메뉴 건너뛰기




Volumn 20, Issue 9, 2018, Pages 1013-1022

Mechanisms of mitophagy in cellular homeostasis, physiology and pathology

Author keywords

[No Author keywords available]

Indexed keywords

ENERGY METABOLISM; HOMEOSTASIS; MITOPHAGY; MODULATION; PHYSIOLOGY; REVIEW; SIGNAL TRANSDUCTION; ANIMAL; HUMAN; METABOLISM; MITOCHONDRION; PATHOLOGY;

EID: 85052401474     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/s41556-018-0176-2     Document Type: Review
Times cited : (966)

References (150)
  • 1
    • 85019258008 scopus 로고    scopus 로고
    • Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover
    • PID: 28461251
    • Palikaras, K., Daskalaki, I., Markaki, M. & Tavernarakis, N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther. 178, 157–174 (2017)
    • (2017) Pharmacol. Ther. , vol.178 , pp. 157-174
    • Palikaras, K.1    Daskalaki, I.2    Markaki, M.3    Tavernarakis, N.4
  • 2
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • PID: 22743996
    • Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013)
    • (2013) Cell Death Differ. , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 3
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent And independent signals in selective autophagy
    • PID: 26437584
    • Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent And independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016)
    • (2016) Trends Cell Biol. , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 4
    • 85042076557 scopus 로고    scopus 로고
    • Mitophagy and quality control mechanisms in mitochondrial maintenance
    • PID: 29462587
    • Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018)
    • (2018) Curr. Biol. , vol.28 , pp. R170-R185
    • Pickles, S.1    Vigie, P.2    Youle, R.J.3
  • 5
    • 85041110575 scopus 로고    scopus 로고
    • Building and decoding ubiquitin chains for mitophagy
    • PID: 29358684
    • Harper, J. W., Ordureau, A. & Heo, J. M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018)
    • (2018) Nat. Rev. Mol. Cell Biol. , vol.19 , pp. 93-108
    • Harper, J.W.1    Ordureau, A.2    Heo, J.M.3
  • 6
    • 85040338933 scopus 로고    scopus 로고
    • PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol
    • PID: 29325568
    • Sekine, S. & Youle, R. J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 16, 2 (2018)
    • (2018) BMC Biol. , vol.16
    • Sekine, S.1    Youle, R.J.2
  • 7
    • 84890429468 scopus 로고    scopus 로고
    • High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
    • PID: 24270810
    • Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013)
    • (2013) Nature , vol.504 , pp. 291-295
    • Hasson, S.A.1
  • 8
    • 85009266835 scopus 로고    scopus 로고
    • Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation
    • PID: 28007983
    • Aguirre, J. D., Dunkerley, K. M., Mercier, P. & Shaw, G. S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl Acad. Sci. USA 114, 298–303 (2017)
    • (2017) Proc. Natl Acad. Sci. USA , vol.114 , pp. 298-303
    • Aguirre, J.D.1    Dunkerley, K.M.2    Mercier, P.3    Shaw, G.S.4
  • 9
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • PID: 25284222
    • Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375 (2014)
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 10
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • PID: 24896179
    • Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014)
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1
  • 11
    • 84920095272 scopus 로고    scopus 로고
    • The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
    • PID: 24852371
    • Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014)
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 5227-5242
    • Cornelissen, T.1
  • 12
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • PID: 25621951
    • Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160–169 (2015)
    • (2015) Nat. Cell Biol. , vol.17 , pp. 160-169
    • Cunningham, C.N.1
  • 13
    • 85030661011 scopus 로고    scopus 로고
    • Mechanism and regulation of the Lys6-selective deubiquitinase USP30
    • PID: 28945249
    • Gersch, M. et al. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol. 24, 920–930 (2017)
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 920-930
    • Gersch, M.1
  • 14
    • 84929676117 scopus 로고    scopus 로고
    • Deubiquitinating enzymes regulate PARK2-mediated mitophagy
    • PID: 25915564
    • Wang, Y. et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595–606 (2015)
    • (2015) Autophagy , vol.11 , pp. 595-606
    • Wang, Y.1
  • 15
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • PID: 21296869
    • Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737 (2011)
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 16
    • 84948991793 scopus 로고    scopus 로고
    • Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice
    • PID: 26785495
    • Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015)
    • (2015) Science , vol.350 , pp. aad2459
    • Gong, G.1
  • 17
    • 85045261197 scopus 로고    scopus 로고
    • Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics
    • PID: 29656925
    • Ordureau, A. et al. Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol. Cell 70, 211–227 (2018)
    • (2018) Mol. Cell , vol.70 , pp. 211-227
    • Ordureau, A.1
  • 18
    • 84994565816 scopus 로고    scopus 로고
    • Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
    • PID: 27667366
    • Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395–403 (2016)
    • (2016) Cell Syst. , vol.3 , pp. 395-403
    • Rose, C.M.1
  • 19
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • PID: 23503661
    • Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376 (2013)
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 20
    • 84980027958 scopus 로고    scopus 로고
    • Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
    • PID: 27458136
    • McLelland, G. L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214, 275–291 (2016)
    • (2016) J. Cell Biol. , vol.214 , pp. 275-291
    • McLelland, G.L.1    Lee, S.A.2    McBride, H.M.3    Fon, E.A.4
  • 21
    • 84969244054 scopus 로고    scopus 로고
    • PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy
    • PID: 27091447
    • Pryde, K. R., Smith, H. L., Chau, K. Y. & Schapira, A. H. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 213, 163–171 (2016)
    • (2016) J. Cell Biol. , vol.213 , pp. 163-171
    • Pryde, K.R.1    Smith, H.L.2    Chau, K.Y.3    Schapira, A.H.4
  • 22
    • 84856221632 scopus 로고    scopus 로고
    • A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
    • PID: 22226745
    • Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012)
    • (2012) Curr. Biol. , vol.22 , pp. 135-141
    • Soubannier, V.1
  • 23
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • PID: 21173115
    • Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010)
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 24
    • 85030264578 scopus 로고    scopus 로고
    • Mitochondrial fission facilitates the selective mitophagy of protein aggregates
    • PID: 28893839
    • Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017)
    • (2017) J. Cell Biol. , vol.216 , pp. 3231-3247
    • Burman, J.L.1
  • 25
    • 84876531457 scopus 로고    scopus 로고
    • 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • PID: 23620051
    • Chen, Y. & Dorn, G. W. 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013)
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 26
    • 85051849510 scopus 로고    scopus 로고
    • Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
    • PID: 29676259
    • McLelland, G. L. et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. eLife 7, e32866 (2018)
    • (2018) eLife , vol.7
    • McLelland, G.L.1
  • 27
    • 85013070354 scopus 로고    scopus 로고
    • PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation
    • PID: 28368777
    • Gelmetti, V. et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13, 654–669 (2017)
    • (2017) Autophagy , vol.13 , pp. 654-669
    • Gelmetti, V.1
  • 29
    • 84876524198 scopus 로고    scopus 로고
    • Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
    • PID: 23427266
    • Fu, M. et al. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 24, 1153–1162 (2013)
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1153-1162
    • Fu, M.1
  • 30
    • 84871426886 scopus 로고    scopus 로고
    • The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli
    • PID: 23140641
    • Lokireddy, S. et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 16, 613–624 (2012)
    • (2012) Cell Metab. , vol.16 , pp. 613-624
    • Lokireddy, S.1
  • 31
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • PID: 22020285
    • Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011)
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1
  • 32
    • 85014332041 scopus 로고    scopus 로고
    • The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway
    • PID: 27334109
    • Szargel, R. et al. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol. Genet. 25, 3476–3490 (2016)
    • (2016) Hum Mol. Genet. , vol.25 , pp. 3476-3490
    • Szargel, R.1
  • 33
    • 85029596408 scopus 로고    scopus 로고
    • Parkin-independent mitophagy controls chemotherapeutic response in cancer cells
    • PID: 28930681
    • Villa, E. et al. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep. 20, 2846–2859 (2017)
    • (2017) Cell Rep. , vol.20 , pp. 2846-2859
    • Villa, E.1
  • 34
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • PID: 26266977
    • Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015)
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 35
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • PID: 26365381
    • Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015)
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 36
    • 84974815636 scopus 로고    scopus 로고
    • Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
    • PID: 27247382
    • Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349–3358 (2016)
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E3349-E3358
    • Moore, A.S.1    Holzbaur, E.L.2
  • 37
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
    • PID: 27035970
    • Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016)
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 38
    • 77956252454 scopus 로고    scopus 로고
    • Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
    • PID: 20573959
    • Ding, W. X. et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285, 27879–27890 (2010)
    • (2010) J. Biol. Chem. , vol.285 , pp. 27879-27890
    • Ding, W.X.1
  • 39
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • PID: 20098416
    • Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010)
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 40
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • PID: 20126261
    • Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010)
    • (2010) PLoS Biol. , vol.8
    • Narendra, D.P.1
  • 41
    • 84942982653 scopus 로고    scopus 로고
    • ATM functions at the peroxisome to induce pexophagy in response to ROS
    • PID: 26344566
    • Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259–1269 (2015)
