메뉴 건너뛰기




Volumn 19, Issue 2, 2018, Pages 93-108

Building and decoding ubiquitin hains for mitophagy

Author keywords

[No Author keywords available]

Indexed keywords

PARKIN; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3; PROTEIN KINASE; PTEN-INDUCED PUTATIVE KINASE; UBIQUITIN PROTEIN LIGASE;

EID: 85041110575     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2017.129     Document Type: Review
Times cited : (486)

References (138)
  • 1
    • 34848861368 scopus 로고    scopus 로고
    • ClpP mediates activation of a mitochondrial unfolded protein response in C. Elegans
    • Haynes, C. M., Petrova, K., Benedetti, C., Yang, Y. & Ron, D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467-480 (2007).
    • (2007) Dev. Cell , vol.13 , pp. 467-480
    • Haynes, C.M.1    Petrova, K.2    Benedetti, C.3    Yang, Y.4    Ron, D.5
  • 2
    • 84990040254 scopus 로고    scopus 로고
    • Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
    • Munch, C. & Harper, J. W. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534, 710-713 (2016).
    • (2016) Nature , vol.534 , pp. 710-713
    • Munch, C.1    Harper, J.W.2
  • 4
    • 85041138005 scopus 로고    scopus 로고
    • The mitochondrial UPR: Mechanisms, physiological functions and implications in ageing
    • Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2017.110 (2017).
    • (2017) Nat. Rev. Mol. Cell Biol
    • Shpilka, T.1    Haynes, C.M.2
  • 5
    • 84970973729 scopus 로고    scopus 로고
    • Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response
    • Lin, Y. F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416-419 (2016).
    • (2016) Nature , vol.533 , pp. 416-419
    • Lin, Y.F.1
  • 6
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273 (2015).
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 7
    • 84959481890 scopus 로고    scopus 로고
    • The ubiquitin signal and autophagy: An orchestrated dance leading to mitochondrial degradation
    • Yamano, K., Matsuda, N. & Tanaka, K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316 (2016).
    • (2016) EMBO Rep. , vol.17 , pp. 300-316
    • Yamano, K.1    Matsuda, N.2    Tanaka, K.3
  • 9
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 (1998).
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1
  • 10
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
    • (2010) PLoS Biol. , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 11
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 (2004).
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1
  • 12
    • 85018387061 scopus 로고    scopus 로고
    • Ubiquitin and Parkinson's disease through the looking glass of genetics
    • Walden, H. & Muqit, M. M. Ubiquitin and Parkinson's disease through the looking glass of genetics. Biochem. J. 474, 1439-1451 (2017).
    • (2017) Biochem. J. , vol.474 , pp. 1439-1451
    • Walden, H.1    Muqit, M.M.2
  • 13
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 (2006).
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 14
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
    • Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161 (2006).
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1
  • 15
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803 (2008).
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 16
    • 77952419246 scopus 로고    scopus 로고
    • Mutations of optineurin in amyotrophic lateral sclerosis
    • Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223-226 (2010).
    • (2010) Nature , vol.465 , pp. 223-226
    • Maruyama, H.1
  • 17
    • 84945749129 scopus 로고    scopus 로고
    • Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
    • Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436-1441 (2015).
    • (2015) Science , vol.347 , pp. 1436-1441
    • Cirulli, E.T.1
  • 18
    • 84928695187 scopus 로고    scopus 로고
    • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
    • Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631-636 (2015).
    • (2015) Nat. Neurosci. , vol.18 , pp. 631-636
    • Freischmidt, A.1
  • 19
    • 84990925109 scopus 로고    scopus 로고
    • Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia
    • Weishaupt, J. H., Hyman, T. & Dikic, I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22, 769-783 (2016).
    • (2016) Trends Mol. Med. , vol.22 , pp. 769-783
    • Weishaupt, J.H.1    Hyman, T.2    Dikic, I.3
  • 20
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010).
    • (2010) EMBO Rep. , vol.11 , pp. 45-51
    • Novak, I.1
  • 21
    • 84940796811 scopus 로고    scopus 로고
    • Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis
    • Chourasia, A. H. et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 16, 1145-1163 (2015).
