-
1
-
-
34848861368
-
ClpP mediates activation of a mitochondrial unfolded protein response in C. Elegans
-
Haynes, C. M., Petrova, K., Benedetti, C., Yang, Y. & Ron, D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467-480 (2007).
-
(2007)
Dev. Cell
, vol.13
, pp. 467-480
-
-
Haynes, C.M.1
Petrova, K.2
Benedetti, C.3
Yang, Y.4
Ron, D.5
-
2
-
-
84990040254
-
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
-
Munch, C. & Harper, J. W. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534, 710-713 (2016).
-
(2016)
Nature
, vol.534
, pp. 710-713
-
-
Munch, C.1
Harper, J.W.2
-
4
-
-
85041138005
-
The mitochondrial UPR: Mechanisms, physiological functions and implications in ageing
-
Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2017.110 (2017).
-
(2017)
Nat. Rev. Mol. Cell Biol
-
-
Shpilka, T.1
Haynes, C.M.2
-
5
-
-
84970973729
-
Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response
-
Lin, Y. F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416-419 (2016).
-
(2016)
Nature
, vol.533
, pp. 416-419
-
-
Lin, Y.F.1
-
6
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273 (2015).
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
7
-
-
84959481890
-
The ubiquitin signal and autophagy: An orchestrated dance leading to mitochondrial degradation
-
Yamano, K., Matsuda, N. & Tanaka, K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316 (2016).
-
(2016)
EMBO Rep.
, vol.17
, pp. 300-316
-
-
Yamano, K.1
Matsuda, N.2
Tanaka, K.3
-
9
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 (1998).
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
-
10
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
-
11
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 (2004).
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
-
12
-
-
85018387061
-
Ubiquitin and Parkinson's disease through the looking glass of genetics
-
Walden, H. & Muqit, M. M. Ubiquitin and Parkinson's disease through the looking glass of genetics. Biochem. J. 474, 1439-1451 (2017).
-
(2017)
Biochem. J.
, vol.474
, pp. 1439-1451
-
-
Walden, H.1
Muqit, M.M.2
-
13
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 (2006).
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
-
14
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161 (2006).
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
-
15
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803 (2008).
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
16
-
-
77952419246
-
Mutations of optineurin in amyotrophic lateral sclerosis
-
Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223-226 (2010).
-
(2010)
Nature
, vol.465
, pp. 223-226
-
-
Maruyama, H.1
-
17
-
-
84945749129
-
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
-
Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436-1441 (2015).
-
(2015)
Science
, vol.347
, pp. 1436-1441
-
-
Cirulli, E.T.1
-
18
-
-
84928695187
-
Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
-
Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631-636 (2015).
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 631-636
-
-
Freischmidt, A.1
-
19
-
-
84990925109
-
Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia
-
Weishaupt, J. H., Hyman, T. & Dikic, I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22, 769-783 (2016).
-
(2016)
Trends Mol. Med.
, vol.22
, pp. 769-783
-
-
Weishaupt, J.H.1
Hyman, T.2
Dikic, I.3
-
20
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010).
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
-
21
-
-
84940796811
-
Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis
-
Chourasia, A. H. et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 16, 1145-1163 (2015).
-
(2015)
EMBO Rep.
, vol.16
, pp. 1145-1163
-
-
Chourasia, A.H.1
-
22
-
-
84898619521
-
MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX
-
Li, W. et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J. Biol. Chem. 289, 10691-10701 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 10691-10701
-
-
Li, W.1
-
23
-
-
84991108288
-
+ hematopoietic stem cell population relies on mitochondrial clearance
-
+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156-1160 (2016).
-
(2016)
Science
, vol.354
, pp. 1156-1160
-
-
Ito, K.1
-
24
-
-
84892404204
-
Mitochondrial dysfunction in cancer
-
Boland, M. L., Chourasia, A. H. & Macleod, K. F. Mitochondrial dysfunction in cancer. Front. Oncol. 3, 292 (2013).
-
(2013)
Front. Oncol.