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1259-1269
    • Zhang, J.1
  • 42
    • 84959420149 scopus 로고    scopus 로고
    • NF-κB restricts inflammasome activation via elimination of damaged mitochondria
    • PID: 26919428
    • Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016)
    • (2016) Cell , vol.164 , pp. 896-910
    • Zhong, Z.1
  • 43
    • 85042582747 scopus 로고    scopus 로고
    • Cargo recognition and degradation by selective autophagy
    • PID: 29476151
    • Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018)
    • (2018) Nat. Cell Biol. , vol.20 , pp. 233-242
    • Gatica, D.1    Lahiri, V.2    Klionsky, D.J.3
  • 44
    • 84883487916 scopus 로고    scopus 로고
    • Casein kinase 2 is essential for mitophagy
    • PID: 23897086
    • Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788–794 (2013)
    • (2013) EMBO Rep. , vol.14 , pp. 788-794
    • Kanki, T.1
  • 45
    • 84880506979 scopus 로고    scopus 로고
    • The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
    • PID: 23810512
    • Mao, K., Wang, K., Liu, X. & Klionsky, D. J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26, 9–18 (2013)
    • (2013) Dev. Cell , vol.26 , pp. 9-18
    • Mao, K.1    Wang, K.2    Liu, X.3    Klionsky, D.J.4
  • 46
    • 84936132577 scopus 로고    scopus 로고
    • Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
    • PID: 26146385
    • Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527 (2015)
    • (2015) Nat. Commun. , vol.6
    • Murakawa, T.1
  • 47
    • 85017589321 scopus 로고    scopus 로고
    • FKBP8 recruits LC3A to mediate Parkin-independent mitophagy
    • PID: 28381481
    • Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947–961 (2017)
    • (2017) EMBO Rep. , vol.18 , pp. 947-961
    • Bhujabal, Z.1
  • 48
    • 85019552076 scopus 로고    scopus 로고
    • Parkin-independent mitophagy-FKBP8 takes the stage
    • PID: 28515082
    • Lim, G. G. & Lim, K. L. Parkin-independent mitophagy-FKBP8 takes the stage. EMBO Rep. 18, 864–865 (2017)
    • (2017) EMBO Rep. , vol.18 , pp. 864-865
    • Lim, G.G.1    Lim, K.L.2
  • 49
    • 34948816749 scopus 로고    scopus 로고
    • Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice
    • PID: 17909626
    • Diwan, A. et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest. 117, 2825–2833 (2007)
    • (2007) J. Clin. Invest. , vol.117 , pp. 2825-2833
    • Diwan, A.1
  • 50
    • 85018982980 scopus 로고    scopus 로고
    • Programmed mitophagy is essential for the glycolytic switch during cell differentiation
    • PID: 28465321
    • Esteban-Martinez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688–1706 (2017)
    • (2017) EMBO J. , vol.36 , pp. 1688-1706
    • Esteban-Martinez, L.1
  • 51
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for Nix in autophagic maturation of erythroid cells
    • PID: 18454133
    • Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008)
    • (2008) Nature , vol.454 , pp. 232-235
    • Sandoval, H.1
  • 52
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • PID: 18048346
    • Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007)
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 19500-19505
    • Schweers, R.L.1
  • 53
    • 67650219052 scopus 로고    scopus 로고
    • Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy
    • PID: 19363302
    • Schwarten, M. et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698 (2009)
    • (2009) Autophagy , vol.5 , pp. 690-698
    • Schwarten, M.1
  • 54
    • 85018942395 scopus 로고    scopus 로고
    • Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins
    • PID: 28442745
    • Rogov, V. V. et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7, 1131 (2017)
    • (2017) Sci. Rep. , vol.7
    • Rogov, V.V.1
  • 55
    • 84877578621 scopus 로고    scopus 로고
    • Rheb regulates mitophagy induced by mitochondrial energetic status
    • PID: 23602449
    • Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719–730 (2013)
    • (2013) Cell Metab. , vol.17 , pp. 719-730
    • Melser, S.1
  • 56
    • 77957683915 scopus 로고    scopus 로고
    • Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
    • PID: 20668412
    • Quinsay, M. N., Thomas, R. L., Lee, Y. & Gustafsson, A. B. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855–862 (2010)
    • (2010) Autophagy , vol.6 , pp. 855-862
    • Quinsay, M.N.1    Thomas, R.L.2    Lee, Y.3    Gustafsson, A.B.4
  • 57
    • 77952672872 scopus 로고    scopus 로고
    • Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism
    • PID: 20025887
    • Quinsay, M. N. et al. Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J. Mol. Cell Cardiol. 48, 1146–1156 (2010)
    • (2010) J. Mol. Cell Cardiol. , vol.48 , pp. 1146-1156
    • Quinsay, M.N.1
  • 58
    • 84990224594 scopus 로고    scopus 로고
    • BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy
    • PID: 27528605
    • Zhang, T. et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291, 21616–21629 (2016)
    • (2016) J. Biol. Chem. , vol.291 , pp. 21616-21629
    • Zhang, T.1
  • 59
    • 80355127945 scopus 로고    scopus 로고
    • Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
    • Lee, Y., Lee, H. Y., Hanna, R. A. & Gustafsson, A. B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, 1924–1931 (2011)
    • (2011) Am. J. Physiol. Heart Circ. Physiol. , vol.301 , pp. 1924-1931
    • Lee, Y.1    Lee, H.Y.2    Hanna, R.A.3    Gustafsson, A.B.4
  • 60
    • 84929709305 scopus 로고    scopus 로고
    • The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway
    • PID: 25612572
    • Gao, F. et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528–2538 (2015)
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 2528-2538
