-
1
-
-
85019258008
-
Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover
-
PID: 28461251
-
Palikaras, K., Daskalaki, I., Markaki, M. & Tavernarakis, N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther. 178, 157–174 (2017)
-
(2017)
Pharmacol. Ther.
, vol.178
, pp. 157-174
-
-
Palikaras, K.1
Daskalaki, I.2
Markaki, M.3
Tavernarakis, N.4
-
2
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
PID: 22743996
-
Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013)
-
(2013)
Cell Death Differ.
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
3
-
-
84955242756
-
Ubiquitin-dependent And independent signals in selective autophagy
-
PID: 26437584
-
Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent And independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016)
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
4
-
-
85042076557
-
Mitophagy and quality control mechanisms in mitochondrial maintenance
-
PID: 29462587
-
Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018)
-
(2018)
Curr. Biol.
, vol.28
, pp. R170-R185
-
-
Pickles, S.1
Vigie, P.2
Youle, R.J.3
-
5
-
-
85041110575
-
Building and decoding ubiquitin chains for mitophagy
-
PID: 29358684
-
Harper, J. W., Ordureau, A. & Heo, J. M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018)
-
(2018)
Nat. Rev. Mol. Cell Biol.
, vol.19
, pp. 93-108
-
-
Harper, J.W.1
Ordureau, A.2
Heo, J.M.3
-
6
-
-
85040338933
-
PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol
-
PID: 29325568
-
Sekine, S. & Youle, R. J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 16, 2 (2018)
-
(2018)
BMC Biol.
, vol.16
-
-
Sekine, S.1
Youle, R.J.2
-
7
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
PID: 24270810
-
Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013)
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
-
8
-
-
85009266835
-
Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation
-
PID: 28007983
-
Aguirre, J. D., Dunkerley, K. M., Mercier, P. & Shaw, G. S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl Acad. Sci. USA 114, 298–303 (2017)
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 298-303
-
-
Aguirre, J.D.1
Dunkerley, K.M.2
Mercier, P.3
Shaw, G.S.4
-
9
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
PID: 25284222
-
Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375 (2014)
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
-
10
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
PID: 24896179
-
Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014)
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
-
11
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
PID: 24852371
-
Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014)
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
-
12
-
-
84923167247
-
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
PID: 25621951
-
Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160–169 (2015)
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 160-169
-
-
Cunningham, C.N.1
-
13
-
-
85030661011
-
Mechanism and regulation of the Lys6-selective deubiquitinase USP30
-
PID: 28945249
-
Gersch, M. et al. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol. 24, 920–930 (2017)
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 920-930
-
-
Gersch, M.1
-
14
-
-
84929676117
-
Deubiquitinating enzymes regulate PARK2-mediated mitophagy
-
PID: 25915564
-
Wang, Y. et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595–606 (2015)
-
(2015)
Autophagy
, vol.11
, pp. 595-606
-
-
Wang, Y.1
-
15
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
PID: 21296869
-
Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737 (2011)
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
-
16
-
-
84948991793
-
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice
-
PID: 26785495
-
Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015)
-
(2015)
Science
, vol.350
, pp. aad2459
-
-
Gong, G.1
-
17
-
-
85045261197
-
Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics
-
PID: 29656925
-
Ordureau, A. et al. Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol. Cell 70, 211–227 (2018)
-
(2018)
Mol. Cell
, vol.70
, pp. 211-227
-
-
Ordureau, A.1
-
18
-
-
84994565816
-
Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
-
PID: 27667366
-
Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395–403 (2016)
-
(2016)
Cell Syst.
, vol.3
, pp. 395-403
-
-
Rose, C.M.1
-
19
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
PID: 23503661
-
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376 (2013)
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
20
-
-
84980027958
-
Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
-
PID: 27458136
-
McLelland, G. L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214, 275–291 (2016)
-
(2016)
J. Cell Biol.
, vol.214
, pp. 275-291
-
-
McLelland, G.L.1
Lee, S.A.2
McBride, H.M.3
Fon, E.A.4
-
21
-
-
84969244054
-
PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy
-
PID: 27091447
-
Pryde, K. R., Smith, H. L., Chau, K. Y. & Schapira, A. H. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 213, 163–171 (2016)
-
(2016)
J. Cell Biol.
, vol.213
, pp. 163-171
-
-
Pryde, K.R.1
Smith, H.L.2
Chau, K.Y.3
Schapira, A.H.4
-
22
-
-
84856221632
-
A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
-
PID: 22226745
-
Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012)
-
(2012)
Curr. Biol.
