-
1
-
-
0015319592
-
The biologic clock: the mitochondria?
-
1 Harman, D., The biologic clock: the mitochondria?. J Am Geriatr Soc 20 (1972), 145–147.
-
(1972)
J Am Geriatr Soc
, vol.20
, pp. 145-147
-
-
Harman, D.1
-
2
-
-
79959305691
-
Mitochondria: the next (neurode)generation
-
2 Schon, E.A., Przedborski, S., Mitochondria: the next (neurode)generation. Neuron 70 (2011), 1033–1053.
-
(2011)
Neuron
, vol.70
, pp. 1033-1053
-
-
Schon, E.A.1
Przedborski, S.2
-
3
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
3 Wallace, D.C., A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39 (2005), 359–407.
-
(2005)
Annu Rev Genet
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
4
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
4 Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189 (2010), 211–221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
5
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
5 Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R., Youle, R.J., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 8, 2010, e1000298.
-
(2010)
PLoS Biol
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
6
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
6• Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., Youle, R.J., PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205 (2014), 143–153.
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
7
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
7• Kazlauskaite, A., Kondapalli, C., Gourlay, R., Campbell, D.G., Ritorto, M.S., Hofmann, K., Alessi, D.R., Knebel, A., Trost, M., Muqit, M.M., Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460 (2014), 127–139.
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
8
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
These three publications simultaneously reported the discovery that PINK1 phosphorylates ubiquitin at Ser65 to activate Parkin and promote mitophagy. This was an important detail in the mechanism of how PINK1 signalling initiated mitophagy, but also suggests that this modification may be useful as a biomarker for monitoring mitopahgy induction in vivo.
-
8• Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510 (2014), 162–166 These three publications simultaneously reported the discovery that PINK1 phosphorylates ubiquitin at Ser65 to activate Parkin and promote mitophagy. This was an important detail in the mechanism of how PINK1 signalling initiated mitophagy, but also suggests that this modification may be useful as a biomarker for monitoring mitopahgy induction in vivo.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
9
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
9 Narendra, D., Tanaka, A., Suen, D.F., Youle, R.J., Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183 (2008), 795–803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
10
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
10 Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H.I., Campbell, D.G., Gourlay, R., Burchell, L., Walden, H., Macartney, T.J., Deak, M., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol, 2, 2012, 120080.
-
(2012)
Open Biol
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
-
11
-
-
79954520907
-
Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy
-
11 Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., Hess, S., Chan, D.C., Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20 (2011), 1726–1737.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
12
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
12 Ordureau, A., Sarraf, S.A., Duda, D.M., Heo, J.M., Jedrychowski, M.P., Sviderskiy, V.O., Olszewski, J.L., Koerber, J.T., Xie, T., Beausoleil, S.A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56 (2014), 360–375.
-
(2014)
Mol Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
Sarraf, S.A.2
Duda, D.M.3
Heo, J.M.4
Jedrychowski, M.P.5
Sviderskiy, V.O.6
Olszewski, J.L.7
Koerber, J.T.8
Xie, T.9
Beausoleil, S.A.10
-
13
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
13 Pickrell, A.M., Youle, R.J., The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85 (2015), 257–273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
14
-
-
84959481890
-
The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation
-
14 Yamano, K., Matsuda, N., Tanaka, K., The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17 (2016), 300–316.
-
(2016)
EMBO Rep
, vol.17
, pp. 300-316
-
-
Yamano, K.1
Matsuda, N.2
Tanaka, K.3
-
15
-
-
0024390719
-
Mitochondrial complex I deficiency in Parkinson's disease
-
15 Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., Marsden, C.D., Mitochondrial complex I deficiency in Parkinson's disease. Lancet, 1, 1989, 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
-
16
-
-
84864150600
-
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
-
16 Exner, N., Lutz, A.K., Haass, C., Winklhofer, K.F., Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J 31 (2012), 3038–3062.
-
(2012)
EMBO J
, vol.31
, pp. 3038-3062
-
-
Exner, N.1
Lutz, A.K.2
Haass, C.3
Winklhofer, K.F.4
-
17
-
-
33646375711
-
High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
-
17 Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38 (2006), 515–517.