    • Gao, F.1
  • 61
    • 84930632378 scopus 로고    scopus 로고
    • Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans
    • PID: 25896323
    • Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015)
    • (2015) Nature , vol.521 , pp. 525-528
    • Palikaras, K.1    Lionaki, E.2    Tavernarakis, N.3
  • 62
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • PID: 22267086
    • Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012)
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1
  • 63
    • 84899912073 scopus 로고    scopus 로고
    • A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
    • PID: 24746696
    • Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014)
    • (2014) Mol. Cell , vol.54 , pp. 362-377
    • Chen, G.1
  • 64
    • 84964533976 scopus 로고    scopus 로고
    • Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy
    • PID: 27050458
    • Chen, M. et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12, 689–702 (2016)
    • (2016) Autophagy , vol.12 , pp. 689-702
    • Chen, M.1
  • 65
    • 85027940408 scopus 로고    scopus 로고
    • FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions
    • PID: 27145933
    • Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016)
    • (2016) EMBO J. , vol.35 , pp. 1368-1384
    • Wu, W.1
  • 66
    • 84899789746 scopus 로고    scopus 로고
    • ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
    • PID: 24671035
    • Wu, W. et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15, 566–575 (2014)
    • (2014) EMBO Rep. , vol.15 , pp. 566-575
    • Wu, W.1
  • 68
    • 84937514081 scopus 로고    scopus 로고
    • Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans
    • PID: 26144971
    • Schiavi, A. et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol. 25, 1810–1822 (2015)
    • (2015) Curr. Biol. , vol.25 , pp. 1810-1822
    • Schiavi, A.1
  • 69
    • 85009178435 scopus 로고    scopus 로고
    • Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
    • PID: 28017329
    • Wei, Y., Chiang, W. C., Sumpter, R. Jr., Mishra, P. & Levine, B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224–238 (2017)
    • (2017) Cell , vol.168 , pp. 224-238
    • Wei, Y.1    Chiang, W.C.2    Sumpter, R.3    Mishra, P.4    Levine, B.5
  • 70
    • 85041679011 scopus 로고    scopus 로고
    • PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver
    • PID: 29416008
    • Xiao, Y., Zhou, Y., Lu, Y., Zhou, K. & Cai, W. PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver. Cell Death Dis. 9, 160 (2018)
    • (2018) Cell Death Dis. , vol.9
    • Xiao, Y.1    Zhou, Y.2    Lu, Y.3    Zhou, K.4    Cai, W.5
  • 71
    • 84885176082 scopus 로고    scopus 로고
    • Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
    • PID: 24036476
    • Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013)
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1197-1205
    • Chu, C.T.1
  • 72
    • 85013374254 scopus 로고    scopus 로고
    • Cardiolipin regulates mitophagy through the protein kinase C pathway
    • PID: 28062576
    • Shen, Z., Li, Y., Gasparski, A. N., Abeliovich, H. & Greenberg, M. L. Cardiolipin regulates mitophagy through the protein kinase C pathway. J. Biol. Chem. 292, 2916–2923 (2017)
    • (2017) J. Biol. Chem. , vol.292 , pp. 2916-2923
    • Shen, Z.1    Li, Y.2    Gasparski, A.N.3    Abeliovich, H.4    Greenberg, M.L.5
  • 73
    • 84979966353 scopus 로고    scopus 로고
    • Mito-QC illuminates mitophagy and mitochondrial architecture in vivo
    • PID: 27458135
    • McWilliams, T. G. et al. Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333–345 (2016)
    • (2016) J. Cell Biol. , vol.214 , pp. 333-345
    • McWilliams, T.G.1
  • 74
    • 84947802088 scopus 로고    scopus 로고
    • Measuring in vivo mitophagy
    • PID: 26549682
    • Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015)
    • (2015) Mol. Cell , vol.60 , pp. 685-696
    • Sun, N.1
  • 75
    • 85040344962 scopus 로고    scopus 로고
    • Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
    • PID: 29337137
    • McWilliams, T. G. et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27, 439–449 (2018)
    • (2018) Cell Metab. , vol.27 , pp. 439-449
    • McWilliams, T.G.1
  • 76
    • 85034779911 scopus 로고    scopus 로고
    • Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway
    • PID: 29149599
    • Le Guerroue, F. et al. Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway. Mol. Cell 68, 786–796 (2017)
    • (2017) Mol. Cell , vol.68 , pp. 786-796
    • Le Guerroue, F.1
  • 77
    • 85045854103 scopus 로고    scopus 로고
    • Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin
    • Lee, J. J. et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol. http://doi.org/gdjh3h (2018)
    • (2018) J. Cell Biol
    • Lee, J.J.1
  • 78
    • 84864015441 scopus 로고    scopus 로고
    • BNip3 regulates mitochondrial function and lipid metabolism in the liver
    • PID: 22547685
    • Glick, D. et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell Biol. 32, 2570–2584 (2012)
    • (2012) Mol. Cell Biol. , vol.32 , pp. 2570-2584
    • Glick, D.1
  • 79
    • 0033068143 scopus 로고    scopus 로고
    • BNIP3α: a human homolog of mitochondrial proapoptotic protein BNIP3
    • PID: 9973195
    • Yasuda, M., Han, J. W., Dionne, C. A., Boyd, J. M. & Chinnadurai, G. BNIP3α: a human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res. 59, 533–537 (1999)
    • (1999) Cancer Res. , vol.59 , pp. 533-537
    • Yasuda, M.1    Han, J.W.2    Dionne, C.A.3    Boyd, J.M.4    Chinnadurai, G.5
  • 80
    • 85012975461 scopus 로고    scopus 로고
    • PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo?
