메뉴 건너뛰기




Volumn 552, Issue , 2017, Pages 51-56

Structure of PINK1 in complex with its substrate ubiquitin

Author keywords

[No Author keywords available]

Indexed keywords

NANOBODY; PROTEIN KINASE; PROTEIN KINASE PINK1; SERINE; UBIQUITIN; UNCLASSIFIED DRUG; PTEN-INDUCED PUTATIVE KINASE; SINGLE CHAIN FRAGMENT VARIABLE ANTIBODY;

EID: 85041123859     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature24645     Document Type: Article
Times cited : (114)

References (62)
  • 1
    • 0014082977 scopus 로고
    • Parkinsonism: Onset, progression and mortality
    • Hoehn, M. M. & Yahr, M. D. Parkinsonism: onset, progression and mortality. Neurology 17, 427-442 (1967).
    • (1967) Neurology , vol.17 , pp. 427-442
    • Hoehn, M.M.1    Yahr, M.D.2
  • 2
    • 80054787664 scopus 로고    scopus 로고
    • What genetics tells us about the causes and mechanisms of Parkinson's disease
    • Corti, O., Lesage, S. & Brice, A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91, 1161-1218 (2011).
    • (2011) Physiol. Rev. , vol.91 , pp. 1161-1218
    • Corti, O.1    Lesage, S.2    Brice, A.3
  • 3
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 (2004).
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1
  • 4
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 (2006).
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 5
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
    • Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161 (2006).
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1
  • 6
    • 33746080412 scopus 로고    scopus 로고
    • Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
    • Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 103, 10793-10798 (2006).
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10793-10798
    • Yang, Y.1
  • 7
    • 84997782916 scopus 로고    scopus 로고
    • Mechanisms of Parkinson's Disease: Lessons from Drosophila
    • Hewitt, V. L. & Whitworth, A. J. Mechanisms of Parkinson's Disease: Lessons from Drosophila. Curr. Top. Dev. Biol. 121, 173-200 (2017).
    • (2017) Curr. Top. Dev. Biol. , vol.121 , pp. 173-200
    • Hewitt, V.L.1    Whitworth, A.J.2
  • 8
    • 39449088321 scopus 로고    scopus 로고
    • The PINK1/Parkin pathway regulates mitochondrial morphology
    • Poole, A. C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105, 1638-1643 (2008).
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 1638-1643
    • Poole, A.C.1
  • 9
    • 84921369563 scopus 로고    scopus 로고
    • The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease
    • Pickrell, A. M. & Youle, R. J. The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease. Neuron 85, 257-273 (2015).
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 10
    • 84964603365 scopus 로고    scopus 로고
    • Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
    • Bingol, B. & Sheng, M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 100, 210-222 (2016).
    • (2016) Free Radic Biol Med , vol.100 , pp. 210-222
    • Bingol, B.1    Sheng, M.2
  • 11
    • 84925940926 scopus 로고    scopus 로고
    • PINK1 and Parkin - Mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
    • Kazlauskaite, A. & Muqit, M. M. K. PINK1 and Parkin - mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282, 215-223 (2015).
    • (2015) FEBS J , vol.282 , pp. 215-223
    • Kazlauskaite, A.1    Muqit, M.M.K.2
  • 12
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298 (2010).
    • (2010) PLoS Biol , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 13
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    • Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications 3, 1016 (2012).
    • (2012) Nature Communications , vol.3 , pp. 1016
    • Okatsu, K.1
  • 14
    • 84890957474 scopus 로고    scopus 로고
    • A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
    • Okatsu, K. et al. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem 288, 36372-36384 (2013).
    • (2013) J Biol Chem , vol.288 , pp. 36372-36384
    • Okatsu, K.1
  • 15
    • 84921925390 scopus 로고    scopus 로고
    • PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402
    • Aerts, L., Craessaerts, K., De Strooper, B. & Morais, V. A. PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J Biol Chem 290, 2798-2811 (2015).