, vol.22
, pp. 135-141
-
-
Soubannier, V.1
-
23
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
PID: 21173115
-
Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010)
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
24
-
-
85030264578
-
Mitochondrial fission facilitates the selective mitophagy of protein aggregates
-
PID: 28893839
-
Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017)
-
(2017)
J. Cell Biol.
, vol.216
, pp. 3231-3247
-
-
Burman, J.L.1
-
25
-
-
84876531457
-
2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
PID: 23620051
-
Chen, Y. & Dorn, G. W. 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013)
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
26
-
-
85051849510
-
Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
-
PID: 29676259
-
McLelland, G. L. et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. eLife 7, e32866 (2018)
-
(2018)
eLife
, vol.7
-
-
McLelland, G.L.1
-
27
-
-
85013070354
-
PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation
-
PID: 28368777
-
Gelmetti, V. et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13, 654–669 (2017)
-
(2017)
Autophagy
, vol.13
, pp. 654-669
-
-
Gelmetti, V.1
-
28
-
-
84991486065
-
Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility
-
Shlevkov, E., Kramer, T., Schapansky, J., LaVoie, M. J. & Schwarz, T. L. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc. Natl Acad. Sci. USA 113, 6097–6106 (2016)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 6097-6106
-
-
Shlevkov, E.1
Kramer, T.2
Schapansky, J.3
LaVoie, M.J.4
Schwarz, T.L.5
-
29
-
-
84876524198
-
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
-
PID: 23427266
-
Fu, M. et al. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 24, 1153–1162 (2013)
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 1153-1162
-
-
Fu, M.1
-
30
-
-
84871426886
-
The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli
-
PID: 23140641
-
Lokireddy, S. et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 16, 613–624 (2012)
-
(2012)
Cell Metab.
, vol.16
, pp. 613-624
-
-
Lokireddy, S.1
-
31
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
PID: 22020285
-
Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011)
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
-
32
-
-
85014332041
-
The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway
-
PID: 27334109
-
Szargel, R. et al. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol. Genet. 25, 3476–3490 (2016)
-
(2016)
Hum Mol. Genet.
, vol.25
, pp. 3476-3490
-
-
Szargel, R.1
-
33
-
-
85029596408
-
Parkin-independent mitophagy controls chemotherapeutic response in cancer cells
-
PID: 28930681
-
Villa, E. et al. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep. 20, 2846–2859 (2017)
-
(2017)
Cell Rep.
, vol.20
, pp. 2846-2859
-
-
Villa, E.1
-
34
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
PID: 26266977
-
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015)
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
35
-
-
84951930787
-
The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
PID: 26365381
-
Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015)
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
36
-
-
84974815636
-
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
-
PID: 27247382
-
Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349–3358 (2016)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E3349-E3358
-
-
Moore, A.S.1
Holzbaur, E.L.2
-
37
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
PID: 27035970
-
Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
-
38
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
PID: 20573959
-
Ding, W. X. et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285, 27879–27890 (2010)
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27879-27890
-
-
Ding, W.X.1
-
39
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
PID: 20098416
-
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010)
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
-
40
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
PID: 20126261
-
Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010)
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
-
41
-
-
84942982653
-
ATM functions at the peroxisome to induce pexophagy in response to ROS
-
PID: 26344566
-
Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259–1269 (2015)
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1259-1269
-
-
Zhang, J.1
-
42
-
-
84959420149
-
NF-κB restricts inflammasome activation via elimination of damaged mitochondria
-
PID: 26919428
-
Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016)
-
(2016)
Cell
, vol.164
, pp. 896-910
-
-
Zhong, Z.1
-
43
-
-
85042582747
-
Cargo recognition and degradation by selective autophagy
-
PID: 29476151
-
Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018)
-
(2018)
Nat. Cell Biol.
, vol.20
, pp. 233-242
-
-
Gatica, D.1
Lahiri, V.2
Klionsky, D.J.3
-
44
-
-
84883487916
-
Casein kinase 2 is essential for mitophagy
-
PID: 23897086
-
Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788–794 (2013)
-
(2013)
EMBO Rep.