    • (2015) EMBO Rep. , vol.16 , pp. 1145-1163
    • Chourasia, A.H.1
  • 22
    • 84898619521 scopus 로고    scopus 로고
    • MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX
    • Li, W. et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J. Biol. Chem. 289, 10691-10701 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 10691-10701
    • Li, W.1
  • 23
    • 84991108288 scopus 로고    scopus 로고
    • + hematopoietic stem cell population relies on mitochondrial clearance
    • + hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156-1160 (2016).
    • (2016) Science , vol.354 , pp. 1156-1160
    • Ito, K.1
  • 25
    • 84940720812 scopus 로고    scopus 로고
    • Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX
    • Ney, P. A. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta 1853, 2775-2783 (2015).
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 2775-2783
    • Ney, P.A.1
  • 26
    • 84885576570 scopus 로고    scopus 로고
    • The ubiquitin ligase parkin mediates resistance to intracellular pathogens
    • Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516 (2013).
    • (2013) Nature , vol.501 , pp. 512-516
    • Manzanillo, P.S.1
  • 27
    • 84922820920 scopus 로고    scopus 로고
    • Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment
    • Okatsu, K., Kimura, M., Oka, T., Tanaka, K. & Matsuda, N. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell Sci. 128, 964-978 (2015).
    • (2015) J. Cell Sci. , vol.128 , pp. 964-978
    • Okatsu, K.1    Kimura, M.2    Oka, T.3    Tanaka, K.4    Matsuda, N.5
  • 28
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin, S. M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933-942 (2010).
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1
  • 29
    • 84859428688 scopus 로고    scopus 로고
    • Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
    • Greene, A. W. et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378-385 (2012).
    • (2012) EMBO Rep. , vol.13 , pp. 378-385
    • Greene, A.W.1
  • 30
    • 84887453820 scopus 로고    scopus 로고
    • PINK1 is degraded through the N-end rule pathway
    • Yamano, K. & Youle, R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758-1769 (2013).
    • (2013) Autophagy , vol.9 , pp. 1758-1769
    • Yamano, K.1    Youle, R.J.2
  • 31
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou, M., Jin, S. M., Kane, L. A. & Youle, R. J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320-333 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 32
    • 84908065760 scopus 로고    scopus 로고
    • Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
    • Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439-E4448 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E4439-E4448
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 33
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 34
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 35
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
    • Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 36
    • 84964603365 scopus 로고    scopus 로고
    • Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
    • Bingol, B. & Sheng, M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 100, 210-222 (2016).
    • (2016) Free Radic. Biol. Med. , vol.100 , pp. 210-222
    • Bingol, B.1    Sheng, M.2
  • 37
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitin-like domain
    • Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853-2867 (2011).
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1
  • 38
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human Parkin ligase domain in an autoinhibited state
    • Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099-2112 (2013).
    • (2013) EMBO J. , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 39
    • 84879251778 scopus 로고    scopus 로고
    • Structure of parkin reveals mechanisms for ubiquitin ligase activation
    • Trempe, J. F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451-1455 (2013).
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.F.1
  • 40
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1982
    • Riley, B.E.1
  • 41
    • 85028879936 scopus 로고    scopus 로고
    • Targeting HECT-type E3 ligases-insights from catalysis, regulation and inhibitors
    • Fajner, V., Maspero, E. & Polo, S. Targeting HECT-type E3 ligases-insights from catalysis, regulation and inhibitors. FEBS Lett. 591, 2636-2647 (2017).
    • (2017) FEBS Lett. , vol.591 , pp. 2636-2647
    • Fajner, V.1    Maspero, E.2    Polo, S.3
  • 42
    • 79957949190 scopus 로고    scopus 로고
    • UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
    • Wenzel, D. M., Lissounov, A., Brzovic, P. S. & Klevit, R. E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105-108 (2011).
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1    Lissounov, A.2    Brzovic, P.S.3    Klevit, R.E.4
  • 43
    • 85014937836 scopus 로고    scopus 로고
    • Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation
    • Tang, M. Y. et al. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nat. Commun. 8, 14697 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 14697
    • Tang, M.Y.1
  • 44
    • 77949478474 scopus 로고    scopus 로고
    • Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling
    • Sha, D., Chin, L. S. & Li, L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum. Mol. Genet. 19, 352-363 (2010).