, vol.3
, pp. 292
-
-
Boland, M.L.1
Chourasia, A.H.2
MacLeod, K.F.3
-
25
-
-
84940720812
-
Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX
-
Ney, P. A. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta 1853, 2775-2783 (2015).
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 2775-2783
-
-
Ney, P.A.1
-
26
-
-
84885576570
-
The ubiquitin ligase parkin mediates resistance to intracellular pathogens
-
Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516 (2013).
-
(2013)
Nature
, vol.501
, pp. 512-516
-
-
Manzanillo, P.S.1
-
27
-
-
84922820920
-
Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment
-
Okatsu, K., Kimura, M., Oka, T., Tanaka, K. & Matsuda, N. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell Sci. 128, 964-978 (2015).
-
(2015)
J. Cell Sci.
, vol.128
, pp. 964-978
-
-
Okatsu, K.1
Kimura, M.2
Oka, T.3
Tanaka, K.4
Matsuda, N.5
-
28
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin, S. M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933-942 (2010).
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
-
29
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene, A. W. et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378-385 (2012).
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
-
30
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano, K. & Youle, R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758-1769 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
31
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou, M., Jin, S. M., Kane, L. A. & Youle, R. J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320-333 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
32
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439-E4448 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E4439-E4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
33
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
34
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
35
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
-
36
-
-
84964603365
-
Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
-
Bingol, B. & Sheng, M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 100, 210-222 (2016).
-
(2016)
Free Radic. Biol. Med.
, vol.100
, pp. 210-222
-
-
Bingol, B.1
Sheng, M.2
-
37
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853-2867 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
-
38
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099-2112 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
39
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe, J. F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451-1455 (2013).
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
-
40
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
-
41
-
-
85028879936
-
Targeting HECT-type E3 ligases-insights from catalysis, regulation and inhibitors
-
Fajner, V., Maspero, E. & Polo, S. Targeting HECT-type E3 ligases-insights from catalysis, regulation and inhibitors. FEBS Lett. 591, 2636-2647 (2017).
-
(2017)
FEBS Lett.
, vol.591
, pp. 2636-2647
-
-
Fajner, V.1
Maspero, E.2
Polo, S.3
-
42
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel, D. M., Lissounov, A., Brzovic, P. S. & Klevit, R. E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105-108 (2011).
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
43
-
-
85014937836
-
Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation
-
Tang, M. Y. et al. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nat. Commun. 8, 14697 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 14697
-
-
Tang, M.Y.1
-
44
-
-
77949478474
-
Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling
-
Sha, D., Chin, L. S. & Li, L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum. Mol. Genet. 19, 352-363 (2010).
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 352-363
-
-
Sha, D.1
Chin, L.S.2
Li, L.3
-
45
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080 (2012).
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
-
46
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima, K. et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002 (2012).
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
-
47
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
-
48
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370-374 (2015).
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
49
-
-
85009266835
-
Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation
-
Aguirre, J. D., Dunkerley, K. M., Mercier, P. & Shaw, G. S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl Acad. Sci. USA 114, 298-303 (2017).
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 298-303
-
-
Aguirre, J.D.1
Dunkerley, K.M.2
Mercier, P.3
Shaw, G.S.4
-
50
-
-
84912127688
-
Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin
-
Caulfield, T. R. et al. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoS Comput. Biol. 10, e1003935 (2014).
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003935
-
-
Caulfield, T.R.1
-
51
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127-139 (2014).
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
-
52
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
53
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
-
54
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
Wauer, T. et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307-325 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 307-325
-
-
Wauer, T.1
-
55
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
-
(2015)
J. Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
-
56
-
-
84944441112
-
A Ubl/ubiquitin switch in the activation of Parkin
-
Sauve, V. et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492-2505 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 2492-2505
-
-
Sauve, V.1
-
57
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl Acad. Sci. USA 112, 6637-6642 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
-
58
-
-
85041123859
-
Structure of PINK1 in complex with its substrate ubiquitin
-
Schubert, A. F. et al. Structure of PINK1 in complex with its substrate ubiquitin. Nature 552, 51-56 (2017).
