwartz, J.-M.1    Kanehisa, M.2
  • 53
    • 75849164426 scopus 로고    scopus 로고
    • Computing the shortest elementary flux modes in genome-scale metabolic networks
    • de Figueiredo LF, Podhorski A, Rubio A, et al. Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 2009; 25: 3158-3165.
    • (2009) Bioinformatics , vol.25 , pp. 3158-3165
    • de Figueiredo, L.F.1    Podhorski, A.2    Rubio, A.3
  • 54
    • 0028223931 scopus 로고
    • Optimization of metabolism: The evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle
    • Melendez-Hevia E, Wadell TG, Montero F. Optimization of metabolism: the evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J Theor Biol 1994; 166: 201-220.
    • (1994) J Theor Biol , vol.166 , pp. 201-220
    • Melendez-Hevia, E.1    Wadell, T.G.2    Montero, F.3
  • 55
    • 34548079773 scopus 로고    scopus 로고
    • Evolution of cross-feeding in microbial populations
    • Pfeiffer T, Bonhoeffer S. Evolution of cross-feeding in microbial populations. Am Nat 2004; 163, E126-E135.
    • (2004) Am Nat , vol.163
    • Pfeiffer, T.1    Bonhoeffer, S.2
  • 56
    • 79951528622 scopus 로고    scopus 로고
    • Exploring metabolic pathways in genome-scale networks via generating flux modes
    • Rezola A, de Figueiredo L, Brock M, et al. Exploring metabolic pathways in genome-scale networks via generating flux modes. Bioinformatics 2011; 7: 534-540.
    • (2011) Bioinformatics , vol.7 , pp. 534-540
    • Rezola, A.1    de Figueiredo, L.2    Brock, M.3
  • 57
    • 28444458560 scopus 로고    scopus 로고
    • The geometry of the flux cone of a metabolic network
    • Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J 2005; 89: 3837-3845.
    • (2005) Biophys J , vol.89 , pp. 3837-3845
    • Wagner, C.1    Urbanczik, R.2
  • 58
    • 79960170394 scopus 로고    scopus 로고
    • Analysis of complex metabolic behavior through pathway decomposition
    • Ip K, Colijn C, Lun DS. Analysis of complex metabolic behavior through pathway decomposition. BMC Syst Biol 2011; 5.
    • (2011) BMC Syst Biol , vol.5
    • Ip, K.1    Colijn, C.2    Lun, D.S.3
  • 60
    • 33747856186 scopus 로고    scopus 로고
    • Metatool 5. 0: Fast and flexible elementary modes analysis
    • von Kamp A, Schuster S. Metatool 5. 0: fast and flexible elementary modes analysis. Bioinformatics 2006; 22: 1930-1931.
    • (2006) Bioinformatics , vol.22 , pp. 1930-1931
    • von Kamp, A.1    Schuster, S.2
  • 61
    • 0027370376 scopus 로고
    • GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems
    • Mendes P. GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 1993; 9: 563-571.
    • (1993) Comput Appl Biosci , vol.9 , pp. 563-571
    • Mendes, P.1
  • 62
    • 33845368513 scopus 로고    scopus 로고
    • COPASI-a COmplex PAthway SImulator
    • Hoops S, Sahle S, Gauges R, et al. COPASI-a COmplex PAthway SImulator. Bioinformatics 2006; 22: 3067-3074.
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • Hoops, S.1    Sahle, S.2    Gauges, R.3
  • 63
    • 84857974241 scopus 로고    scopus 로고
    • Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations
    • Kleessen S, Nikoloski Z. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst Biol 2012; 6.
    • (2012) BMC Syst Biol , vol.6
    • Kleessen, S.1    Nikoloski, Z.2
  • 64
    • 33845564237 scopus 로고    scopus 로고
    • Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions
    • Luo RY, Liao S, Tao GY, et al. Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2006; 2: 0031.
    • (2006) Mol Syst Biol , vol.2 , pp. 0031
    • Luo, R.Y.1    Liao, S.2    Tao, G.Y.3
  • 65
    • 77957117220 scopus 로고    scopus 로고
    • Computationally efficient flux variability analysis
    • Gudmundsson S, Thiele I. Computationally efficient flux variability analysis. BMC Bioinformatics 2010; 11.