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 352-363
    • Sha, D.1    Chin, L.S.2    Li, L.3
  • 45
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080 (2012).
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 46
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima, K. et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1
  • 47
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 48
    • 84939795423 scopus 로고    scopus 로고
    • Mechanism of phospho-ubiquitin-induced PARKIN activation
    • Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370-374 (2015).
    • (2015) Nature , vol.524 , pp. 370-374
    • Wauer, T.1    Simicek, M.2    Schubert, A.3    Komander, D.4
  • 49
    • 85009266835 scopus 로고    scopus 로고
    • Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation
    • Aguirre, J. D., Dunkerley, K. M., Mercier, P. & Shaw, G. S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl Acad. Sci. USA 114, 298-303 (2017).
    • (2017) Proc. Natl Acad. Sci. USA , vol.114 , pp. 298-303
    • Aguirre, J.D.1    Dunkerley, K.M.2    Mercier, P.3    Shaw, G.S.4
  • 50
    • 84912127688 scopus 로고    scopus 로고
    • Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin
    • Caulfield, T. R. et al. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoS Comput. Biol. 10, e1003935 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003935
    • Caulfield, T.R.1
  • 51
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127-139 (2014).
    • (2014) Biochem. J. , vol.460 , pp. 127-139
    • Kazlauskaite, A.1
  • 52
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 53
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
    • (2014) J. Cell Biol. , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 54
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
    • Wauer, T. et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307-325 (2015).
    • (2015) EMBO J. , vol.34 , pp. 307-325
    • Wauer, T.1
  • 55
    • 84922794336 scopus 로고    scopus 로고
    • Phosphorylated ubiquitin chain is the genuine Parkin receptor
    • Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
    • (2015) J. Cell Biol. , vol.209 , pp. 111-128
    • Okatsu, K.1
  • 56
    • 84944441112 scopus 로고    scopus 로고
    • A Ubl/ubiquitin switch in the activation of Parkin
    • Sauve, V. et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492-2505 (2015).
    • (2015) EMBO J. , vol.34 , pp. 2492-2505
    • Sauve, V.1
  • 57
    • 84929691103 scopus 로고    scopus 로고
    • Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
    • Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl Acad. Sci. USA 112, 6637-6642 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 6637-6642
    • Ordureau, A.1
  • 58
    • 85041123859 scopus 로고    scopus 로고
    • Structure of PINK1 in complex with its substrate ubiquitin
    • Schubert, A. F. et al. Structure of PINK1 in complex with its substrate ubiquitin. Nature 552, 51-56 (2017).
    • (2017) Nature , vol.552 , pp. 51-56
    • Schubert, A.F.1
  • 59
    • 85033707007 scopus 로고    scopus 로고
    • An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1
    • Gladkova, C. et al. An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1. EMBO J. 36, 3555-3572 (2017).
    • (2017) EMBO J. , vol.36 , pp. 3555-3572
    • Gladkova, C.1
  • 60
    • 85036495491 scopus 로고    scopus 로고
    • Structure of PINK1 and mechanisms of Parkinson's disease associated mutations
    • Kumar, A. et al. Structure of PINK1 and mechanisms of Parkinson's disease associated mutations. eLife 6, e29985 (2017).
    • (2017) ELife , vol.6 , pp. e29985
    • Kumar, A.1
  • 61
    • 84959577088 scopus 로고    scopus 로고
    • Site-specific interaction mapping of phosphorylated ubiquitin to uncover Parkin activation
    • Yamano, K. et al. Site-specific interaction mapping of phosphorylated ubiquitin to uncover Parkin activation. J. Biol. Chem. 290, 25199-25211 (2015).
    • (2015) J. Biol. Chem. , vol.290 , pp. 25199-25211
    • Yamano, K.1
  • 62
    • 84944441665 scopus 로고    scopus 로고
    • Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
    • Kumar, A. et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506-2521 (2015).
    • (2015) EMBO J. , vol.34 , pp. 2506-2521
    • Kumar, A.1
  • 63
    • 84938742614 scopus 로고    scopus 로고
    • Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
    • Kazlauskaite, A. et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939-954 (2015).
