-
1
-
-
0038156122
-
The proapoptotic factor Nix is coexpressed with BclxL during terminal erythroid differentiation
-
Aerbajinai W, Giattina M, Lee YT, Raffeld M, and Miller JL. The proapoptotic factor Nix is coexpressed with BclxL during terminal erythroid differentiation. Blood 102: 712-717, 2003.
-
(2003)
Blood
, vol.102
, pp. 712-717
-
-
Aerbajinai, W.1
Giattina, M.2
Lee, Y.T.3
Raffeld, M.4
Miller, J.L.5
-
2
-
-
80052197610
-
Phosphorylation of serine 114 on Atg32 mediates mitophagy
-
Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, and Kang D. Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22: 3206-3217, 2011.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
3
-
-
38949119423
-
Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
-
Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, and Gibson SB. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195-204, 2008.
-
(2008)
Autophagy
, vol.4
, pp. 195-204
-
-
Azad, M.B.1
Chen, Y.2
Henson, E.S.3
Cizeau, J.4
McMillan-Ward, E.5
Israels, S.J.6
Gibson, S.B.7
-
4
-
-
68549135295
-
Hypoxia-induced BNIP3 expression and mitophagy: In vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi
-
Band M, Joel A, Hernandez A, and Avivi A. Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi. FASEB J 23: 2327-2335, 2009.
-
(2009)
FASEB J
, vol.23
, pp. 2327-2335
-
-
Band, M.1
Joel, A.2
Hernandez, A.3
Avivi, A.4
-
5
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, and Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570-2581, 2009.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouyssegur, J.6
Mazure, N.M.7
-
6
-
-
84873685781
-
Hypoxia, MTOR and autophagy: Converging on senescence or quiescence
-
Blagosklonny MV. Hypoxia, MTOR and autophagy: converging on senescence or quiescence. Autophagy 9: 260-262, 2013.
-
(2013)
Autophagy
, vol.9
, pp. 260-262
-
-
Blagosklonny, M.V.1
-
8
-
-
0028113218
-
Adenovirus-E1b 19-Kda and Bcl-2 proteins interact with a common set of cellular proteins
-
Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, Dsaeipper C, and Chinnadurai G. Adenovirus-E1b 19-Kda and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341-351, 1994.
-
(1994)
Cell
, vol.79
, pp. 341-351
-
-
Boyd, J.M.1
Malstrom, S.2
Subramanian, T.3
Venkatesh, L.K.4
Schaeper, U.5
Elangovan, B.6
Dsaeipper, C.7
Chinnadurai, G.8
-
9
-
-
0035282782
-
Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase
-
Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504: 46-57, 2001.
-
(2001)
Biochim Biophys Acta
, vol.1504
, pp. 46-57
-
-
Brown, G.C.1
-
10
-
-
0028291271
-
Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells
-
Buckler KJ and Vaughan-Jones RD. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476: 423-428, 1994.
-
(1994)
J Physiol
, vol.476
, pp. 423-428
-
-
Buckler, K.J.1
Vaughan-Jones, R.D.2
-
11
-
-
84858701257
-
Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
-
Cai Q, Zakaria HM, Simone A, and Sheng ZH. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 22: 545-552, 2012.
-
(2012)
Curr Biol
, vol.22
, pp. 545-552
-
-
Cai, Q.1
Zakaria, H.M.2
Simone, A.3
Sheng, Z.H.4
-
12
-
-
0035378322
-
Functional mitochondria are required for amyloid beta-mediated neurotoxicity
-
Cardoso SM, Santos S, Swerdlow RH, and Oliveira CR. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15: 1439-1441, 2001.
-
(2001)
FASEB J
, vol.15
, pp. 1439-1441
-
-
Cardoso, S.M.1
Santos, S.2
Swerdlow, R.H.3
Oliveira, C.R.4
-
13
-
-
0036403832
-
Beta-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons
-
Casley CS, Land JM, Sharpe MA, Clark JB, Duchen MR, and Canevari L. Beta-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 10: 258-267, 2002.
-
(2002)
Neurobiol Dis
, vol.10
, pp. 258-267
-
-
Casley, C.S.1
Land, J.M.2
Sharpe, M.A.3
Clark, J.B.4
Duchen, M.R.5
Canevari, L.6
-
14
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, and Chan DC. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726-1737, 2011.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
15
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95: 11715-11720, 1998.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 11715-11720
-
-
Chandel, N.S.1
Maltepe, E.2
Goldwasser, E.3
Mathieu, C.E.4
Simon, M.C.5
Schumacker, P.T.6
-
16
-
-
84876090708
-
ZKSCAN3 is a master transcriptional repressor of autophagy
-
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, and Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50: 16-28, 2013.