    • (2010) BMC Bioinformatics , vol.11
    • Gudmundsson, S.1    Thiele, I.2
  • 66
    • 1242274402 scopus 로고    scopus 로고
    • Flux coupling analysis of genome-scale metabolic network reconstructions
    • Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 2004; 14: 301-312.
    • (2004) Genome Res , vol.14 , pp. 301-312
    • Burgard, A.P.1    Nikolaev, E.V.2    Schilling, C.H.3    Maranas, C.D.4
  • 67
    • 50949094727 scopus 로고    scopus 로고
    • A new constraint-based description of the steady-state flux cone of metabolic networks
    • Larhlimi A, Bockmayr A. A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Appl Math 2009; 157: 2257-2266.
    • (2009) Discrete Appl Math , vol.157 , pp. 2257-2266
    • Larhlimi, A.1    Bockmayr, A.2
  • 68
    • 84858726254 scopus 로고    scopus 로고
    • On flux coupling analysis of metabolic subsystems
    • Marashi S.-A, LaszloDavid Bockmayr A. On flux coupling analysis of metabolic subsystems. J Theor Biol 2012; 302: 62-69.
    • (2012) J Theor Biol , vol.302 , pp. 62-69
    • Marashi, S.-A.1    LaszloDavid Bockmayr, A.2
  • 69
    • 38949157812 scopus 로고    scopus 로고
    • Co-regulation of metabolic genes is better explained by flux coupling than by network distance
    • Notebaart RA, Teusink B, Siezen RJ, Papp B. Co-regulation of metabolic genes is better explained by flux coupling than by network distance. Plos Comput Biol 2008; 4: 1-7.
    • (2008) Plos Comput Biol , vol.4 , pp. 1-7
    • Notebaart, R.A.1    Teusink, B.2    Siezen, R.J.3    Papp, B.4
  • 70
    • 79952126110 scopus 로고    scopus 로고
    • Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. pcc6803
    • Montagud A, Zelezniak A, Navarro E, de Cordoba PF, Urchueguia JF, Patil KR. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. pcc6803. Biotechnology J 2011; 6: 1-13.
    • (2011) Biotechnology J , vol.6 , pp. 1-13
    • Montagud, A.1    Zelezniak, A.2    Navarro, E.3    de Cordoba, P.F.4    Urchueguia, J.F.5    Patil, K.R.6
  • 72
    • 84861413024 scopus 로고    scopus 로고
    • Metabolic Flux Analysis: An approach for solving non-stationary undetermined systems
    • Vienna, February
    • Provost A, Bastin G. Metabolic Flux Analysis: an approach for solving non-stationary undetermined systems. Proceedings 5th MATHMOD, Vienna, February, 2006; pp. 48-55.
    • (2006) Proceedings 5th MATHMOD , pp. 48-55
    • Provost, A.1    Bastin, G.2
  • 74
    • 79951960091 scopus 로고    scopus 로고
    • Hybrid metabolic flux analysis: Combining stoichiometric and statistical constraints to model the formation of complex recombinant products
    • Carinhas N, Bernal V, Teixeira AP, Carrondo MJ, Alves PM, Oliveira R. Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Syst Biol 2011; 5.
    • (2011) BMC Syst Biol , vol.5
    • Carinhas, N.1    Bernal, V.2    Teixeira, A.P.3    Carrondo, M.J.4    Alves, P.M.5    Oliveira, R.6
  • 75
    • 69249132543 scopus 로고    scopus 로고
    • Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism
    • Bernal V, Carinhas N, Yokomizo A, Carrondo M, Alves P. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioengin 2009; 104: 162-180.
    • (2009) Biotechnol Bioengin , vol.104 , pp. 162-180
    • Bernal, V.1    Carinhas, N.2    Yokomizo, A.3    Carrondo, M.4    Alves, P.5
  • 76
    • 70349636598 scopus 로고    scopus 로고
    • Can the whole be less than the sum of its parts? pathway analysis in genome-scale metabolic networks using elementary flux patterns
    • Kaleta C, de Figueiredo LF, Schuster S. Can the whole be less than the sum of its parts? pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 2009; 19: 1872-1883.