    • (2015) EMBO Rep. , vol.16 , pp. 939-954
    • Kazlauskaite, A.1
  • 64
    • 85017499246 scopus 로고    scopus 로고
    • Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity
    • Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475-483 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 475-483
    • Kumar, A.1
  • 65
    • 84982845461 scopus 로고    scopus 로고
    • Dual function of phosphoubiquitin in E3 activation of Parkin
    • Walinda, E., Morimoto, D., Sugase, K. & Shirakawa, M. Dual function of phosphoubiquitin in E3 activation of Parkin. J. Biol. Chem. 291, 16879-16891 (2016).
    • (2016) J. Biol. Chem. , vol.291 , pp. 16879-16891
    • Walinda, E.1    Morimoto, D.2    Sugase, K.3    Shirakawa, M.4
  • 66
    • 84956664551 scopus 로고    scopus 로고
    • Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation
    • Lechtenberg, B. C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546-550 (2016).
    • (2016) Nature , vol.529 , pp. 546-550
    • Lechtenberg, B.C.1
  • 67
    • 77957673363 scopus 로고    scopus 로고
    • The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
    • Geisler, S. et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6, 871-878 (2010).
    • (2010) Autophagy , vol.6 , pp. 871-878
    • Geisler, S.1
  • 68
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 69
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378-383 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 378-383
    • Vives-Bauza, C.1
  • 70
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737 (2011).
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 71
    • 78649300971 scopus 로고    scopus 로고
    • P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106 (2010).
    • (2010) Autophagy , vol.6 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 72
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 73
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 74
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375 (2014).
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1
  • 75
    • 84994565816 scopus 로고    scopus 로고
    • Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
    • Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395-403.e4 (2016).
    • (2016) Cell Syst. , vol.3 , pp. 395-395e4
    • Rose, C.M.1
  • 76
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii, S. R., Kishi, C., Ishihara, N. & Mizushima, N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286, 19630-19640 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1    Kishi, C.2    Ishihara, N.3    Mizushima, N.4
  • 77
    • 84864222562 scopus 로고    scopus 로고
    • Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
    • Kulathu, Y. & Komander, D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508-523 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 508-523
    • Kulathu, Y.1    Komander, D.2
  • 78
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 160-169
    • Cunningham, C.N.1
  • 79
    • 85030780236 scopus 로고    scopus 로고
    • UbMES and UbFluor: Novel probes for RBR E3 ubiquitin ligase PARKIN
    • Park, S., Foote, P. K., Krist, D. T., Rice, S. E. & Statsyuk, A. V. UbMES and UbFluor: novel probes for RBR E3 ubiquitin ligase PARKIN. J. Biol. Chem. 292, 16539-16553 (2017).
    • (2017) J. Biol. Chem. , vol.292 , pp. 16539-16553
    • Park, S.1    Foote, P.K.2    Krist, D.T.3    Rice, S.E.4    Statsyuk, A.V.5
  • 80
    • 84873045973 scopus 로고    scopus 로고
    • PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
    • Lazarou, M. et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200, 163-172 (2013).
    • (2013) J. Cell Biol. , vol.200 , pp. 163-172
    • Lazarou, M.1
  • 81
    • 84879885169 scopus 로고    scopus 로고
    • Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
    • Zheng, X. & Hunter, T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23, 886-897 (2013).
    • (2013) Cell Res. , vol.23 , pp. 886-897
    • Zheng, X.1    Hunter, T.2
  • 82
    • 84959192267 scopus 로고    scopus 로고
    • Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation
    • Pao, K. C. et al. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat. Chem. Biol. 12, 324-331 (2016).
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 324-331
    • Pao, K.C.1
  • 83
    • 84903485895 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila
    • Shiba-Fukushima, K., Inoshita, T., Hattori, N. & Imai, Y. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet. 10, e1004391 (2014).
    • (2014) PLoS Genet. , vol.10 , pp. e1004391
    • Shiba-Fukushima, K.1    Inoshita, T.2    Hattori, N.3    Imai, Y.4
  • 84
    • 85029693774 scopus 로고    scopus 로고
    • Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling
    • Michel, M. A., Swatek, K. N., Hospenthal, M. K. & Komander, D. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol. Cell 68, 233-246.e5 (2017).