-
(2013)
Mol Cell
, vol.50
, pp. 16-28
-
-
Chauhan, S.1
Goodwin, J.G.2
Chauhan, S.3
Manyam, G.4
Wang, J.5
Kamat, A.M.6
Boyd, D.D.7
-
17
-
-
0032932923
-
Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins
-
Chen G, Cizeau J, Velde CV, Park JH, Bozek G, Bolton J, Shi L, Dubik D, and Greenberg A. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274: 7-10, 1999.
-
(1999)
J Biol Chem
, vol.274
, pp. 7-10
-
-
Chen, G.1
Cizeau, J.2
Velde, C.V.3
Park, J.H.4
Bozek, G.5
Bolton, J.6
Shi, L.7
Dubik, D.8
Greenberg, A.9
-
18
-
-
84899912073
-
A Regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, and Chen Q. A Regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54: 362-377, 2014.
-
(2014)
Mol Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
Huang, L.7
Zhou, C.8
Cai, X.9
Fu, C.10
Duan, L.11
Wang, X.12
Liu, L.13
Liu, X.14
Shen, Y.15
Zhu, Y.16
Chen, Q.17
-
19
-
-
77951096150
-
Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
-
Chen H and Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18: R169-R176, 2009.
-
(2009)
Hum Mol Genet
, vol.18
, pp. R169-R176
-
-
Chen, H.1
Chan, D.C.2
-
20
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y and Dorn GW, 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340: 471-475, 2013.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
21
-
-
73649127240
-
Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli
-
Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouyssegur J, and Mazure NM. Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol 222: 648-657, 2010.
-
(2010)
J Cell Physiol
, vol.222
, pp. 648-657
-
-
Chiche, J.1
Rouleau, M.2
Gounon, P.3
Brahimi-Horn, M.C.4
Pouyssegur, J.5
Mazure, N.M.6
-
22
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, and Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166, 2006.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
23
-
-
0036162636
-
Nitric oxide and cytochrome oxidase: Substrate, inhibitor or effector?
-
Cooper CE. Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27: 33-39, 2002.
-
(2002)
Trends Biochem Sci
, vol.27
, pp. 33-39
-
-
Cooper, C.E.1
-
24
-
-
34447509483
-
Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology
-
Cooper CE and Giulivi C. Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292: C1993-C2003, 2007.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. C1993-C2003
-
-
Cooper, C.E.1
Giulivi, C.2
-
25
-
-
84865176138
-
Locus-specific mutation databases for neurodegenerative brain diseases
-
Cruts M, Theuns J, and Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33: 1340-1344, 2012.
-
(2012)
Hum Mutat
, vol.33
, pp. 1340-1344
-
-
Cruts, M.1
Theuns, J.2
Van Broeckhoven, C.3
-
26
-
-
3042562282
-
Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells
-
Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, and Kondo S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64: 4286-4293, 2004.
-
(2004)
Cancer Res
, vol.64
, pp. 4286-4293
-
-
Daido, S.1
Kanzawa, T.2
Yamamoto, A.3
Takeuchi, H.4
Kondo, Y.5
Kondo, S.6
-
27
-
-
67649363854
-
Glutathione participates in the regulation of mitophagy in yeast
-
Deffieu M, Bhatia-Kissova I, Salin B, Galinier A, Manon S, and Camougrand N. Glutathione participates in the regulation of mitophagy in yeast. J Biol Chem 284: 14828-14837, 2009.
-
(2009)
J Biol Chem
, vol.284
, pp. 14828-14837
-
-
Deffieu, M.1
Bhatia-Kissova, I.2
Salin, B.3
Galinier, A.4
Manon, S.5
Camougrand, N.6
-
28
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW, 2nd, and Yin XM. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285: 27879-27890, 2010.
-
(2010)
J Biol Chem
, vol.285
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
Dorn, G.W.7
Yin, X.M.8
-
29
-
-
77955514158
-
Mitochondrial pruning by Nix and BNip3: An essential function for cardiac-expressed death factors
-
Dorn GW, 2nd. Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3: 374-383, 2010.
-
(2010)
J Cardiovasc Transl Res
, vol.3
, pp. 374-383
-
-
Dorn, G.W.1
-
30
-
-
24144458255
-
CNS mitochondria in neurodegenerative disorders
-
Dubinsky JM. CNS mitochondria in neurodegenerative disorders. Antioxid Redox Signal 7: 1089-1091, 2005.