-
(2017)
Nature
, vol.552
, pp. 51-56
-
-
Schubert, A.F.1
-
59
-
-
85033707007
-
An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1
-
Gladkova, C. et al. An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1. EMBO J. 36, 3555-3572 (2017).
-
(2017)
EMBO J.
, vol.36
, pp. 3555-3572
-
-
Gladkova, C.1
-
60
-
-
85036495491
-
Structure of PINK1 and mechanisms of Parkinson's disease associated mutations
-
Kumar, A. et al. Structure of PINK1 and mechanisms of Parkinson's disease associated mutations. eLife 6, e29985 (2017).
-
(2017)
ELife
, vol.6
, pp. e29985
-
-
Kumar, A.1
-
61
-
-
84959577088
-
Site-specific interaction mapping of phosphorylated ubiquitin to uncover Parkin activation
-
Yamano, K. et al. Site-specific interaction mapping of phosphorylated ubiquitin to uncover Parkin activation. J. Biol. Chem. 290, 25199-25211 (2015).
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 25199-25211
-
-
Yamano, K.1
-
62
-
-
84944441665
-
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
-
Kumar, A. et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506-2521 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 2506-2521
-
-
Kumar, A.1
-
63
-
-
84938742614
-
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
-
Kazlauskaite, A. et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939-954 (2015).
-
(2015)
EMBO Rep.
, vol.16
, pp. 939-954
-
-
Kazlauskaite, A.1
-
64
-
-
85017499246
-
Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity
-
Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475-483 (2017).
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 475-483
-
-
Kumar, A.1
-
65
-
-
84982845461
-
Dual function of phosphoubiquitin in E3 activation of Parkin
-
Walinda, E., Morimoto, D., Sugase, K. & Shirakawa, M. Dual function of phosphoubiquitin in E3 activation of Parkin. J. Biol. Chem. 291, 16879-16891 (2016).
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 16879-16891
-
-
Walinda, E.1
Morimoto, D.2
Sugase, K.3
Shirakawa, M.4
-
66
-
-
84956664551
-
Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation
-
Lechtenberg, B. C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546-550 (2016).
-
(2016)
Nature
, vol.529
, pp. 546-550
-
-
Lechtenberg, B.C.1
-
67
-
-
77957673363
-
The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
-
Geisler, S. et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6, 871-878 (2010).
-
(2010)
Autophagy
, vol.6
, pp. 871-878
-
-
Geisler, S.1
-
68
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
-
69
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378-383 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
-
70
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737 (2011).
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
-
71
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106 (2010).
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
72
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131 (2010).
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
-
73
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
74
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375 (2014).
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
-
75
-
-
84994565816
-
Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
-
Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395-403.e4 (2016).
-
(2016)
Cell Syst.
, vol.3
, pp. 395-395e4
-
-
Rose, C.M.1
-
76
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii, S. R., Kishi, C., Ishihara, N. & Mizushima, N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286, 19630-19640 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
77
-
-
84864222562
-
Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
-
Kulathu, Y. & Komander, D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508-523 (2012).
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 508-523
-
-
Kulathu, Y.1
Komander, D.2
-
78
-
-
84923167247
-
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 160-169
-
-
Cunningham, C.N.1
-
79
-
-
85030780236
-
UbMES and UbFluor: Novel probes for RBR E3 ubiquitin ligase PARKIN
-
Park, S., Foote, P. K., Krist, D. T., Rice, S. E. & Statsyuk, A. V. UbMES and UbFluor: novel probes for RBR E3 ubiquitin ligase PARKIN. J. Biol. Chem. 292, 16539-16553 (2017).
-
(2017)
J. Biol. Chem.
, vol.292
, pp. 16539-16553
-
-
Park, S.1
Foote, P.K.2
Krist, D.T.3
Rice, S.E.4
Statsyuk, A.V.5
-
80
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
Lazarou, M. et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200, 163-172 (2013).