    • (2017) Mol. Cell , vol.68 , pp. 233-233e5
    • Michel, M.A.1    Swatek, K.N.2    Hospenthal, M.K.3    Komander, D.4
  • 85
    • 85030264578 scopus 로고    scopus 로고
    • Mitochondrial fission facilitates the selective mitophagy of protein aggregates
    • Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231-3247 (2017).
    • (2017) J. Cell Biol. , vol.216 , pp. 3231-3247
    • Burman, J.L.1
  • 86
    • 84937725290 scopus 로고    scopus 로고
    • Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase Parkin
    • Fiesel, F. C. et al. Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase Parkin. Hum. Mutat. 36, 774-786 (2015).
    • (2015) Hum. Mutat. , vol.36 , pp. 774-786
    • Fiesel, F.C.1
  • 87
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 88
    • 84959420149 scopus 로고    scopus 로고
    • NF-κB restricts inflammasome activation via elimination of damaged mitochondria
    • Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910 (2016).
    • (2016) Cell , vol.164 , pp. 896-910
    • Zhong, Z.1
  • 89
    • 85000919223 scopus 로고    scopus 로고
    • Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
    • Rojansky, R., Cha, M. Y. & Chan, D. C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896 (2016).
    • (2016) ELife , vol.5 , pp. e17896
    • Rojansky, R.1    Cha, M.Y.2    Chan, D.C.3
  • 90
    • 80053917869 scopus 로고    scopus 로고
    • Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta
    • Gleason, C. E., Ordureau, A., Gourlay, R., Arthur, J. S. & Cohen, P. Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. J. Biol. Chem. 286, 35663-35674 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 35663-35674
    • Gleason, C.E.1    Ordureau, A.2    Gourlay, R.3    Arthur, J.S.4    Cohen, P.5
  • 91
    • 70350020147 scopus 로고    scopus 로고
    • NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain
    • Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885-2895 (2009).
    • (2009) EMBO J. , vol.28 , pp. 2885-2895
    • Laplantine, E.1
  • 92
    • 61649103747 scopus 로고    scopus 로고
    • Structural basis for recognition of diubiquitins by NEMO
    • Lo, Y. C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602-615 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 602-615
    • Lo, Y.C.1
  • 93
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011).
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 94
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221 (2009).
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1    Ryzhakov, G.2    Bloor, S.3    Von Muhlinen, N.4    Randow, F.5
  • 95
    • 84982144114 scopus 로고    scopus 로고
    • Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy
    • Thurston, T. L. et al. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J. 35, 1779-1792 (2016).
    • (2016) EMBO J. , vol.35 , pp. 1779-1792
    • Thurston, T.L.1
  • 96
    • 84865357562 scopus 로고    scopus 로고
    • TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation
    • Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234 (2012).
    • (2012) Immunity , vol.37 , pp. 223-234
    • Pilli, M.1
  • 97
    • 84974815636 scopus 로고    scopus 로고
    • Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
    • Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349-E3358 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E3349-E3358
    • Moore, A.S.1    Holzbaur, E.L.2
  • 98
    • 82455172117 scopus 로고    scopus 로고
    • Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
    • Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279-289 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 279-289
    • Matsumoto, G.1    Wada, K.2    Okuno, M.3    Kurosawa, M.4    Nukina, N.5
  • 99
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6-16 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 100
    • 85009198548 scopus 로고    scopus 로고
    • Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
    • Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857-874 (2016).
    • (2016) J. Cell Biol. , vol.215 , pp. 857-874
    • Nguyen, T.N.1
  • 101
    • 70349687405 scopus 로고    scopus 로고
    • Discovery of Atg5/Atg7-independent alternative macroautophagy
    • Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654-658 (2009).
    • (2009) Nature , vol.461 , pp. 654-658
    • Nishida, Y.1
  • 102
    • 84992154479 scopus 로고    scopus 로고
    • The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
    • Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041 (2016).
    • (2016) Science , vol.354 , pp. 1036-1041
    • Tsuboyama, K.1
  • 103
    • 85038411114 scopus 로고    scopus 로고
    • Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux
    • Pontano Vaites, L., Paulo, J. A., Huttlin, E. L. & Harper, J. W. Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux. Mol. Cell. Biol. http://dx.doi.org/10.1128/MCB.00392-17 (2017).