-
(2005)
Antioxid Redox Signal
, vol.7
, pp. 1089-1091
-
-
Dubinsky, J.M.1
-
31
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, and Shaw RJ. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461, 2011.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
Asara, J.M.11
Fitzpatrick, J.12
Dillin, A.13
Viollet, B.14
Kundu, M.15
Hansen, M.16
Shaw, R.J.17
-
32
-
-
70350064297
-
The HIF1alpha-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element
-
Farrall AL and Whitelaw ML. The HIF1alpha-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element. Oncogene 28: 3671-3680, 2009.
-
(2009)
Oncogene
, vol.28
, pp. 3671-3680
-
-
Farrall, A.L.1
Whitelaw, M.L.2
-
33
-
-
84860709659
-
FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression
-
Ferber EC, Peck B, Delpuech O, Bell GP, East P, and Schulze A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19: 968-979, 2012.
-
(2012)
Cell Death Differ
, vol.19
, pp. 968-979
-
-
Ferber, E.C.1
Peck, B.2
Delpuech, O.3
Bell, G.P.4
East, P.5
Schulze, A.6
-
34
-
-
77955456405
-
Regulation of human metabolism by hypoxia-inducible factor
-
Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL, Edwards LM, Humphreys SM, Lappin TR, McMullin MF, McNamara CJ, Mills W, Murphy JA, O'Connor DF, Percy MJ, Ratcliffe PJ, Smith TG, Treacy M, Frayn KN, Greenhaff PL, Karpe F, Clarke K, and Robbins PA. Regulation of human metabolism by hypoxia-inducible factor. Proc Natl Acad Sci U S A 107: 12722-12727, 2010.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 12722-12727
-
-
Formenti, F.1
Constantin-Teodosiu, D.2
Emmanuel, Y.3
Cheeseman, J.4
Dorrington, K.L.5
Edwards, L.M.6
Humphreys, S.M.7
Lappin, T.R.8
McMullin, M.F.9
McNamara, C.J.10
Mills, W.11
Murphy, J.A.12
O'Connor, D.F.13
Percy, M.J.14
Ratcliffe, P.J.15
Smith, T.G.16
Treacy, M.17
Frayn, K.N.18
Greenhaff, P.L.19
Karpe, F.20
Clarke, K.21
Robbins, P.A.22
more..
-
35
-
-
80052426012
-
Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival
-
Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA, Kalna G, Watson DG, and Gottlieb E. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. Plos One 6: e24411, 2011.
-
(2011)
Plos One
, vol.6
, pp. e24411
-
-
Frezza, C.1
Zheng, L.2
Tennant, D.A.3
Papkovsky, D.B.4
Hedley, B.A.5
Kalna, G.6
Watson, D.G.7
Gottlieb, E.8
-
36
-
-
66449083078
-
ULK1 center dot ATG13 center dot FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam DH, Wang JR, Ding XJ, Chen S, and Jiang XJ. ULK1 center dot ATG13 center dot FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284: 12297-12305, 2009.
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.R.3
Ding, X.J.4
Chen, S.5
Jiang, X.J.6
-
37
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, and Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19: 4861-4870, 2010.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
38
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, and Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-131, 2010.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
39
-
-
84864015441
-
BNip3 regulates mitochondrial function and lipid metabolism in the liver
-
Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW, 2nd, Brady MJ, and Macleod KF. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32: 2570-2584, 2012.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 2570-2584
-
-
Glick, D.1
Zhang, W.2
Beaton, M.3
Marsboom, G.4
Gruber, M.5
Simon, M.C.6
Hart, J.7
Dorn, G.W.8
Brady, M.J.9
Macleod, K.F.10
-
40
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes LC, Di Benedetto G, and Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589-598, 2011.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
41
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, and Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100: 4078-4083, 2003.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
42
-
-
39849094082
-
Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism
-
Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, and Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 28: 2015-2024, 2008.
-
(2008)
J Neurosci
, vol.28
, pp. 2015-2024
-
-
Gutsaeva, D.R.1
Carraway, M.S.2
Suliman, H.B.3
Demchenko, I.T.4
Shitara, H.5
Yonekawa, H.6
Piantadosi, C.A.7
-
43
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, and Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141: 656-667, 2010.
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
44
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
-
Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, and Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146-157, 2007.
-
(2007)
Cell Death Differ
, vol.14
, pp. 146-157
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Logue, S.E.3
Sayen, M.R.4
Jinno, M.5
Kirshenbaum, L.A.6
Gottlieb, R.A.7
Gustafsson, A.B.8
-
45
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, and Yoshimori T. Autophagosomes form at ER-mitochondria contact sites. Nature 495: 389-393, 2013.
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
Amano, A.11
Yoshimori, T.12
-
46
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, and Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287: 19094-19104, 2012.