    • (2015) J Biol Chem , vol.290 , pp. 2798-2811
    • Aerts, L.1    Craessaerts, K.2    De Strooper, B.3    Morais, V.A.4
  • 16
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biology 2, 120080 (2012).
    • (2012) Open Biology , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 17
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 18
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205, 143-153 (2014).
    • (2014) J Cell Biol , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 19
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460, 127-139 (2014).
    • (2014) Biochem J , vol.460 , pp. 127-139
    • Kazlauskaite, A.1
  • 20
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation afects ubiquitin structure, chain assembly and hydrolysis
    • Wauer, T. et al. Ubiquitin Ser65 phosphorylation afects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34, 307-325 (2015).
    • (2015) EMBO J , vol.34 , pp. 307-325
    • Wauer, T.1
  • 21
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • Ordureau, A. et al. Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol Cell 56, 360-375 (2014).
    • (2014) Mol Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 22
    • 84939795423 scopus 로고    scopus 로고
    • Mechanism of phospho-ubiquitin-induced PARKIN activation
    • Wauer, T., Simicek, M., Schubert, A. F. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370-374 (2015).
    • (2015) Nature , vol.524 , pp. 370-374
    • Wauer, T.1    Simicek, M.2    Schubert, A.F.3    Komander, D.4
  • 23
    • 84944441112 scopus 로고    scopus 로고
    • A Ubl/ubiquitin switch in the activation of Parkin
    • Sauvé, V. et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 34, 2492-2505 (2015).
    • (2015) EMBO J , vol.34 , pp. 2492-2505
    • Sauvé, V.1
  • 24
    • 84944441665 scopus 로고    scopus 로고
    • Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
    • Kumar, A. et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 34, 2506-2521 (2015).
    • (2015) EMBO J , vol.34 , pp. 2506-2521
    • Kumar, A.1
  • 25
    • 84938742614 scopus 로고    scopus 로고
    • Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
    • Kazlauskaite, A. et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 16, 939-954 (2015).
    • (2015) EMBO Rep , vol.16 , pp. 939-954
    • Kazlauskaite, A.1
  • 26
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 27
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 28
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a Program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • Heo, J.-M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 60, 7-20 (2015).
    • (2015) Mol Cell , vol.60 , pp. 7-20
    • Heo, J.-M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 30
    • 84864197915 scopus 로고    scopus 로고
    • Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: Analysis of substrate specifcity and impact of mutations
    • Woodroof, H. I. et al. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specifcity and impact of mutations. Open Biology 1, 110012 (2011).
    • (2011) Open Biology , vol.1 , pp. 110012
    • Woodroof, H.I.1
  • 31
    • 85033707007 scopus 로고    scopus 로고
    • An 'invisible' ubiquitin conformation is required for efcient phosphorylation by PINK1
    • Gladkova, C. et al. An 'invisible' ubiquitin conformation is required for efcient phosphorylation by PINK1. EMBO J (2017). doi:10.15252/embj.201797876
    • (2017) EMBO J
    • Gladkova, C.1
  • 32
    • 84956906213 scopus 로고    scopus 로고
    • Nanobodies: Site-specifc labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation
    • Pleiner, T. et al. Nanobodies: site-specifc labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).
    • (2015) ELife , vol.4 , pp. e11349
    • Pleiner, T.1
  • 33
    • 0026342401 scopus 로고
    • Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
    • Knighton, D. R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407-414 (1991).
    • (1991) Science , vol.253 , pp. 407-414
    • Knighton, D.R.1
  • 34
    • 0030812650 scopus 로고    scopus 로고
    • The crystal structure of a phosphorylase kinase peptide substrate complex: Kinase substrate recognition