    • (2009) Genome Res , vol.19 , pp. 1872-1883
    • Kaleta, C.1    de Figueiredo, L.F.2    Schuster, S.3
  • 77
    • 0004068620 scopus 로고
    • Ph. D. thesis, Institut fur Instrumentelle Mathematik, Bonn
    • Petri CA. Kommunikation mit Automaten. Ph. D. thesis, Institut fur Instrumentelle Mathematik, Bonn 1962.
    • (1962) Kommunikation mit Automaten
    • Petri, C.A.1
  • 78
    • 34548302044 scopus 로고    scopus 로고
    • Petri net modelling of biological networks
    • Chaouiya C. Petri net modelling of biological networks. Brief Bioinform 2007; 8: 210-219.
    • (2007) Brief Bioinform , vol.8 , pp. 210-219
    • Chaouiya, C.1
  • 79
    • 78649903919 scopus 로고    scopus 로고
    • Petri nets for modelling metabolic pathways: A survey
    • Baldan P, Cocco N, Marin A, Simeoni M. Petri nets for modelling metabolic pathways: a survey. Nat Comput 2010; 9: 955-989.
    • (2010) Nat Comput , vol.9 , pp. 955-989
    • Baldan, P.1    Cocco, N.2    Marin, A.3    Simeoni, M.4
  • 82
    • 0345602990 scopus 로고    scopus 로고
    • Topological analysis of metabolic networks based on Petri net theory
    • Zevedei-Oancea I, Schuster S. Topological analysis of metabolic networks based on Petri net theory. In Silico Biol 2003; 3: 323-345.
    • (2003) In Silico Biol , vol.3 , pp. 323-345
    • Zevedei-Oancea, I.1    Schuster, S.2
  • 83
    • 16344381707 scopus 로고    scopus 로고
    • Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber
    • Koch I, Junker B, Heiner M. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 2005; 21: 1219-1226.
    • (2005) Bioinformatics , vol.21 , pp. 1219-1226
    • Koch, I.1    Junker, B.2    Heiner, M.3
  • 85
    • 27544501653 scopus 로고    scopus 로고
    • Qualitative modelling of regulated metabolic pathways: Application to the tryptophan biosynthesis in E. coli
    • Simao E, Remy E, Thieffry D, Chaouiya C. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 2005; 21: ii190-ii196.
    • (2005) Bioinformatics , vol.21
    • Simao, E.1    Remy, E.2    Thieffry, D.3    Chaouiya, C.4
  • 86
    • 0031105797 scopus 로고    scopus 로고
    • Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, Diauxic Growth on Glucose and Lactose
    • Wong P, Gladney S, Keasling J. Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, Diauxic Growth on Glucose and Lactose. Biotechnol Prog 1997; 13: 132-143.
    • (1997) Biotechnol Prog , vol.13 , pp. 132-143
    • Wong, P.1    Gladney, S.2    Keasling, J.3
  • 87
    • 15944372607 scopus 로고    scopus 로고
    • An enzyme mechanism language for the mathematical modeling of metabolic pathways
    • Yang C.-R, Shapiro BE, Mjolsness ED, Hatfield GW. An enzyme mechanism language for the mathematical modeling of metabolic pathways. Bioinformatics 2005; 21: 774-780.
    • (2005) Bioinformatics , vol.21 , pp. 774-780
    • Yang, C.-R.1    Shapiro, B.E.2    Mjolsness, E.D.3    Hatfield, G.W.4
  • 88
  • 89
    • 33747061013 scopus 로고    scopus 로고
    • Structural kinetic modeling of metabolic networks
    • Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 2006; 103: 11868-11873.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 11868-11873
    • Steuer, R.1    Gross, T.2    Selbig, J.3    Blasius, B.4
  • 92
    • 0345170901 scopus 로고    scopus 로고
    • Quantitative petri net model of gene regulated metabolic networks in the Cell
    • Chen M, Hofestadt R. Quantitative petri net model of gene regulated metabolic networks in the Cell. In Silico Biol 2003; 3: 347-365.