, vol.14
, pp. 788-794
-
-
Kanki, T.1
-
45
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
PID: 23810512
-
Mao, K., Wang, K., Liu, X. & Klionsky, D. J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26, 9–18 (2013)
-
(2013)
Dev. Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
46
-
-
84936132577
-
Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
-
PID: 26146385
-
Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527 (2015)
-
(2015)
Nat. Commun.
, vol.6
-
-
Murakawa, T.1
-
47
-
-
85017589321
-
FKBP8 recruits LC3A to mediate Parkin-independent mitophagy
-
PID: 28381481
-
Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947–961 (2017)
-
(2017)
EMBO Rep.
, vol.18
, pp. 947-961
-
-
Bhujabal, Z.1
-
48
-
-
85019552076
-
Parkin-independent mitophagy-FKBP8 takes the stage
-
PID: 28515082
-
Lim, G. G. & Lim, K. L. Parkin-independent mitophagy-FKBP8 takes the stage. EMBO Rep. 18, 864–865 (2017)
-
(2017)
EMBO Rep.
, vol.18
, pp. 864-865
-
-
Lim, G.G.1
Lim, K.L.2
-
49
-
-
34948816749
-
Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice
-
PID: 17909626
-
Diwan, A. et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest. 117, 2825–2833 (2007)
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 2825-2833
-
-
Diwan, A.1
-
50
-
-
85018982980
-
Programmed mitophagy is essential for the glycolytic switch during cell differentiation
-
PID: 28465321
-
Esteban-Martinez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688–1706 (2017)
-
(2017)
EMBO J.
, vol.36
, pp. 1688-1706
-
-
Esteban-Martinez, L.1
-
51
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
PID: 18454133
-
Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008)
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
-
52
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
PID: 18048346
-
Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007)
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
-
53
-
-
67650219052
-
Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy
-
PID: 19363302
-
Schwarten, M. et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698 (2009)
-
(2009)
Autophagy
, vol.5
, pp. 690-698
-
-
Schwarten, M.1
-
54
-
-
85018942395
-
Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins
-
PID: 28442745
-
Rogov, V. V. et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7, 1131 (2017)
-
(2017)
Sci. Rep.
, vol.7
-
-
Rogov, V.V.1
-
55
-
-
84877578621
-
Rheb regulates mitophagy induced by mitochondrial energetic status
-
PID: 23602449
-
Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719–730 (2013)
-
(2013)
Cell Metab.
, vol.17
, pp. 719-730
-
-
Melser, S.1
-
56
-
-
77957683915
-
Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
-
PID: 20668412
-
Quinsay, M. N., Thomas, R. L., Lee, Y. & Gustafsson, A. B. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855–862 (2010)
-
(2010)
Autophagy
, vol.6
, pp. 855-862
-
-
Quinsay, M.N.1
Thomas, R.L.2
Lee, Y.3
Gustafsson, A.B.4
-
57
-
-
77952672872
-
Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism
-
PID: 20025887
-
Quinsay, M. N. et al. Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J. Mol. Cell Cardiol. 48, 1146–1156 (2010)
-
(2010)
J. Mol. Cell Cardiol.
, vol.48
, pp. 1146-1156
-
-
Quinsay, M.N.1
-
58
-
-
84990224594
-
BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy
-
PID: 27528605
-
Zhang, T. et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291, 21616–21629 (2016)
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 21616-21629
-
-
Zhang, T.1
-
59
-
-
80355127945
-
Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
-
Lee, Y., Lee, H. Y., Hanna, R. A. & Gustafsson, A. B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, 1924–1931 (2011)
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. 1924-1931
-
-
Lee, Y.1
Lee, H.Y.2
Hanna, R.A.3
Gustafsson, A.B.4
-
60
-
-
84929709305
-
The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway
-
PID: 25612572
-
Gao, F. et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528–2538 (2015)
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 2528-2538
-
-
Gao, F.1
-
61
-
-
84930632378
-
Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans
-
PID: 25896323
-
Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015)
-
(2015)
Nature
, vol.521
, pp. 525-528
-
-
Palikaras, K.1
Lionaki, E.2
Tavernarakis, N.3
-
62
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
PID: 22267086
-
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012)
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
-
63
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
PID: 24746696
-
Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014)
-
(2014)
Mol. Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
-
64
-
-
84964533976
-
Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy
-
PID: 27050458
-
Chen, M. et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12, 689–702 (2016)
-
(2016)
Autophagy
, vol.12
, pp. 689-702
-
-
Chen, M.1
-
65
-
-
85027940408
-
FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions
-
PID: 27145933
-
Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016)
-
(2016)
EMBO J.