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
-
81
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
-
Zheng, X. & Hunter, T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23, 886-897 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
82
-
-
84959192267
-
Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation
-
Pao, K. C. et al. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat. Chem. Biol. 12, 324-331 (2016).
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 324-331
-
-
Pao, K.C.1
-
83
-
-
84903485895
-
PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila
-
Shiba-Fukushima, K., Inoshita, T., Hattori, N. & Imai, Y. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet. 10, e1004391 (2014).
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004391
-
-
Shiba-Fukushima, K.1
Inoshita, T.2
Hattori, N.3
Imai, Y.4
-
84
-
-
85029693774
-
Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling
-
Michel, M. A., Swatek, K. N., Hospenthal, M. K. & Komander, D. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol. Cell 68, 233-246.e5 (2017).
-
(2017)
Mol. Cell
, vol.68
, pp. 233-233e5
-
-
Michel, M.A.1
Swatek, K.N.2
Hospenthal, M.K.3
Komander, D.4
-
85
-
-
85030264578
-
Mitochondrial fission facilitates the selective mitophagy of protein aggregates
-
Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231-3247 (2017).
-
(2017)
J. Cell Biol.
, vol.216
, pp. 3231-3247
-
-
Burman, J.L.1
-
86
-
-
84937725290
-
Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase Parkin
-
Fiesel, F. C. et al. Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase Parkin. Hum. Mutat. 36, 774-786 (2015).
-
(2015)
Hum. Mutat.
, vol.36
, pp. 774-786
-
-
Fiesel, F.C.1
-
87
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014).
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
88
-
-
84959420149
-
NF-κB restricts inflammasome activation via elimination of damaged mitochondria
-
Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910 (2016).
-
(2016)
Cell
, vol.164
, pp. 896-910
-
-
Zhong, Z.1
-
89
-
-
85000919223
-
Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
-
Rojansky, R., Cha, M. Y. & Chan, D. C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896 (2016).
-
(2016)
ELife
, vol.5
, pp. e17896
-
-
Rojansky, R.1
Cha, M.Y.2
Chan, D.C.3
-
90
-
-
80053917869
-
Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta
-
Gleason, C. E., Ordureau, A., Gourlay, R., Arthur, J. S. & Cohen, P. Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. J. Biol. Chem. 286, 35663-35674 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35663-35674
-
-
Gleason, C.E.1
Ordureau, A.2
Gourlay, R.3
Arthur, J.S.4
Cohen, P.5
-
91
-
-
70350020147
-
NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain
-
Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885-2895 (2009).
-
(2009)
EMBO J.
, vol.28
, pp. 2885-2895
-
-
Laplantine, E.1
-
92
-
-
61649103747
-
Structural basis for recognition of diubiquitins by NEMO
-
Lo, Y. C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602-615 (2009).
-
(2009)
Mol. Cell
, vol.33
, pp. 602-615
-
-
Lo, Y.C.1
-
93
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011).
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
94
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221 (2009).
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
Von Muhlinen, N.4
Randow, F.5
-
95
-
-
84982144114
-
Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy
-
Thurston, T. L. et al. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J. 35, 1779-1792 (2016).
-
(2016)
EMBO J.
, vol.35
, pp. 1779-1792
-
-
Thurston, T.L.1
-
96
-
-
84865357562
-
TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation
-
Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234 (2012).
-
(2012)
Immunity
, vol.37
, pp. 223-234
-
-
Pilli, M.1
-
97
-
-
84974815636
-
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
-
Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349-E3358 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E3349-E3358
-
-
Moore, A.S.1
Holzbaur, E.L.2
-
98
-
-
82455172117
-
Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
-
Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279-289 (2011).
-
(2011)
Mol. Cell
, vol.44
, pp. 279-289
-
-
Matsumoto, G.1
Wada, K.2
Okuno, M.3
Kurosawa, M.4
Nukina, N.5
-
99
-
-
84955242756
-
Ubiquitin-dependent and independent signals in selective autophagy
-
Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6-16 (2016).