-
(2006)
Nat Genet
, vol.38
, pp. 515-517
-
-
Bender, A.1
Krishnan, K.J.2
Morris, C.M.3
Taylor, G.A.4
Reeve, A.K.5
Perry, R.H.6
Jaros, E.7
Hersheson, J.S.8
Betts, J.9
Klopstock, T.10
-
18
-
-
33646351299
-
Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
-
18 Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K., Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38 (2006), 518–520.
-
(2006)
Nat Genet
, vol.38
, pp. 518-520
-
-
Kraytsberg, Y.1
Kudryavtseva, E.2
McKee, A.C.3
Geula, C.4
Kowall, N.W.5
Khrapko, K.6
-
19
-
-
84891645843
-
The role of oxidative stress in Parkinson's disease
-
19 Dias, V., Junn, E., Mouradian, M.M., The role of oxidative stress in Parkinson's disease. J Parkinsons Dis 3 (2013), 461–491.
-
(2013)
J Parkinsons Dis
, vol.3
, pp. 461-491
-
-
Dias, V.1
Junn, E.2
Mouradian, M.M.3
-
20
-
-
39449098267
-
Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
-
20 Haque, M.E., Thomas, K.J., D'Souza, C., Callaghan, S., Kitada, T., Slack, R.S., Fraser, P., Cookson, M.R., Tandon, A., Park, D.S., Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci U S A 105 (2008), 1716–1721.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 1716-1721
-
-
Haque, M.E.1
Thomas, K.J.2
D'Souza, C.3
Callaghan, S.4
Kitada, T.5
Slack, R.S.6
Fraser, P.7
Cookson, M.R.8
Tandon, A.9
Park, D.S.10
-
21
-
-
33947282153
-
DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice
-
21 Paterna, J.C., Leng, A., Weber, E., Feldon, J., Bueler, H., DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 15 (2007), 698–704.
-
(2007)
Mol Ther
, vol.15
, pp. 698-704
-
-
Paterna, J.C.1
Leng, A.2
Weber, E.3
Feldon, J.4
Bueler, H.5
-
22
-
-
33744963796
-
Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells
-
22 Rosen, K.M., Veereshwarayya, V., Moussa, C.E., Fu, Q., Goldberg, M.S., Schlossmacher, M.G., Shen, J., Querfurth, H.W., Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells. J Biol Chem 281 (2006), 12809–12816.
-
(2006)
J Biol Chem
, vol.281
, pp. 12809-12816
-
-
Rosen, K.M.1
Veereshwarayya, V.2
Moussa, C.E.3
Fu, Q.4
Goldberg, M.S.5
Schlossmacher, M.G.6
Shen, J.7
Querfurth, H.W.8
-
23
-
-
84873427020
-
Neuronal vulnerability, pathogenesis, and Parkinson's disease
-
23 Sulzer, D., Surmeier, D.J., Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 28 (2013), 41–50.
-
(2013)
Mov Disord
, vol.28
, pp. 41-50
-
-
Sulzer, D.1
Surmeier, D.J.2
-
24
-
-
84966415622
-
Intracellular pH modulates autophagy and mitophagy
-
24 Berezhnov, A.V., Soutar, M.P., Fedotova, E.I., Frolova, M.S., Plun-Favreau, H., Zinchenko, V.P., Abramov, A.Y., Intracellular pH modulates autophagy and mitophagy. J Biol Chem 291 (2016), 8701–8708.
-
(2016)