, vol.35
, pp. 1368-1384
-
-
Wu, W.1
-
66
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
PID: 24671035
-
Wu, W. et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15, 566–575 (2014)
-
(2014)
EMBO Rep.
, vol.15
, pp. 566-575
-
-
Wu, W.1
-
68
-
-
84937514081
-
Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans
-
PID: 26144971
-
Schiavi, A. et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol. 25, 1810–1822 (2015)
-
(2015)
Curr. Biol.
, vol.25
, pp. 1810-1822
-
-
Schiavi, A.1
-
69
-
-
85009178435
-
Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
-
PID: 28017329
-
Wei, Y., Chiang, W. C., Sumpter, R. Jr., Mishra, P. & Levine, B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224–238 (2017)
-
(2017)
Cell
, vol.168
, pp. 224-238
-
-
Wei, Y.1
Chiang, W.C.2
Sumpter, R.3
Mishra, P.4
Levine, B.5
-
70
-
-
85041679011
-
PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver
-
PID: 29416008
-
Xiao, Y., Zhou, Y., Lu, Y., Zhou, K. & Cai, W. PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver. Cell Death Dis. 9, 160 (2018)
-
(2018)
Cell Death Dis.
, vol.9
-
-
Xiao, Y.1
Zhou, Y.2
Lu, Y.3
Zhou, K.4
Cai, W.5
-
71
-
-
84885176082
-
Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
-
PID: 24036476
-
Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013)
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1197-1205
-
-
Chu, C.T.1
-
72
-
-
85013374254
-
Cardiolipin regulates mitophagy through the protein kinase C pathway
-
PID: 28062576
-
Shen, Z., Li, Y., Gasparski, A. N., Abeliovich, H. & Greenberg, M. L. Cardiolipin regulates mitophagy through the protein kinase C pathway. J. Biol. Chem. 292, 2916–2923 (2017)
-
(2017)
J. Biol. Chem.
, vol.292
, pp. 2916-2923
-
-
Shen, Z.1
Li, Y.2
Gasparski, A.N.3
Abeliovich, H.4
Greenberg, M.L.5
-
73
-
-
84979966353
-
Mito-QC illuminates mitophagy and mitochondrial architecture in vivo
-
PID: 27458135
-
McWilliams, T. G. et al. Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333–345 (2016)
-
(2016)
J. Cell Biol.
, vol.214
, pp. 333-345
-
-
McWilliams, T.G.1
-
74
-
-
84947802088
-
Measuring in vivo mitophagy
-
PID: 26549682
-
Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015)
-
(2015)
Mol. Cell
, vol.60
, pp. 685-696
-
-
Sun, N.1
-
75
-
-
85040344962
-
Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
-
PID: 29337137
-
McWilliams, T. G. et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27, 439–449 (2018)
-
(2018)
Cell Metab.
, vol.27
, pp. 439-449
-
-
McWilliams, T.G.1
-
76
-
-
85034779911
-
Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway
-
PID: 29149599
-
Le Guerroue, F. et al. Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway. Mol. Cell 68, 786–796 (2017)
-
(2017)
Mol. Cell
, vol.68
, pp. 786-796
-
-
Le Guerroue, F.1
-
77
-
-
85045854103
-
Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin
-
Lee, J. J. et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol. http://doi.org/gdjh3h (2018)
-
(2018)
J. Cell Biol
-
-
Lee, J.J.1
-
78
-
-
84864015441
-
BNip3 regulates mitochondrial function and lipid metabolism in the liver
-
PID: 22547685
-
Glick, D. et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell Biol. 32, 2570–2584 (2012)
-
(2012)
Mol. Cell Biol.