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
100
-
-
85009198548
-
Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
-
Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857-874 (2016).
-
(2016)
J. Cell Biol.
, vol.215
, pp. 857-874
-
-
Nguyen, T.N.1
-
101
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654-658 (2009).
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
-
102
-
-
84992154479
-
The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
-
Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041 (2016).
-
(2016)
Science
, vol.354
, pp. 1036-1041
-
-
Tsuboyama, K.1
-
103
-
-
85038411114
-
Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux
-
Pontano Vaites, L., Paulo, J. A., Huttlin, E. L. & Harper, J. W. Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux. Mol. Cell. Biol. http://dx.doi.org/10.1128/MCB.00392-17 (2017).
-
(2017)
Mol. Cell. Biol
-
-
Pontano Vaites, L.1
Paulo, J.A.2
Huttlin, E.L.3
Harper, J.W.4
-
104
-
-
85009178435
-
Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
-
Wei, Y. et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224-238.e10 (2017).
-
(2017)
Cell
, vol.168
, pp. 224-224e10
-
-
Wei, Y.1
-
105
-
-
84978437500
-
Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation
-
Matheoud, D. et al. Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314-327 (2016).
-
(2016)
Cell
, vol.166
, pp. 314-327
-
-
Matheoud, D.1
-
106
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282-295 (2014).
-
(2014)
EMBO J.
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
107
-
-
58149149970
-
Parkin deficiency increases vulnerability to inflammation-related nigral degeneration
-
Frank-Cannon, T. C. et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci. 28, 10825-10834 (2008).
-
(2008)
J. Neurosci.
, vol.28
, pp. 10825-10834
-
-
Frank-Cannon, T.C.1
-
108
-
-
84940792247
-
Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
-
Swaney, D. L., Rodriguez-Mias, R. A. & Villen, J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16, 1131-1144 (2015).
-
(2015)
EMBO Rep.
, vol.16
, pp. 1131-1144
-
-
Swaney, D.L.1
Rodriguez-Mias, R.A.2
Villen, J.3
-
109
-
-
24144497601
-
Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death
-
Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968-7978 (2005).
-
(2005)
J. Neurosci.
, vol.25
, pp. 7968-7978
-
-
Ko, H.S.1
-
110
-
-
33745220302
-
Identification of far upstream element-binding protein-1 as an authentic Parkin substrate
-
Ko, H. S., Kim, S. W., Sriram, S. R., Dawson, V. L. & Dawson, T. M. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J. Biol. Chem. 281, 16193-16196 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 16193-16196
-
-
Ko, H.S.1
Kim, S.W.2
Sriram, S.R.3
Dawson, V.L.4
Dawson, T.M.5
-
111
-
-
78649653044
-
Parkin mono-ubiquitinates Bcl-2 and regulates autophagy
-
Chen, D. et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J. Biol. Chem. 285, 38214-38223 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 38214-38223
-
-
Chen, D.1
-
112
-
-
67649823451
-
The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition
-
Uchiki, T. et al. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J. Biol. Chem. 284, 12622-12632 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12622-12632
-
-
Uchiki, T.1
-
113
-
-
58649123332
-
Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson's disease
-
Fukae, J. et al. Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson's disease. FEBS Lett. 583, 521-525 (2009).
-
(2009)
FEBS Lett.
, vol.583
, pp. 521-525
-
-
Fukae, J.1
-
114
-
-
34547780601
-
Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels
-
Joch, M. et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol. Biol. Cell 18, 3105-3118 (2007).
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3105-3118
-
-
Joch, M.1
-
115
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease
-
Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702 (2011).
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
-
116
-
-
84937438976
-
Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress
-
Pickrell, A. M. et al. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 87, 371-381 (2015).
-
(2015)
Neuron
, vol.87
, pp. 371-381
-
-
Pickrell, A.M.1
-
117
-
-
84940776745
-
(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation
-
Fiesel, F. C. et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. 16, 1114-1130 (2015).