J Biol Chem
, vol.291
, pp. 8701-8708
-
-
Berezhnov, A.V.1
Soutar, M.P.2
Fedotova, E.I.3
Frolova, M.S.4
Plun-Favreau, H.5
Zinchenko, V.P.6
Abramov, A.Y.7
-
25
-
-
84900801787
-
Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation
-
25 MacVicar, T.D., Lane, J.D., Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J Cell Sci 127 (2014), 2313–2325.
-
(2014)
J Cell Sci
, vol.127
, pp. 2313-2325
-
-
MacVicar, T.D.1
Lane, J.D.2
-
26
-
-
79961239061
-
Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
-
26 Sterky, F.H., Lee, S., Wibom, R., Olson, L., Larsson, N.G., Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108 (2011), 12937–12942.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 12937-12942
-
-
Sterky, F.H.1
Lee, S.2
Wibom, R.3
Olson, L.4
Larsson, N.G.5
-
27
-
-
79551603345
-
Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization
-
27 Van Laar, V.S., Arnold, B., Cassady, S.J., Chu, C.T., Burton, E.A., Berman, S.B., Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20 (2011), 927–940.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 927-940
-
-
Van Laar, V.S.1
Arnold, B.2
Cassady, S.J.3
Chu, C.T.4
Burton, E.A.5
Berman, S.B.6
-
28
-
-
84858701257
-
Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
-
The first observations of Parkin translocation and mitophagy in live neurons in culture, although this appeared to be restricted to soma. Chemical depolarization was used here.
-
28• Cai, Q., Zakaria, H.M., Simone, A., Sheng, Z.H., Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 22 (2012), 545–552 The first observations of Parkin translocation and mitophagy in live neurons in culture, although this appeared to be restricted to soma. Chemical depolarization was used here.
-
(2012)
Curr Biol
, vol.22
, pp. 545-552
-
-
Cai, Q.1
Zakaria, H.M.2
Simone, A.3
Sheng, Z.H.4
-
29
-
-
84906861963
-
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
-
An independent description of Parkin translocation and mitopahgy in cultured neurons, here observed in distal processes. Importantly, the trigger was localised production of ROS induced by mt-KillerRed as an alternative to chemical depolarization.
-
29•• Ashrafi, G., Schlehe, J.S., LaVoie, M.J., Schwarz, T.L., Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206 (2014), 655–670 An independent description of Parkin translocation and mitopahgy in cultured neurons, here observed in distal processes. Importantly, the trigger was localised production of ROS induced by mt-KillerRed as an alternative to chemical depolarization.
-
(2014)
J Cell Biol
, vol.206
, pp. 655-670
-
-
Ashrafi, G.1
Schlehe, J.S.2
LaVoie, M.J.3
Schwarz, T.L.4
-
30
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
30 Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C.X., Burman, J.L., Sideris, D.P., Fogel, A.I., Youle, R.J., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.X.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
31
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
31 Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27 (2008), 433–446.
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
-
32
-
-
78649866553
-
Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1
-
32 Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T., Surmeier, D.J., Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468 (2010), 696–700.
-
(2010)
Nature
, vol.468
, pp. 696-700
-
-
Guzman, J.N.1
Sanchez-Padilla, J.2
Wokosin, D.3
Kondapalli, J.4
Ilijic, E.5
Schumacker, P.T.6
Surmeier, D.J.7
-
33
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
33 Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
34
-
-
84863726931
-
Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster
-
34 Pimenta de Castro, I., Costa, A.C., Lam, D., Tufi, R., Fedele, V., Moisoi, N., Dinsdale, D., Deas, E., Loh, S.H., Martins, L.M., Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ 19 (2012), 1308–1316.
-
(2012)
Cell Death Differ
, vol.19
, pp. 1308-1316
-
-
Pimenta de Castro, I.1
Costa, A.C.2
Lam, D.3
Tufi, R.4
Fedele, V.5
Moisoi, N.6
Dinsdale, D.7
Deas, E.8
Loh, S.H.9
Martins, L.M.10
-
35
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
35 Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B., Pallanck, L.J., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100 (2003), 4078–4083.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
36
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
36 Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., Guo, M., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441 (2006), 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
37
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
37 Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441 (2006), 1157–1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
Bae, E.7
Kim, J.8
Shong, M.9
Kim, J.M.10
-
38
-
-
84876213313
-
The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
-
An elegant and innovative approach to monitor turnover of mitochondrial proteins using isotope labeling and quantitiative mass spectrometry. These result provide the first inducation that PINK1 and Parkin regulate mitochondrial component turnover, consistent with mitophagy, under physiological conditions. Intriguingly, they provide compelling evidence that turnover is non-uniform but instead showed some selectivity for membrane-spanning respiratory chain components.