, vol.32
, pp. 2570-2584
-
-
Glick, D.1
-
79
-
-
0033068143
-
BNIP3α: a human homolog of mitochondrial proapoptotic protein BNIP3
-
PID: 9973195
-
Yasuda, M., Han, J. W., Dionne, C. A., Boyd, J. M. & Chinnadurai, G. BNIP3α: a human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res. 59, 533–537 (1999)
-
(1999)
Cancer Res.
, vol.59
, pp. 533-537
-
-
Yasuda, M.1
Han, J.W.2
Dionne, C.A.3
Boyd, J.M.4
Chinnadurai, G.5
-
80
-
-
85012975461
-
PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo?
-
PID: 28213158
-
Whitworth, A. J. & Pallanck, L. J. PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr. Opin. Genet. Dev. 44, 47–53 (2017)
-
(2017)
Curr. Opin. Genet. Dev.
, vol.44
, pp. 47-53
-
-
Whitworth, A.J.1
Pallanck, L.J.2
-
81
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
PID: 19619495
-
Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009)
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
82
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
PID: 18818209
-
Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386–32393 (2008)
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
83
-
-
73449118234
-
A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria
-
PID: 19770589
-
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5, 1203–1205 (2009)
-
(2009)
Autophagy
, vol.5
, pp. 1203-1205
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
84
-
-
84878780410
-
Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
-
PID: 23660403
-
Eiyama, A., Kondo-Okamoto, N. & Okamoto, K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587, 1787–1792 (2013)
-
(2013)
FEBS Lett.
, vol.587
, pp. 1787-1792
-
-
Eiyama, A.1
Kondo-Okamoto, N.2
Okamoto, K.3
-
85
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
PID: 18281291
-
Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008)
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
-
86
-
-
84926624248
-
Hypoxia activation of mitophagy and its role in disease pathogenesis
-
PID: 25526784
-
Wu, H. & Chen, Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid. Redox Signal 22, 1032–1046 (2015)
-
(2015)
Antioxid. Redox Signal
, vol.22
, pp. 1032-1046
-
-
Wu, H.1
Chen, Q.2
-
87
-
-
84953385654
-
Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro
-
PID: 26742768
-
Maugeri, G. et al. Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res. 364, 465–474 (2016)
-
(2016)
Cell Tissue Res.
, vol.364
, pp. 465-474
-
-
Maugeri, G.1
-
88
-
-
84940718214
-
Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
-
PID: 25831013
-
Hirota, Y. et al. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332–343 (2015)
-
(2015)
Autophagy
, vol.11
, pp. 332-343
-
-
Hirota, Y.1
-
89
-
-
84898652320
-
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
-
PID: 24569479
-
Yamano, K., Fogel, A. I., Wang, C., van der Bliek, A. M. & Youle, R. J. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3, e01612 (2014)
-
(2014)
eLife
, vol.3
-
-
Yamano, K.1
Fogel, A.I.2
Wang, C.3
van der Bliek, A.M.4
Youle, R.J.5
-
90
-
-
85044777319
-
The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A
-
PID: 29634932
-
Puri, C. et al. The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell 45, 114–131 (2018)
-
(2018)
Dev. Cell
, vol.45
, pp. 114-131
-
-
Puri, C.1
-
91
-
-
85034598347
-
Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy
-
PID: 29158324
-
Jimenez-Orgaz, A. et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 37, 235–254 (2018)
-
(2018)
EMBO J.
, vol.37
, pp. 235-254
-
-
Jimenez-Orgaz, A.1
-
92
-
-
85042126166
-
Endosomal Rab cycles regulate Parkin-mediated mitophagy
-
PID: 29360040
-
Yamano, K. et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7, e31326 (2018)
-
(2018)
eLife
, vol.7
-
-
Yamano, K.1
-
93
-
-
84902007678
-
Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
-
PID: 24895007
-
Honda, S. et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004 (2014)
-
(2014)
Nat. Commun.