    • Lowe, E. D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 16, 6646-6658 (1997).
    • (1997) EMBO J , vol.16 , pp. 6646-6658
    • Lowe, E.D.1
  • 35
    • 0029993727 scopus 로고    scopus 로고
    • Active and inactive protein kinases: Structural basis for regulation
    • Johnson, L. N., Noble, M. E. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149-158 (1996).
    • (1996) Cell , vol.85 , pp. 149-158
    • Johnson, L.N.1    Noble, M.E.2    Owen, D.J.3
  • 36
    • 79551594605 scopus 로고    scopus 로고
    • Protein kinases: Evolution of dynamic regulatory proteins
    • Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36, 65-77 (2011).
    • (2011) Trends Biochem Sci , vol.36 , pp. 65-77
    • Taylor, S.S.1    Kornev, A.P.2
  • 37
    • 33750220194 scopus 로고    scopus 로고
    • C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1
    • Sim, C. H. et al. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet 15, 3251-3262 (2006).
    • (2006) Hum Mol Genet , vol.15 , pp. 3251-3262
    • Sim, C.H.1
  • 38
    • 85043683190 scopus 로고    scopus 로고
    • Mechanism and regulation of the Lys6-selective deubiquitinase USP30
    • Gersch, M. et al. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat Struct Mol Biol 510, 370 (2017).
    • (2017) Nat Struct Mol Biol , vol.510 , pp. 370
    • Gersch, M.1
  • 39
    • 84935032647 scopus 로고    scopus 로고
    • PINK1 activation-turning on a promiscuous kinase
    • Aerts, L., De Strooper, B. & Morais, V. A. PINK1 activation-turning on a promiscuous kinase. Biochem Soc Trans 43, 280-286 (2015).
    • (2015) Biochem Soc Trans , vol.43 , pp. 280-286
    • Aerts, L.1    De Strooper, B.2    Morais, V.A.3
  • 40
    • 84858022944 scopus 로고    scopus 로고
    • Microtubule afnity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: Efects on mitochondrial transport
    • Matenia, D., Hempp, C., Timm, T., Eikhof, A. & Mandelkow, E.-M. Microtubule afnity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: efects on mitochondrial transport. J Biol Chem 287, 8174-8186 (2012).
    • (2012) J Biol Chem , vol.287 , pp. 8174-8186
    • Matenia, D.1    Hempp, C.2    Timm, T.3    Eikhof, A.4    Mandelkow, E.-M.5
  • 41
    • 25144502820 scopus 로고    scopus 로고
    • Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR
    • Dar, A. C., Dever, T. E. & Sicheri, F. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122, 887-900 (2005).
    • (2005) Cell , vol.122 , pp. 887-900
    • Dar, A.C.1    Dever, T.E.2    Sicheri, F.3
  • 42
    • 85043697593 scopus 로고    scopus 로고
    • Structure of PINK1 and mechanisms of Parkinson's disease associated mutations
    • Kumar, A. et al. Structure of PINK1 and mechanisms of Parkinson's disease associated mutations. eLife 1-29 (2017). doi:https://doi.org/10.1101/189027
    • (2017) ELife , pp. 1-29
    • Kumar, A.1
  • 43
    • 84882754147 scopus 로고    scopus 로고
    • A neo-substrate that amplifes catalytic activity of Parkinson'sdisease-related kinase PINK1
    • Hertz, N. T. et al. A neo-substrate that amplifes catalytic activity of parkinson'sdisease-related kinase PINK1. Cell 154, 737-747 (2013).
    • (2013) Cell , vol.154 , pp. 737-747
    • Hertz, N.T.1
  • 44
    • 34247846396 scopus 로고    scopus 로고
    • A versatile ligation-independent cloning method suitable for high-throughput expression screening applications
    • Berrow, N. S. et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35, e45 (2007).
    • (2007) Nucleic Acids Res , vol.35 , pp. e45
    • Berrow, N.S.1
  • 45
    • 84894623293 scopus 로고    scopus 로고
    • A general protocol for the generation of Nanobodies for structural biology
    • Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9, 674-693 (2014).
    • (2014) Nat Protoc , vol.9 , pp. 674-693
    • Pardon, E.1
  • 46
    • 85017189972 scopus 로고    scopus 로고
    • Difraction-geometry refnement in the DIALS framework
    • Waterman, D. G. et al. Difraction-geometry refnement in the DIALS framework. Acta Crystallogr D Struct Biol 72, 558-575 (2016).
    • (2016) Acta Crystallogr D Struct Biol , vol.72 , pp. 558-575
    • Waterman, D.G.1
  • 47