    • PID: 28213158
    • Whitworth, A. J. & Pallanck, L. J. PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr. Opin. Genet. Dev. 44, 47–53 (2017)
    • (2017) Curr. Opin. Genet. Dev. , vol.44 , pp. 47-53
    • Whitworth, A.J.1    Pallanck, L.J.2
  • 81
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • PID: 19619495
    • Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009)
    • (2009) Dev. Cell , vol.17 , pp. 98-109
    • Kanki, T.1    Wang, K.2    Cao, Y.3    Baba, M.4    Klionsky, D.J.5
  • 82
    • 57749121573 scopus 로고    scopus 로고
    • Mitophagy in yeast occurs through a selective mechanism
    • PID: 18818209
    • Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386–32393 (2008)
    • (2008) J. Biol. Chem. , vol.283 , pp. 32386-32393
    • Kanki, T.1    Klionsky, D.J.2
  • 83
    • 73449118234 scopus 로고    scopus 로고
    • A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria
    • PID: 19770589
    • Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5, 1203–1205 (2009)
    • (2009) Autophagy , vol.5 , pp. 1203-1205
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 84
    • 84878780410 scopus 로고    scopus 로고
    • Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
    • PID: 23660403
    • Eiyama, A., Kondo-Okamoto, N. & Okamoto, K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587, 1787–1792 (2013)
    • (2013) FEBS Lett. , vol.587 , pp. 1787-1792
    • Eiyama, A.1    Kondo-Okamoto, N.2    Okamoto, K.3
  • 85
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • PID: 18281291
    • Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008)
    • (2008) J. Biol. Chem. , vol.283 , pp. 10892-10903
    • Zhang, H.1
  • 86
    • 84926624248 scopus 로고    scopus 로고
    • Hypoxia activation of mitophagy and its role in disease pathogenesis
    • PID: 25526784
    • Wu, H. & Chen, Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid. Redox Signal 22, 1032–1046 (2015)
    • (2015) Antioxid. Redox Signal , vol.22 , pp. 1032-1046
    • Wu, H.1    Chen, Q.2
  • 87
    • 84953385654 scopus 로고    scopus 로고
    • Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro
    • PID: 26742768
    • Maugeri, G. et al. Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res. 364, 465–474 (2016)
    • (2016) Cell Tissue Res. , vol.364 , pp. 465-474
    • Maugeri, G.1
  • 88
    • 84940718214 scopus 로고    scopus 로고
    • Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
    • PID: 25831013
    • Hirota, Y. et al. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332–343 (2015)
    • (2015) Autophagy , vol.11 , pp. 332-343
    • Hirota, Y.1
  • 89
    • 84898652320 scopus 로고    scopus 로고
    • Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
    • PID: 24569479
    • Yamano, K., Fogel, A. I., Wang, C., van der Bliek, A. M. & Youle, R. J. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3, e01612 (2014)
    • (2014) eLife , vol.3
    • Yamano, K.1    Fogel, A.I.2    Wang, C.3    van der Bliek, A.M.4    Youle, R.J.5
  • 90
    • 85044777319 scopus 로고    scopus 로고
    • The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A
    • PID: 29634932
    • Puri, C. et al. The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell 45, 114–131 (2018)
    • (2018) Dev. Cell , vol.45 , pp. 114-131
    • Puri, C.1
  • 91
    • 85034598347 scopus 로고    scopus 로고
    • Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy
    • PID: 29158324
    • Jimenez-Orgaz, A. et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 37, 235–254 (2018)
    • (2018) EMBO J. , vol.37 , pp. 235-254
    • Jimenez-Orgaz, A.1
  • 92
    • 85042126166 scopus 로고    scopus 로고
    • Endosomal Rab cycles regulate Parkin-mediated mitophagy
    • PID: 29360040
    • Yamano, K. et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7, e31326 (2018)
    • (2018) eLife , vol.7
    • Yamano, K.1
  • 93
    • 84902007678 scopus 로고    scopus 로고
    • Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
    • PID: 24895007
    • Honda, S. et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004 (2014)
    • (2014) Nat. Commun. , vol.5
    • Honda, S.1
  • 94
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • PID: 20010802
    • Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010)
    • (2010) EMBO Rep. , vol.11 , pp. 45-51
    • Novak, I.1
  • 95
    • 82255183165 scopus 로고    scopus 로고
    • Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
    • PID: 22033522
    • Al Rawi, S. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147 (2011)
    • (2011) Science , vol.334 , pp. 1144-1147
    • Al Rawi, S.1
  • 96
    • 85000919223 scopus 로고    scopus 로고
    • Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
    • PID: 27852436
    • Rojansky, R., Cha, M. Y. & Chan, D. C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896 (2016)
    • (2016) eLife , vol.5
    • Rojansky, R.1    Cha, M.Y.2    Chan, D.C.3
  • 97
    • 82255192465 scopus 로고    scopus 로고
    • Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos
    • PID: 21998252
    • Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011)
    • (2011) Science , vol.334 , pp. 1141-1144
    • Sato, M.1    Sato, K.2
  • 98
    • 84948985030 scopus 로고    scopus 로고
    • METABOLISM. Mitochondria shape cardiac metabolism
    • PID: 26785456
    • Gottlieb, R. A. & Bernstein, D. METABOLISM. Mitochondria shape cardiac metabolism. Science 350, 1162–1163 (2015)
    • (2015) Science , vol.350 , pp. 1162-1163
    • Gottlieb, R.A.1    Bernstein, D.2
  • 99
    • 84981488617 scopus 로고    scopus 로고
    • Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
    • PID: 27295498
    • Vazquez-Martin, A. et al. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging 8, 1330–1352 (2016)
    • (2016) Aging , vol.8 , pp. 1330-1352
    • Vazquez-Martin, A.1
  • 100
    • 85027528273 scopus 로고    scopus 로고
    • BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming
    • PID: 28722510
    • Xiang, G. et al. BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy 13, 1543–1555 (2017)
    • (2017) Autophagy , vol.13 , pp. 1543-1555
    • Xiang, G.1
  • 101
    • 84958778985 scopus 로고    scopus 로고
    • Energy metabolism plays a critical role in stem cell maintenance and differentiation
    • PID: 26901195
    • Hu, C. et al. Energy metabolism plays a critical role in stem cell maintenance and differentiation. Int. J. Mol. Sci. 17, 253 (2016)
    • (2016) Int. J. Mol. Sci. , vol.17 , pp. 253
    • Hu, C.1
  • 102
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • PID: 21803296
    • Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011)
    • (2011) Cell Metab. , vol.14 , pp. 264-271
    • Folmes, C.D.1
  • 103
    • 79959344616 scopus 로고    scopus 로고
    • PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function
    • PID: 21606348
    • Billia, F. et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc. Natl Acad. Sci. USA 108, 9572–9577 (2011)
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 9572-9577
    • Billia, F.1
  • 104
    • 84882425828 scopus 로고    scopus 로고
    • Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
    • PID: 23917356
    • Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013)
    • (2013) Nat. Commun. , vol.4
    • Hoshino, A.1
  • 105
    • 85017035000 scopus 로고    scopus 로고
    • Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury
    • PID: 28323531
    • Zhang, W., Siraj, S., Zhang, R. & Chen, Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy 13, 1080–1081 (2017)
    • (2017) Autophagy , vol.13 , pp. 1080-1081
    • Zhang, W.1    Siraj, S.2    Zhang, R.3    Chen, Q.4
  • 106
    • 85009431354 scopus 로고    scopus 로고
    • Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury
    • PID: 27995894
    • Zhang, W. et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5, e21407 (2016)
    • (2016) eLife , vol.5
    • Zhang, W.1
  • 107
    • 85045446413 scopus 로고    scopus 로고
    • Hippocampal mutant APP and amyloid β-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease
    • PID: 29408999
    • Manczak, M., Kandimalla, R., Yin, X. & Reddy, P. H. Hippocampal mutant APP and amyloid β-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 27, 1332–1342 (2018)
    • (2018) Hum. Mol. Genet. , vol.27 , pp. 1332-1342
    • Manczak, M.1    Kandimalla, R.2    Yin, X.3    Reddy, P.H.4
  • 108
    • 85038255288 scopus 로고    scopus 로고
    • Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity
    • PID: 29211722
    • Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552, 187–193 (2017)
    • (2017) Nature , vol.552 , pp. 187-193
    • Sorrentino, V.1
  • 109
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • PID: 16672981
    • Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006)
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 110
    • 0037386532 scopus 로고    scopus 로고
    • Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
    • PID: 12642658
    • Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 4078-4083
    • Greene, J.C.1
  • 111
    • 33746080412 scopus 로고    scopus 로고
    • Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
    • PID: 16818890
    • Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006)
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10793-10798
    • Yang, Y.1
  • 112
    • 84918784944 scopus 로고    scopus 로고
    • Parkinson’s disease: animal models and dopaminergic cell vulnerability
    • PID: 25565980
    • Blesa, J. & Przedborski, S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155 (2014)
    • (2014) Front. Neuroanat. , vol.8 , pp. 155
    • Blesa, J.1    Przedborski, S.2
  • 113
    • 2642580016 scopus 로고    scopus 로고
    • Premature ageing in mice expressing defective mitochondrial DNA polymerase
    • PID: 15164064
    • Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004)
    • (2004) Nature , vol.429 , pp. 417-423
    • Trifunovic, A.1
  • 114
    • 84937438976 scopus 로고    scopus 로고
    • Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress
    • PID: 26182419
    • Pickrell, A. M. et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87, 371–381 (2015)
    • (2015) Neuron , vol.87 , pp. 371-381
    • Pickrell, A.M.1
  • 115
    • 84994834600 scopus 로고    scopus 로고
    • Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease
    • PID: 27618216
    • Hsieh, C. H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016)
    • (2016) Cell Stem Cell , vol.19 , pp. 709-724
    • Hsieh, C.H.1
  • 116
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • PID: 22078885
    • Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011)
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 117
    • 85028756540 scopus 로고    scopus 로고
    • Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease
    • PID: 28598233
    • Lahiri, V. & Klionsky, D. J. Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease. Autophagy 13, 1259–1261 (2017)
    • (2017) Autophagy , vol.13 , pp. 1259-1261
    • Lahiri, V.1    Klionsky, D.J.2
  • 118
    • 84978437500 scopus 로고    scopus 로고
    • Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation
    • PID: 27345367
    • Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016)
    • (2016) Cell , vol.166 , pp. 314-327
    • Matheoud, D.1
  • 119
    • 84903694914 scopus 로고    scopus 로고
    • Transcellular degradation of axonal mitochondria
    • PID: 24979790
    • Davis, C. H. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014)
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 9633-9638
    • Davis, C.H.1
  • 120
    • 85038839293 scopus 로고    scopus 로고
    • Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells
    • PID: 29242539
    • Jin, G. et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat. Immunol. 19, 29–40 (2018)
    • (2018) Nat. Immunol. , vol.19 , pp. 29-40
    • Jin, G.1
  • 121
    • 0036061644 scopus 로고    scopus 로고
    • Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy
    • PID: 12053174
    • Yussman, M. G. et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat. Med. 8, 725–730 (2002)
    • (2002) Nat. Med. , vol.8 , pp. 725-730
    • Yussman, M.G.1
  • 122
    • 67549101188 scopus 로고    scopus 로고
    • Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
    • PID: 19229244
    • Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939–946 (2009)
    • (2009) Cell Death Differ , vol.16 , pp. 939-946
    • Zhang, J.1    Ney, P.A.2
  • 123
    • 85009987918 scopus 로고    scopus 로고
    • The pharmacological regulation of cellular mitophagy
    • PID: 28103219
    • Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017)
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 136-146
    • Georgakopoulos, N.D.1    Wells, G.2    Campanella, M.3
  • 124
    • 84883709817 scopus 로고    scopus 로고
    • AMPK: a target for drugs and natural products with effects on both diabetes and cancer
    • PID: 23801715
    • Hardie, D. G. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62, 2164–2172 (2013)
    • (2013) Diabetes , vol.62 , pp. 2164-2172
    • Hardie, D.G.1
  • 125
    • 84978708804 scopus 로고    scopus 로고
    • AMPK activators: mechanisms of action and physiological activities
    • PID: 27034026
    • Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48, e224 (2016)
    • (2016) Exp. Mol. Med. , vol.48
    • Kim, J.1    Yang, G.2    Kim, Y.3    Kim, J.4    Ha, J.5
  • 126
    • 84890850876 scopus 로고    scopus 로고
    • mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
    • PID: 24231806
    • Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013)
    • (2013) Science , vol.342 , pp. 1524-1528
    • Johnson, S.C.1
  • 127
    • 70349750492 scopus 로고    scopus 로고
    • Rapamycin protects against rotenone-induced apoptosis through autophagy induction
    • PID: 19682553
    • Pan, T. et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541–551 (2009)
    • (2009) Neuroscience , vol.164 , pp. 541-551
    • Pan, T.1
  • 128
    • 84954320623 scopus 로고    scopus 로고
    • Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53
    • Song, Y. M. et al. Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53. Int. J. Mol. Sci. 17, 122 (2016)
    • (2016) Int. J. Mol. Sci. , vol.17 , pp. 122
    • Song, Y.M.1
  • 129
    • 84896824550 scopus 로고    scopus 로고
    • Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes
    • PID: 24516131
    • Hoshino, A. et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc. Natl Acad. Sci. USA 111, 3116–3121 (2014)
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 3116-3121
    • Hoshino, A.1
  • 130
    • 84995467810 scopus 로고    scopus 로고
    • Cardioprotection and lifespan extension by the natural polyamine spermidine
    • PID: 27841876
    • Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016)
    • (2016) Nat. Med. , vol.22 , pp. 1428-1438
    • Eisenberg, T.1
  • 131
    • 70449529855 scopus 로고    scopus 로고