, vol.5
-
-
Honda, S.1
-
94
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
PID: 20010802
-
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010)
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
-
95
-
-
82255183165
-
Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
-
PID: 22033522
-
Al Rawi, S. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147 (2011)
-
(2011)
Science
, vol.334
, pp. 1144-1147
-
-
Al Rawi, S.1
-
96
-
-
85000919223
-
Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
-
PID: 27852436
-
Rojansky, R., Cha, M. Y. & Chan, D. C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896 (2016)
-
(2016)
eLife
, vol.5
-
-
Rojansky, R.1
Cha, M.Y.2
Chan, D.C.3
-
97
-
-
82255192465
-
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos
-
PID: 21998252
-
Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011)
-
(2011)
Science
, vol.334
, pp. 1141-1144
-
-
Sato, M.1
Sato, K.2
-
98
-
-
84948985030
-
METABOLISM. Mitochondria shape cardiac metabolism
-
PID: 26785456
-
Gottlieb, R. A. & Bernstein, D. METABOLISM. Mitochondria shape cardiac metabolism. Science 350, 1162–1163 (2015)
-
(2015)
Science
, vol.350
, pp. 1162-1163
-
-
Gottlieb, R.A.1
Bernstein, D.2
-
99
-
-
84981488617
-
Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
-
PID: 27295498
-
Vazquez-Martin, A. et al. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging 8, 1330–1352 (2016)
-
(2016)
Aging
, vol.8
, pp. 1330-1352
-
-
Vazquez-Martin, A.1
-
100
-
-
85027528273
-
BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming
-
PID: 28722510
-
Xiang, G. et al. BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy 13, 1543–1555 (2017)
-
(2017)
Autophagy
, vol.13
, pp. 1543-1555
-
-
Xiang, G.1
-
101
-
-
84958778985
-
Energy metabolism plays a critical role in stem cell maintenance and differentiation
-
PID: 26901195
-
Hu, C. et al. Energy metabolism plays a critical role in stem cell maintenance and differentiation. Int. J. Mol. Sci. 17, 253 (2016)
-
(2016)
Int. J. Mol. Sci.
, vol.17
, pp. 253
-
-
Hu, C.1
-
102
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
PID: 21803296
-
Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011)
-
(2011)
Cell Metab.
, vol.14
, pp. 264-271
-
-
Folmes, C.D.1
-
103
-
-
79959344616
-
PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function
-
PID: 21606348
-
Billia, F. et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc. Natl Acad. Sci. USA 108, 9572–9577 (2011)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 9572-9577
-
-
Billia, F.1
-
104
-
-
84882425828
-
Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
-
PID: 23917356
-
Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013)
-
(2013)
Nat. Commun.
, vol.4
-
-
Hoshino, A.1
-
105
-
-
85017035000
-
Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury
-
PID: 28323531
-
Zhang, W., Siraj, S., Zhang, R. & Chen, Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy 13, 1080–1081 (2017)
-
(2017)
Autophagy
, vol.13
, pp. 1080-1081
-
-
Zhang, W.1
Siraj, S.2
Zhang, R.3
Chen, Q.4
-
106
-
-
85009431354
-
Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury
-
PID: 27995894
-
Zhang, W. et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5, e21407 (2016)
-
(2016)
eLife
, vol.5
-
-
Zhang, W.1
-
107
-
-
85045446413
-
Hippocampal mutant APP and amyloid β-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease
-
PID: 29408999
-
Manczak, M., Kandimalla, R., Yin, X. & Reddy, P. H. Hippocampal mutant APP and amyloid β-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 27, 1332–1342 (2018)
-
(2018)
Hum. Mol. Genet.
, vol.27
, pp. 1332-1342
-
-
Manczak, M.1
Kandimalla, R.2
Yin, X.3
Reddy, P.H.4
-
108
-
-
85038255288
-
Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity
-
PID: 29211722
-
Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552, 187–193 (2017)
-
(2017)
Nature
, vol.552
, pp. 187-193
-
-
Sorrentino, V.1
-
109
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
PID: 16672981
-
Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006)
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
-
110
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
PID: 12642658
-
Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003)
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
-
111
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
PID: 16818890
-
Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006)
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
-
112
-
-
84918784944
-
Parkinson’s disease: animal models and dopaminergic cell vulnerability
-
PID: 25565980
-
Blesa, J. & Przedborski, S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155 (2014)
-
(2014)
Front. Neuroanat.