-
38•• Vincow, E.S., Merrihew, G., Thomas, R.E., Shulman, N.J., Beyer, R.P., MacCoss, M.J., Pallanck, L.J., The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 110 (2013), 6400–6405 An elegant and innovative approach to monitor turnover of mitochondrial proteins using isotope labeling and quantitiative mass spectrometry. These result provide the first inducation that PINK1 and Parkin regulate mitochondrial component turnover, consistent with mitophagy, under physiological conditions. Intriguingly, they provide compelling evidence that turnover is non-uniform but instead showed some selectivity for membrane-spanning respiratory chain components.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 6400-6405
-
-
Vincow, E.S.1
Merrihew, G.2
Thomas, R.E.3
Shulman, N.J.4
Beyer, R.P.5
MacCoss, M.J.6
Pallanck, L.J.7
-
39
-
-
39449088321
-
The PINK1/Parkin pathway regulates mitochondrial morphology
-
39 Poole, A.C., Thomas, R.E., Andrews, L.A., McBride, H.M., Whitworth, A.J., Pallanck, L.J., The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 105 (2008), 1638–1643.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 1638-1643
-
-
Poole, A.C.1
Thomas, R.E.2
Andrews, L.A.3
McBride, H.M.4
Whitworth, A.J.5
Pallanck, L.J.6
-
40
-
-
33846898753
-
The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis
-
40 Riparbelli, M.G., Callaini, G., The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev Biol 303 (2007), 108–120.
-
(2007)
Dev Biol
, vol.303
, pp. 108-120
-
-
Riparbelli, M.G.1
Callaini, G.2
-
41
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
41 Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., Dawson, T.M., PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144 (2011), 689–702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
Troconso, J.C.7
Dawson, V.L.8
Dawson, T.M.9
-
42
-
-
84941711126
-
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration
-
42 Stevens, D.A., Lee, Y., Kang, H.C., Lee, B.D., Lee, Y.I., Bower, A., Jiang, H., Kang, S.U., Andrabi, S.A., Dawson, V.L., et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci U S A 112 (2015), 11696–11701.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 11696-11701
-
-
Stevens, D.A.1
Lee, Y.2
Kang, H.C.3
Lee, B.D.4
Lee, Y.I.5
Bower, A.6
Jiang, H.7
Kang, S.U.8
Andrabi, S.A.9
Dawson, V.L.10
-
43
-
-
84889100159
-
Loss of iron triggers PINK1/Parkin-independent mitophagy
-
43 Allen, G.F., Toth, R., James, J., Ganley, I.G., Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14 (2013), 1127–1135.
-
(2013)
EMBO Rep
, vol.14
, pp. 1127-1135
-
-
Allen, G.F.1
Toth, R.2
James, J.3
Ganley, I.G.4
-
44
-
-
84913565821
-
Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain
-
44 Kageyama, Y., Hoshijima, M., Seo, K., Bedja, D., Sysa-Shah, P., Andrabi, S.A., Chen, W., Hoke, A., Dawson, V.L., Dawson, T.M., et al. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33 (2014), 2798–2813.
-
(2014)
EMBO J
, vol.33
, pp. 2798-2813
-
-
Kageyama, Y.1
Hoshijima, M.2
Seo, K.3
Bedja, D.4
Sysa-Shah, P.5
Andrabi, S.A.6
Chen, W.7
Hoke, A.8
Dawson, V.L.9
Dawson, T.M.10
-
45
-
-
85014332041
-
The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway
-
45 Szargel, R., Shani, V., Abd Elghani, F., Mekies, L.N., Liani, E., Rott, R., Engelender, S., The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol Genet 25 (2016), 3476–3490.
-
(2016)
Hum Mol Genet
, vol.25
, pp. 3476-3490
-
-
Szargel, R.1
Shani, V.2
Abd Elghani, F.3
Mekies, L.N.4
Liani, E.5
Rott, R.6
Engelender, S.7
-
46
-
-
22344456832
-
Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging
-
46 Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309 (2005), 481–484.