    • (2017) Mol. Cell. Biol
    • Pontano Vaites, L.1    Paulo, J.A.2    Huttlin, E.L.3    Harper, J.W.4
  • 104
    • 85009178435 scopus 로고    scopus 로고
    • Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
    • Wei, Y. et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224-238.e10 (2017).
    • (2017) Cell , vol.168 , pp. 224-224e10
    • Wei, Y.1
  • 105
    • 84978437500 scopus 로고    scopus 로고
    • Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation
    • Matheoud, D. et al. Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314-327 (2016).
    • (2016) Cell , vol.166 , pp. 314-327
    • Matheoud, D.1
  • 106
    • 84897863239 scopus 로고    scopus 로고
    • Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
    • McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282-295 (2014).
    • (2014) EMBO J. , vol.33 , pp. 282-295
    • McLelland, G.L.1    Soubannier, V.2    Chen, C.X.3    McBride, H.M.4    Fon, E.A.5
  • 107
    • 58149149970 scopus 로고    scopus 로고
    • Parkin deficiency increases vulnerability to inflammation-related nigral degeneration
    • Frank-Cannon, T. C. et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci. 28, 10825-10834 (2008).
    • (2008) J. Neurosci. , vol.28 , pp. 10825-10834
    • Frank-Cannon, T.C.1
  • 108
    • 84940792247 scopus 로고    scopus 로고
    • Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
    • Swaney, D. L., Rodriguez-Mias, R. A. & Villen, J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16, 1131-1144 (2015).
    • (2015) EMBO Rep. , vol.16 , pp. 1131-1144
    • Swaney, D.L.1    Rodriguez-Mias, R.A.2    Villen, J.3
  • 109
    • 24144497601 scopus 로고    scopus 로고
    • Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death
    • Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968-7978 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 7968-7978
    • Ko, H.S.1
  • 110
    • 33745220302 scopus 로고    scopus 로고
    • Identification of far upstream element-binding protein-1 as an authentic Parkin substrate
    • Ko, H. S., Kim, S. W., Sriram, S. R., Dawson, V. L. & Dawson, T. M. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J. Biol. Chem. 281, 16193-16196 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 16193-16196
    • Ko, H.S.1    Kim, S.W.2    Sriram, S.R.3    Dawson, V.L.4    Dawson, T.M.5
  • 111
    • 78649653044 scopus 로고    scopus 로고
    • Parkin mono-ubiquitinates Bcl-2 and regulates autophagy
    • Chen, D. et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J. Biol. Chem. 285, 38214-38223 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 38214-38223
    • Chen, D.1
  • 112
    • 67649823451 scopus 로고    scopus 로고
    • The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition
    • Uchiki, T. et al. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J. Biol. Chem. 284, 12622-12632 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 12622-12632
    • Uchiki, T.1
  • 113
    • 58649123332 scopus 로고    scopus 로고
    • Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson's disease
    • Fukae, J. et al. Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson's disease. FEBS Lett. 583, 521-525 (2009).
    • (2009) FEBS Lett. , vol.583 , pp. 521-525
    • Fukae, J.1
  • 114
    • 34547780601 scopus 로고    scopus 로고
    • Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels
    • Joch, M. et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol. Biol. Cell 18, 3105-3118 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3105-3118
    • Joch, M.1
  • 115
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease
    • Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702 (2011).
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1
  • 116
    • 84937438976 scopus 로고    scopus 로고
    • Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress
    • Pickrell, A. M. et al. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 87, 371-381 (2015).
    • (2015) Neuron , vol.87 , pp. 371-381
    • Pickrell, A.M.1
  • 117
    • 84940776745 scopus 로고    scopus 로고
    • (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation
    • Fiesel, F. C. et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. 16, 1114-1130 (2015).
    • (2015) EMBO Rep. , vol.16 , pp. 1114-1130
    • Fiesel, F.C.1
  • 118
    • 84902682891 scopus 로고    scopus 로고
    • MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin
    • Yun, J. et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife 3, e01958 (2014).