    • Induction of autophagy by spermidine promotes longevity
    • PID: 19801973
    • Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009)
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1305-1314
    • Eisenberg, T.1
  • 132
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • PID: 17112576
    • Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006)
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 133
    • 84978136448 scopus 로고    scopus 로고
    • Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents
    • PID: 27400265
    • Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016)
    • (2016) Nat. Med. , vol.22 , pp. 879-888
    • Ryu, D.1
  • 134
    • 85021860164 scopus 로고    scopus 로고
    • Doxycycline induces mitophagy and suppresses production of interferon-β in IPEC-J2 cells
    • PID: 28203548
    • Xing, Y., Liqi, Z., Jian, L., Qinghua, Y. & Qian, Y. Doxycycline induces mitophagy and suppresses production of interferon-β in IPEC-J2 cells. Front. Cell. Infect. Microbiol. 7, 21 (2017)
    • (2017) Front. Cell. Infect. Microbiol. , vol.7 , pp. 21
    • Xing, Y.1    Liqi, Z.2    Jian, L.3    Qinghua, Y.4    Qian, Y.5
  • 135
    • 84992343671 scopus 로고    scopus 로고
    • + replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair
    • PID: 27732836
    • + replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016)
    • (2016) Cell Metab. , vol.24 , pp. 566-581
    • Fang, E.F.1
  • 136
    • 84880517634 scopus 로고    scopus 로고
    • + /Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • PID: 23870130
    • + /Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013)
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 137
    • 80053920774 scopus 로고    scopus 로고
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • PID: 21982712
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011)
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1    Mills, K.F.2    Yoon, M.J.3    Imai, S.4
  • 138
    • 84911938474 scopus 로고    scopus 로고
    • PMI: a δPsim independent pharmacological regulator of mitophagy
    • PID: 25455860
    • East, D. A. et al. PMI: a δPsim independent pharmacological regulator of mitophagy. Chem. Biol. 21, 1585–1596 (2014)
    • (2014) Chem. Biol. , vol.21 , pp. 1585-1596
    • East, D.A.1
  • 139
    • 77954599053 scopus 로고    scopus 로고
    • p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
    • PID: 20452972
    • Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010)
    • (2010) J. Biol. Chem. , vol.285 , pp. 22576-22591
    • Jain, A.1
  • 140
    • 84897093101 scopus 로고    scopus 로고
    • Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
    • PID: 24667209
    • Jo, C. et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496 (2014)
    • (2014) Nat. Commun. , vol.5
    • Jo, C.1
  • 142
  • 143
    • 84887464529 scopus 로고    scopus 로고
    • MitoTimer: a novel tool for monitoring mitochondrial turnover
    • PID: 24128932
    • Hernandez, G. et al. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9, 1852–1861 (2013)
    • (2013) Autophagy , vol.9 , pp. 1852-1861
    • Hernandez, G.1
  • 144
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • PID: 9560156
    • Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998)
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1
  • 145
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • PID: 24784582
    • Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014)
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 146
    • 85017499246 scopus 로고    scopus 로고
    • Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity
    • PID: 28414322
    • Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475–483 (2017)
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 475-483
    • Kumar, A.1
  • 147
    • 80355132734 scopus 로고    scopus 로고
    • A fluorescence microscopy assay for monitoring mitophagy in the yeast Saccharomyces cerevisiae
    • Mijaljica, D., Prescott, M. & Devenish, R. J. A fluorescence microscopy assay for monitoring mitophagy in the yeast Saccharomyces cerevisiae. J. Vis. Exp. 18, 2779 (2011)
    • (2011) J. Vis. Exp. , vol.18 , pp. 2779
    • Mijaljica, D.1    Prescott, M.2    Devenish, R.J.3
  • 148
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • PID: 23770887
    • Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013)
    • (2013) Nat. Commun. , vol.4
    • Riley, B.E.1
  • 149
    • 85041123859 scopus 로고    scopus 로고
    • Structure of PINK1 in complex with its substrate ubiquitin
    • PID: 29160309
    • Schubert, A. F. et al. Structure of PINK1 in complex with its substrate ubiquitin. Nature 552, 51–56 (2017)
    • (2017) Nature , vol.552 , pp. 51-56
    • Schubert, A.F.1
  • 150
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson’s disease caused by mutations in PINK1
    • PID: 15087508
    • Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004)
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.