, vol.8
, pp. 155
-
-
Blesa, J.1
Przedborski, S.2
-
113
-
-
2642580016
-
Premature ageing in mice expressing defective mitochondrial DNA polymerase
-
PID: 15164064
-
Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004)
-
(2004)
Nature
, vol.429
, pp. 417-423
-
-
Trifunovic, A.1
-
114
-
-
84937438976
-
Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress
-
PID: 26182419
-
Pickrell, A. M. et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87, 371–381 (2015)
-
(2015)
Neuron
, vol.87
, pp. 371-381
-
-
Pickrell, A.M.1
-
115
-
-
84994834600
-
Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease
-
PID: 27618216
-
Hsieh, C. H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016)
-
(2016)
Cell Stem Cell
, vol.19
, pp. 709-724
-
-
Hsieh, C.H.1
-
116
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
PID: 22078885
-
Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011)
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
-
117
-
-
85028756540
-
Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease
-
PID: 28598233
-
Lahiri, V. & Klionsky, D. J. Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease. Autophagy 13, 1259–1261 (2017)
-
(2017)
Autophagy
, vol.13
, pp. 1259-1261
-
-
Lahiri, V.1
Klionsky, D.J.2
-
118
-
-
84978437500
-
Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation
-
PID: 27345367
-
Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016)
-
(2016)
Cell
, vol.166
, pp. 314-327
-
-
Matheoud, D.1
-
119
-
-
84903694914
-
Transcellular degradation of axonal mitochondria
-
PID: 24979790
-
Davis, C. H. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 9633-9638
-
-
Davis, C.H.1
-
120
-
-
85038839293
-
Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells
-
PID: 29242539
-
Jin, G. et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat. Immunol. 19, 29–40 (2018)
-
(2018)
Nat. Immunol.
, vol.19
, pp. 29-40
-
-
Jin, G.1
-
121
-
-
0036061644
-
Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy
-
PID: 12053174
-
Yussman, M. G. et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat. Med. 8, 725–730 (2002)
-
(2002)
Nat. Med.
, vol.8
, pp. 725-730
-
-
Yussman, M.G.1
-
122
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
PID: 19229244
-
Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939–946 (2009)
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
123
-
-
85009987918
-
The pharmacological regulation of cellular mitophagy
-
PID: 28103219
-
Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017)
-
(2017)
Nat. Chem. Biol.
, vol.13
, pp. 136-146
-
-
Georgakopoulos, N.D.1
Wells, G.2
Campanella, M.3
-
124
-
-
84883709817
-
AMPK: a target for drugs and natural products with effects on both diabetes and cancer
-
PID: 23801715
-
Hardie, D. G. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62, 2164–2172 (2013)
-
(2013)
Diabetes
, vol.62
, pp. 2164-2172
-
-
Hardie, D.G.1
-
125
-
-
84978708804
-
AMPK activators: mechanisms of action and physiological activities
-
PID: 27034026
-
Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48, e224 (2016)
-
(2016)
Exp. Mol. Med.
, vol.48
-
-
Kim, J.1
Yang, G.2
Kim, Y.3
Kim, J.4
Ha, J.5
-
126
-
-
84890850876
-
mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
-
PID: 24231806
-
Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013)
-
(2013)
Science
, vol.342
, pp. 1524-1528
-
-
Johnson, S.C.1
-
127
-
-
70349750492
-
Rapamycin protects against rotenone-induced apoptosis through autophagy induction
-
PID: 19682553
-
Pan, T. et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541–551 (2009)
-
(2009)
Neuroscience
, vol.164
, pp. 541-551
-
-
Pan, T.1
-
128
-
-
84954320623
-
Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53
-
Song, Y. M. et al. Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53. Int. J. Mol. Sci. 17, 122 (2016)
-
(2016)
Int. J. Mol. Sci.
, vol.17
, pp. 122
-
-
Song, Y.M.1
-
129
-
-
84896824550
-
Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes
-
PID: 24516131
-
Hoshino, A. et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc. Natl Acad. Sci. USA 111, 3116–3121 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 3116-3121
-
-
Hoshino, A.1
-
130
-
-
84995467810
-
Cardioprotection and lifespan extension by the natural polyamine spermidine
-
PID: 27841876
-
Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016)
-
(2016)
Nat. Med.