    • (2014) ELife , vol.3 , pp. e01958
    • Yun, J.1
  • 119
    • 84979966353 scopus 로고    scopus 로고
    • Mito-QC illuminates mitophagy and mitochondrial architecture in vivo
    • McWilliams, T. G. et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333-345 (2016).
    • (2016) J. Cell Biol. , vol.214 , pp. 333-345
    • McWilliams, T.G.1
  • 120
    • 84947802088 scopus 로고    scopus 로고
    • Measuring in vivo mitophagy
    • Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685-696 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 685-696
    • Sun, N.1
  • 121
    • 84900315972 scopus 로고    scopus 로고
    • Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila
    • Politi, Y. et al. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 29, 305-320 (2014).
    • (2014) Dev. Cell , vol.29 , pp. 305-320
    • Politi, Y.1
  • 122
    • 82255192465 scopus 로고    scopus 로고
    • Degradation of paternal mitochondria by fertilization-triggered autophagy in C. Elegans embryos
    • Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141-1144 (2011).
    • (2011) Science , vol.334 , pp. 1141-1144
    • Sato, M.1    Sato, K.2
  • 123
    • 84985916502 scopus 로고    scopus 로고
    • Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization
    • Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S. & Sutovsky, P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl Acad. Sci. USA 113, E5261-E5270 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E5261-E5270
    • Song, W.H.1    Yi, Y.J.2    Sutovsky, M.3    Meyers, S.4    Sutovsky, P.5
  • 124
    • 84910141948 scopus 로고    scopus 로고
    • Mitochondrial dynamics and inheritance during cell division, development and disease
    • Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 634-646
    • Mishra, P.1    Chan, D.C.2
  • 125
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500-19505 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 19500-19505
    • Schweers, R.L.1
  • 126
    • 85018942395 scopus 로고    scopus 로고
    • Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins
    • Rogov, V. V. et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7, 1131 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 1131
    • Rogov, V.V.1
  • 127
    • 85017589321 scopus 로고    scopus 로고
    • FKBP8 recruits LC3A to mediate Parkin-independent mitophagy
    • Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947-961 (2017).
    • (2017) EMBO Rep. , vol.18 , pp. 947-961
    • Bhujabal, Z.1
  • 128
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1
  • 129
    • 85010619186 scopus 로고    scopus 로고
    • Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy
    • Chen, Z. et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 18, 495-509 (2017).
    • (2017) EMBO Rep. , vol.18 , pp. 495-509
    • Chen, Z.1
  • 130
    • 84920095272 scopus 로고    scopus 로고
    • The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
    • Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227-5242 (2014).
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 5227-5242
    • Cornelissen, T.1
  • 131
    • 84920892842 scopus 로고    scopus 로고
    • USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
    • Durcan, T. M. et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473-2491 (2014).
    • (2014) EMBO J. , vol.33 , pp. 2473-2491
    • Durcan, T.M.1
  • 132
    • 84929676117 scopus 로고    scopus 로고
    • Deubiquitinating enzymes regulate PARK2-mediated mitophagy
    • Wang, Y. et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606 (2015).
    • (2015) Autophagy , vol.11 , pp. 595-606
    • Wang, Y.1
  • 133
    • 85030661011 scopus 로고    scopus 로고
    • Mechanism and regulation of the Lys6-selective deubiquitinase USP30
    • Gersch, M. et al. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol. 24, 920-930 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 920-930
    • Gersch, M.1
  • 134
    • 85032964267 scopus 로고    scopus 로고
    • Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30
    • Sato, Y. et al. Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nat. Struct. Mol. Biol. 24, 911-919 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 911-919
    • Sato, Y.1
  • 135
    • 85020190390 scopus 로고    scopus 로고
    • USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31
    • Das, T. et al. USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic Acids Res. 45, 4866-4880 (2017).
    • (2017) Nucleic Acids Res. , vol.45 , pp. 4866-4880
    • Das, T.1
  • 136
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: Origins unknown, biogenesis complex
    • Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 137
    • 84898757170 scopus 로고    scopus 로고
    • Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins
    • Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336-345 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 336-345
    • Klionsky, D.J.1    Schulman, B.A.2
  • 138
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: The structures of cellular self-digestion
    • Hurley, J. H. & Schulman, B. A. Atomistic autophagy: the structures of cellular self-digestion. Cell 157, 300-311 (2014).
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.