-
(2005)
Science
, vol.309
, pp. 481-484
-
-
Kujoth, G.C.1
Hiona, A.2
Pugh, T.D.3
Someya, S.4
Panzer, K.5
Wohlgemuth, S.E.6
Hofer, T.7
Seo, A.Y.8
Sullivan, R.9
Jobling, W.A.10
-
47
-
-
2642580016
-
Premature ageing in mice expressing defective mitochondrial DNA polymerase
-
47 Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly, Y.M., Gidlof, S., Oldfors, A., Wibom, R., et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429 (2004), 417–423.
-
(2004)
Nature
, vol.429
, pp. 417-423
-
-
Trifunovic, A.1
Wredenberg, A.2
Falkenberg, M.3
Spelbrink, J.N.4
Rovio, A.T.5
Bruder, C.E.6
Bohlooly, Y.M.7
Gidlof, S.8
Oldfors, A.9
Wibom, R.10
-
48
-
-
84937438976
-
Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress
-
An interesting study that combines the POLG proof-reading defective ‘mtDNA mutator’ mouse with parkin knockouts to investigate the mitoQC role of Parkin in vivo under a physiologically relevant stress. Specifically in this combination the authors observe selective degeneration of dopaminergic neurons, locomotor deficits and enhanced mitochondrial dysfucntion. Surprisingly, loss of parkin did not affect overall levels of mtDNA mutations.
-
48•• Pickrell, A.M., Huang, C.H., Kennedy, S.R., Ordureau, A., Sideris, D.P., Hoekstra, J.G., Harper, J.W., Youle, R.J., Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87 (2015), 371–381 An interesting study that combines the POLG proof-reading defective ‘mtDNA mutator’ mouse with parkin knockouts to investigate the mitoQC role of Parkin in vivo under a physiologically relevant stress. Specifically in this combination the authors observe selective degeneration of dopaminergic neurons, locomotor deficits and enhanced mitochondrial dysfucntion. Surprisingly, loss of parkin did not affect overall levels of mtDNA mutations.
-
(2015)
Neuron
, vol.87
, pp. 371-381
-
-
Pickrell, A.M.1
Huang, C.H.2
Kennedy, S.R.3
Ordureau, A.4
Sideris, D.P.5
Hoekstra, J.G.6
Harper, J.W.7
Youle, R.J.8
-
49
-
-
84941747116
-
UPR(mt)-mediated cytoprotection and organismal aging
-
49 Schulz, A.M., Haynes, C.M., UPR(mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 1847 (2015), 1448–1456.
-
(2015)
Biochim Biophys Acta
, vol.1847
, pp. 1448-1456
-
-
Schulz, A.M.1
Haynes, C.M.2
-
50
-
-
38349023008
-
Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
-
50 Neuspiel, M., Schauss, A.C., Braschi, E., Zunino, R., Rippstein, P., Rachubinski, R.A., Andrade-Navarro, M.A., McBride, H.M., Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18 (2008), 102–108.
-
(2008)
Curr Biol
, vol.18
, pp. 102-108
-
-
Neuspiel, M.1
Schauss, A.C.2
Braschi, E.3
Zunino, R.4
Rippstein, P.5
Rachubinski, R.A.6
Andrade-Navarro, M.A.7
McBride, H.M.8
-
51
-
-
56349133547
-
Positioning mitochondrial plasticity within cellular signaling cascades
-
51 Soubannier, V., McBride, H.M., Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 1793 (2009), 154–170.
-
(2009)
Biochim Biophys Acta
, vol.1793
, pp. 154-170
-
-
Soubannier, V.1
McBride, H.M.2
-
52
-
-
84908085343
-
A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
-
52 Sugiura, A., McLelland, G.L., Fon, E.A., McBride, H.M., A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33 (2014), 2142–2156.
-
(2014)
EMBO J
, vol.33
, pp. 2142-2156
-
-
Sugiura, A.1
McLelland, G.L.2
Fon, E.A.3
McBride, H.M.4
-
53
-
-
84856221632
-
A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
-
53 Soubannier, V., McLelland, G.L., Zunino, R., Braschi, E., Rippstein, P., Fon, E.A., McBride, H.M., A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22 (2012), 135–141.