, vol.22
, pp. 1428-1438
-
-
Eisenberg, T.1
-
131
-
-
70449529855
-
Induction of autophagy by spermidine promotes longevity
-
PID: 19801973
-
Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009)
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1305-1314
-
-
Eisenberg, T.1
-
132
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
PID: 17112576
-
Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006)
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
133
-
-
84978136448
-
Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents
-
PID: 27400265
-
Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016)
-
(2016)
Nat. Med.
, vol.22
, pp. 879-888
-
-
Ryu, D.1
-
134
-
-
85021860164
-
Doxycycline induces mitophagy and suppresses production of interferon-β in IPEC-J2 cells
-
PID: 28203548
-
Xing, Y., Liqi, Z., Jian, L., Qinghua, Y. & Qian, Y. Doxycycline induces mitophagy and suppresses production of interferon-β in IPEC-J2 cells. Front. Cell. Infect. Microbiol. 7, 21 (2017)
-
(2017)
Front. Cell. Infect. Microbiol.
, vol.7
, pp. 21
-
-
Xing, Y.1
Liqi, Z.2
Jian, L.3
Qinghua, Y.4
Qian, Y.5
-
135
-
-
84992343671
-
+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair
-
PID: 27732836
-
+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016)
-
(2016)
Cell Metab.
, vol.24
, pp. 566-581
-
-
Fang, E.F.1
-
136
-
-
84880517634
-
+ /Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
-
PID: 23870130
-
+ /Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013)
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
-
137
-
-
80053920774
-
+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
PID: 21982712
-
+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011)
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
138
-
-
84911938474
-
PMI: a δPsim independent pharmacological regulator of mitophagy
-
PID: 25455860
-
East, D. A. et al. PMI: a δPsim independent pharmacological regulator of mitophagy. Chem. Biol. 21, 1585–1596 (2014)
-
(2014)
Chem. Biol.
, vol.21
, pp. 1585-1596
-
-
East, D.A.1
-
139
-
-
77954599053
-
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
PID: 20452972
-
Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010)
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
-
140
-
-
84897093101
-
Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
-
PID: 24667209
-
Jo, C. et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496 (2014)
-
(2014)
Nat. Commun.
, vol.5
-
-
Jo, C.1
-
141
-
-
85016784502
-
The multifaceted role of Nrf2 in mitochondrial function
-
PID: 28066829
-
Holmstrom, K. M., Kostov, R. V. & Dinkova-Kostova, A. T. The multifaceted role of Nrf2 in mitochondrial function. Curr. Opin. Toxicol. 1, 80–91 (2016)
-
(2016)
Curr. Opin. Toxicol.
, vol.1
, pp. 80-91
-
-
Holmstrom, K.M.1
Kostov, R.V.2
Dinkova-Kostova, A.T.3
-
143
-
-
84887464529
-
MitoTimer: a novel tool for monitoring mitochondrial turnover
-
PID: 24128932
-
Hernandez, G. et al. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9, 1852–1861 (2013)
-
(2013)
Autophagy
, vol.9
, pp. 1852-1861
-
-
Hernandez, G.1
-
144
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
PID: 9560156
-
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998)
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
-
145
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
PID: 24784582
-
Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014)
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
146
-
-
85017499246
-
Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity
-
PID: 28414322
-
Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475–483 (2017)
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 475-483
-
-
Kumar, A.1
-
147
-
-
80355132734
-
A fluorescence microscopy assay for monitoring mitophagy in the yeast Saccharomyces cerevisiae
-
Mijaljica, D., Prescott, M. & Devenish, R. J. A fluorescence microscopy assay for monitoring mitophagy in the yeast Saccharomyces cerevisiae. J. Vis. Exp. 18, 2779 (2011)
-
(2011)
J. Vis. Exp.
, vol.18
, pp. 2779
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
148
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
PID: 23770887
-
Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013)
-
(2013)
Nat. Commun.
, vol.4
-
-
Riley, B.E.1
-
149
-
-
85041123859
-
Structure of PINK1 in complex with its substrate ubiquitin
-
PID: 29160309
-
Schubert, A. F. et al. Structure of PINK1 in complex with its substrate ubiquitin. Nature 552, 51–56 (2017)
-
(2017)
Nature
, vol.552
, pp. 51-56
-
-
Schubert, A.F.1
-
150
-
-
2442668926
-
Hereditary early-onset Parkinson’s disease caused by mutations in PINK1
-
PID: 15087508
-
Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004)
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
|