    • (2003) In Silico Biol , vol.3 , pp. 347-365
    • Chen, M.1    Hofestadt, R.2
  • 93
    • 0034741983 scopus 로고    scopus 로고
    • 13c metabolic flux analysis
    • Wiechert W. 13c metabolic flux analysis. Metab Engin 2001; 3: 195-206.
    • (2001) Metab Engin , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 94
    • 0029146299 scopus 로고
    • Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism
    • Szyperski T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 1995; 232: 433-448.
    • (1995) Eur J Biochem , vol.232 , pp. 433-448
    • Szyperski, T.1
  • 95
    • 0031594984 scopus 로고    scopus 로고
    • 13C-NMR, MS and metabolic flux balancing in biotechnology research
    • Szyperski T. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quaterly Rev Biophys 1998; 31: 41-106.
    • (1998) Quaterly Rev Biophys , vol.31 , pp. 41-106
    • Szyperski, T.1
  • 97
    • 33745155105 scopus 로고    scopus 로고
    • Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
    • Antoniewicz M, Kelleher J, Stephanopoulos G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Engin 2006; 8: 324-337.
    • (2006) Metab Engin , vol.8 , pp. 324-337
    • Antoniewicz, M.1    Kelleher, J.2    Stephanopoulos, G.3
  • 99
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units EMU;: A novel framework for modeling isotopic distributions
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units EMU;: a novel framework for modeling isotopic distributions. Metab Engin 2007; 9: 68-86.
    • (2007) Metab Engin , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 100
    • 0031554635 scopus 로고    scopus 로고
    • Bidirectional reaction steps in metabolic networks I. Modeling and simulation of carbon isotope labeling experiments
    • Wiechert W, de Graaf A. Bidirectional reaction steps in metabolic networks I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 1997; 55: 101-117.
    • (1997) Biotechnol Bioeng , vol.55 , pp. 101-117
    • Wiechert, W.1    de Graaf, A.2
  • 101
    • 0033764285 scopus 로고    scopus 로고
    • The challenges of in silico biology
    • Palsson B. The challenges of in silico biology. Nat Biotechnol 2000; 18: 1147-1150.
    • (2000) Nat Biotechnol , vol.18 , pp. 1147-1150
    • Palsson, B.1
  • 102
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004; 429: 92-96.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgard, M.J.4    Palsson, B.O.5
  • 104
    • 84867554554 scopus 로고    scopus 로고
    • Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling
    • Jerby L, Ruppin E. Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 2012; 18: 5572-5584.
    • (2012) Clin Cancer Res , vol.18 , pp. 5572-5584
    • Jerby, L.1    Ruppin, E.2
  • 105
    • 84870053320 scopus 로고    scopus 로고
    • MIRAGE: A functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks
    • Vitkin E, Shlomi T. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 2012; 13.
    • (2012) Genome Biol , vol.13
    • Vitkin, E.1    Shlomi, T.2
  • 106
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 2010; 26: i255-i260.
    • (2010) Bioinformatics , vol.26
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 107
    • 79957637424 scopus 로고    scopus 로고
    • A survey on methods for modeling and analyzing integrated biological networks
    • Tenazinha N, Vinga S. A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans Comput Biol Bioinform 2011; 8: 943-958.
    • (2011) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , pp. 943-958
    • Tenazinha, N.1    Vinga, S.2
  • 108
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Medina VG, Almering MJH, van Maris AJA, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2010; 76: 190-195.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 190-195
    • Medina, V.G.1    Almering, M.J.H.2    van Maris, A.J.A.3    Pronk, J.T.4
  • 109
    • 84876716313 scopus 로고    scopus 로고
    • Comparing methods for metabolic network analysis and an application to metabolic engineering
    • 2013, doi: 10. 1016/j. gene. 03. 017
    • Tomar N, De RK, Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene 2013; 521(1): 1-14. doi: 10. 1016/j. gene. 2013. 03. 017.
    • (2013) Gene , vol.521 , Issue.1 , pp. 1-14
    • Tomar, N.1    De, R.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.