-
(2012)
Curr Biol
, vol.22
, pp. 135-141
-
-
Soubannier, V.1
McLelland, G.L.2
Zunino, R.3
Braschi, E.4
Rippstein, P.5
Fon, E.A.6
McBride, H.M.7
-
54
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
This study provides compelling evidence from cell culture models that PINK1 and Parkin promote the formation of mitochondria derived vesicles (MDVs), which suggests a more piecemeal mechanism of degrading mitochondrial components as an earlier step in mitoQC prior to bulk turnover of mitochondria by autophagy. It will be interesting, though challenging, to know if this mechanism operates in neurons in vivo under physiological stresses.
-
54• McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., Fon, E.A., Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33 (2014), 282–295 This study provides compelling evidence from cell culture models that PINK1 and Parkin promote the formation of mitochondria derived vesicles (MDVs), which suggests a more piecemeal mechanism of degrading mitochondrial components as an earlier step in mitoQC prior to bulk turnover of mitochondria by autophagy. It will be interesting, though challenging, to know if this mechanism operates in neurons in vivo under physiological stresses.
-
(2014)
EMBO J
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
55
-
-
84954377019
-
Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes
-
55 Wang, W., Wang, X., Fujioka, H., Hoppel, C., Whone, A.L., Caldwell, M.A., Cullen, P.J., Liu, J., Zhu, X., Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22 (2016), 54–63.
-
(2016)
Nat Med
, vol.22
, pp. 54-63
-
-
Wang, W.1
Wang, X.2
Fujioka, H.3
Hoppel, C.4
Whone, A.L.5
Caldwell, M.A.6
Cullen, P.J.7
Liu, J.8
Zhu, X.9
-
56
-
-
78049529676
-
Vps35 mediates vesicle transport between the mitochondria and peroxisomes
-
56 Braschi, E., Goyon, V., Zunino, R., Mohanty, A., Xu, L., McBride, H.M., Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol 20 (2010), 1310–1315.
-
(2010)
Curr Biol
, vol.20
, pp. 1310-1315
-
-
Braschi, E.1
Goyon, V.2
Zunino, R.3
Mohanty, A.4
Xu, L.5
McBride, H.M.6
-
57
-
-
84949257064
-
VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin
-
57 Malik, B.R., Godena, V.K., Whitworth, A.J., VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin. Hum Mol Genet 24 (2015), 6106–6117.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 6106-6117
-
-
Malik, B.R.1
Godena, V.K.2
Whitworth, A.J.3
-
58
-
-
84979966353
-
mito-QC illuminates mitophagy and mitochondrial architecture in vivo
-
58• McWilliams, T.G., Prescott, A.R., Allen, G.F., Tamjar, J., Munson, M.J., Thomson, C., Muqit, M.M., Ganley, I.G., mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214 (2016), 333–345.
-
(2016)
J Cell Biol
, vol.214
, pp. 333-345
-
-
McWilliams, T.G.1
Prescott, A.R.2
Allen, G.F.3
Tamjar, J.4
Munson, M.J.5
Thomson, C.6
Muqit, M.M.7
Ganley, I.G.8
-
59
-
-
84947802088
-
Measuring in vivo mitophagy
-
These two publications described the first transgenic mouse lines engineered to express fluorescent reporter constructs to monitor mitopahgy in vivo. These initial reports do not analyse PINK1/Parkin function but do describe a surprisingly abundant basal mitophagy that varies widely between and even within tissues.
-
59• Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmstrom, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. Measuring in vivo mitophagy. Mol Cell 60 (2015), 685–696 These two publications described the first transgenic mouse lines engineered to express fluorescent reporter constructs to monitor mitopahgy in vivo. These initial reports do not analyse PINK1/Parkin function but do describe a surprisingly abundant basal mitophagy that varies widely between and even within tissues.
-
(2015)
Mol Cell
, vol.60
, pp. 685-696
-
-
Sun, N.1
Yun, J.2
Liu, J.3
Malide, D.4
Liu, C.5
Rovira, I.I.6
Holmstrom, K.M.7
Fergusson, M.M.8
Yoo, Y.H.9
Combs, C.A.10
|