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • McCoy, A. J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).
    • (2007) J Appl Crystallogr , vol.40 , pp. 658-674
    • McCoy, A.J.1
  • 48
    • 84994553250 scopus 로고    scopus 로고
    • Crystal structure of a LacY-nanobody complex in a periplasmicopen conformation
    • Jiang, X. et al. Crystal structure of a LacY-nanobody complex in a periplasmicopen conformation. Proceedings of the National Academy of Sciences 113, 12420-12425 (2016).
    • (2016) Proceedings of the National Academy of Sciences , vol.113 , pp. 12420-12425
    • Jiang, X.1
  • 50
    • 80053642374 scopus 로고    scopus 로고
    • The Phenix software for automated determination of macromolecular structures
    • Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94-106 (2011).
    • (2011) Methods , vol.55 , pp. 94-106
    • Adams, P.D.1
  • 51
    • 20144388265 scopus 로고    scopus 로고
    • Quantitative proteomic analysis by accurate mass retention time pairs
    • Silva, J. C. et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77, 2187-2200 (2005).
    • (2005) Anal Chem , vol.77 , pp. 2187-2200
    • Silva, J.C.1
  • 52
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 53
    • 85021395072 scopus 로고    scopus 로고
    • Ubiquitin S65 phosphorylation engenders a pH-sensitive conformational switch
    • Dong, X. et al. Ubiquitin S65 phosphorylation engenders a pH-sensitive conformational switch. Proceedings of the National Academy of Sciences 114, 6770-6775 (2017).
    • (2017) Proceedings of the National Academy of Sciences , vol.114 , pp. 6770-6775
    • Dong, X.1
  • 54
    • 84862061967 scopus 로고    scopus 로고
    • Studying 'invisible' excited protein states in slow exchange with a major state conformation
    • Vallurupalli, P., Bouvignies, G. & Kay, L. E. Studying 'invisible' excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134, 8148-8161 (2012).
    • (2012) J Am Chem Soc , vol.134 , pp. 8148-8161
    • Vallurupalli, P.1    Bouvignies, G.2    Kay, L.E.3
  • 55
    • 77954288774 scopus 로고    scopus 로고
    • Dali server: Conservation mapping in 3D
    • Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-9 (2010).
    • (2010) Nucleic Acids Res , vol.38 , pp. W545-W549
    • Holm, L.1    Rosenström, P.2
  • 56
    • 85007256409 scopus 로고    scopus 로고
    • Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity
    • Wen, Y. et al. Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology 222, 807-813 (2017).
    • (2017) Immunobiology , vol.222 , pp. 807-813
    • Wen, Y.1
  • 57
    • 0023644679 scopus 로고
    • Structure of ubiquitin refned at 1.8 A resolution
    • Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refned at 1.8 A resolution. J Mol Biol 194, 531-544 (1987).
    • (1987) J Mol Biol , vol.194 , pp. 531-544
    • Vijay-Kumar, S.1    Bugg, C.E.2    Cook, W.J.3
  • 58
    • 84966659416 scopus 로고    scopus 로고
    • Structural Basis for Noncanonical Substrate Recognition of Coflin/ADF Proteins by LIM Kinases
    • Hamill, S., Lou, H. J., Turk, B. E. & Boggon, T. J. Structural Basis for Noncanonical Substrate Recognition of Coflin/ADF Proteins by LIM Kinases. Mol Cell 62, 397-408 (2016).
    • (2016) Mol Cell , vol.62 , pp. 397-408
    • Hamill, S.1    Lou, H.J.2    Turk, B.E.3    Boggon, T.J.4
  • 59
    • 84942292078 scopus 로고    scopus 로고
    • Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids
    • Yokoyama, T., Kosaka, Y. & Mizuguchi, M. Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids. J. Med. Chem. 58, 7400-7408 (2015).
    • (2015) J. Med. Chem. , vol.58 , pp. 7400-7408
    • Yokoyama, T.1    Kosaka, Y.2    Mizuguchi, M.3
  • 60
    • 84930625795 scopus 로고    scopus 로고
    • Reversible centriole depletion with an inhibitor of Polo-like kinase 4
    • Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 (2015).
    • (2015) Science , vol.348 , pp. 1155-1160
    • Wong, Y.L.1
  • 61
    • 42449090264 scopus 로고    scopus 로고
    • PROMALS3D: A tool for multiple protein sequence and structure alignments
    • Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36, 2295-2300 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. 2295-2300
    • Pei, J.1    Kim, B.-H.2    Grishin, N.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.