-
(2015)
EMBO Rep.
, vol.16
, pp. 1114-1130
-
-
Fiesel, F.C.1
-
118
-
-
84902682891
-
MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin
-
Yun, J. et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife 3, e01958 (2014).
-
(2014)
ELife
, vol.3
, pp. e01958
-
-
Yun, J.1
-
119
-
-
84979966353
-
Mito-QC illuminates mitophagy and mitochondrial architecture in vivo
-
McWilliams, T. G. et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333-345 (2016).
-
(2016)
J. Cell Biol.
, vol.214
, pp. 333-345
-
-
McWilliams, T.G.1
-
120
-
-
84947802088
-
Measuring in vivo mitophagy
-
Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685-696 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 685-696
-
-
Sun, N.1
-
121
-
-
84900315972
-
Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila
-
Politi, Y. et al. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 29, 305-320 (2014).
-
(2014)
Dev. Cell
, vol.29
, pp. 305-320
-
-
Politi, Y.1
-
122
-
-
82255192465
-
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. Elegans embryos
-
Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141-1144 (2011).
-
(2011)
Science
, vol.334
, pp. 1141-1144
-
-
Sato, M.1
Sato, K.2
-
123
-
-
84985916502
-
Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization
-
Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S. & Sutovsky, P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl Acad. Sci. USA 113, E5261-E5270 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E5261-E5270
-
-
Song, W.H.1
Yi, Y.J.2
Sutovsky, M.3
Meyers, S.4
Sutovsky, P.5
-
124
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646 (2014).
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
125
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500-19505 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
-
126
-
-
85018942395
-
Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins
-
Rogov, V. V. et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7, 1131 (2017).
-
(2017)
Sci. Rep.
, vol.7
, pp. 1131
-
-
Rogov, V.V.1
-
127
-
-
85017589321
-
FKBP8 recruits LC3A to mediate Parkin-independent mitophagy
-
Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947-961 (2017).
-
(2017)
EMBO Rep.
, vol.18
, pp. 947-961
-
-
Bhujabal, Z.1
-
128
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185 (2012).
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
-
129
-
-
85010619186
-
Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy
-
Chen, Z. et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 18, 495-509 (2017).
-
(2017)
EMBO Rep.
, vol.18
, pp. 495-509
-
-
Chen, Z.1
-
130
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227-5242 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
-
131
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
-
Durcan, T. M. et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473-2491 (2014).
-
(2014)
EMBO J.
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
-
132
-
-
84929676117
-
Deubiquitinating enzymes regulate PARK2-mediated mitophagy
-
Wang, Y. et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 595-606
-
-
Wang, Y.1
-
133
-
-
85030661011
-
Mechanism and regulation of the Lys6-selective deubiquitinase USP30
-
Gersch, M. et al. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol. 24, 920-930 (2017).
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 920-930
-
-
Gersch, M.1
-
134
-
-
85032964267
-
Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30
-
Sato, Y. et al. Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nat. Struct. Mol. Biol. 24, 911-919 (2017).
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 911-919
-
-
Sato, Y.1
-
135
-
-
85020190390
-
USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31
-
Das, T. et al. USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic Acids Res. 45, 4866-4880 (2017).
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. 4866-4880
-
-
Das, T.1
-
136
-
-
84888380983
-
The autophagosome: Origins unknown, biogenesis complex
-
Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774 (2013).
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
137
-
-
84898757170
-
Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins
-
Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336-345 (2014).
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 336-345
-
-
Klionsky, D.J.1
Schulman, B.A.2
-
138
-
-
84898639632
-
Atomistic autophagy: The structures of cellular self-digestion
-
Hurley, J. H. & Schulman, B. A. Atomistic autophagy: the structures of cellular self-digestion. Cell 157, 300-311 (2014).
-
(2014)
Cell
, vol.157
, pp. 300-311
-
-
Hurley, J.H.1
Schulman, B.A.2
|