-
(2012)
J Biol Chem
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
47
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, and Youle RJ. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504: 291-295, 2013.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
Martin, S.E.11
Youle, R.J.12
-
48
-
-
0035925098
-
Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects
-
Hockel M and Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93: 266-276, 2001.
-
(2001)
J Natl Cancer Inst
, vol.93
, pp. 266-276
-
-
Hockel, M.1
Vaupel, P.2
-
49
-
-
84896824550
-
Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes
-
Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Ikeda K, Ueyama T, Ogata T, and Matoba S. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc Natl Acad Sci U S A 111: 3116-3121, 2014.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 3116-3121
-
-
Hoshino, A.1
Ariyoshi, M.2
Okawa, Y.3
Kaimoto, S.4
Uchihashi, M.5
Fukai, K.6
Iwai-Kanai, E.7
Ikeda, K.8
Ueyama, T.9
Ogata, T.10
Matoba, S.11
-
50
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, and Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981-1991, 2009.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
Guan, J.L.11
Oshiro, N.12
Mizushima, N.13
-
51
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, and Matsuda N. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 288: 22019-22032, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
Koyano, F.4
Kosako, H.5
Kimura, M.6
Suzuki, N.7
Uchiyama, S.8
Tanaka, K.9
Matsuda, N.10
-
52
-
-
0033549869
-
Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with Bcl-2/Bcl-x(L) and induces apoptosis by altering mitochondrial membrane permeability
-
Imazu T, Shimizu S, Tagami S, Matsushima M, Nakamura Y, Miki T, Okuyama A, and Tsujimoto Y. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with Bcl-2/Bcl-x(L) and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18: 4523-4529, 1999.
-
(1999)
Oncogene
, vol.18
, pp. 4523-4529
-
-
Imazu, T.1
Shimizu, S.2
Tagami, S.3
Matsushima, M.4
Nakamura, Y.5
Miki, T.6
Okuyama, A.7
Tsujimoto, Y.8
-
53
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura E, Kishi-Itakura C, Koyama-Honda I, and Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125: 1488-1499, 2012.
-
(2012)
J Cell Sci
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
54
-
-
1842404697
-
Reactive oxygen species during ischemia reflow injury in isolated perfused rat-liver
-
Jaeschke H, Smith CV, and Mitchell JR. Reactive oxygen species during ischemia reflow injury in isolated perfused rat-liver. J Clin Invest 81: 1240-1246, 1988.
-
(1988)
J Clin Invest
, vol.81
, pp. 1240-1246
-
-
Jaeschke, H.1
Smith, C.V.2
Mitchell, J.R.3
-
55
-
-
81255195809
-
FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function
-
Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, Multhaupt H, Bouchard C, Quistorff B, Kjaer A, Landberg G, and Staller P. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 30: 4554-4570, 2011.
-
(2011)
EMBO J
, vol.30
, pp. 4554-4570
-
-
Jensen, K.S.1
Binderup, T.2
Jensen, K.T.3
Therkelsen, I.4
Borup, R.5
Nilsson, E.6
Multhaupt, H.7
Bouchard, C.8
Quistorff, B.9
Kjaer, A.10
Landberg, G.11
Staller, P.12
-
57
-
-
84891738225
-
Autophagy and human diseases
-
Jiang P and Mizushima N. Autophagy and human diseases. Cell Res 24: 69-79, 2014.
-
(2014)
Cell Res
, vol.24
, pp. 69-79
-
-
Jiang, P.1
Mizushima, N.2
-
58
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, and Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143-153, 2014.
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
59
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng JF, Mao K, Yang ZF, Yen WL, and Klionsky DJ. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20: 4730-4738, 2009.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.F.7
Mao, K.8
Yang, Z.F.9
Yen, W.L.10
Klionsky, D.J.11
-
60
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki T, Wang K, Cao Y, Baba M, and Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17: 98-109, 2009.
-
(2009)
Dev Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
61
-
-
79951833039
-
Chaperone-mediated autophagy at a glance
-
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, and Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 124: 495-499, 2011.
-
(2011)
J Cell Sci
, vol.124
, pp. 495-499
-
-
Kaushik, S.1
Bandyopadhyay, U.2
Sridhar, S.3
Kiffin, R.4
Martinez-Vicente, M.5
Kon, M.6
Orenstein, S.J.7
Wong, E.8
Cuervo, A.M.9
-
62
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, and Muqit MM. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127-139, 2014.
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
63
-
-
33751169387
-
Hypoxia-inducible factor-1 (HIF-1)
-
Ke Q and Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70: 1469-1480, 2006.
-
(2006)
Mol Pharmacol
, vol.70
, pp. 1469-1480
-
-
Ke, Q.1
Costa, M.2
-
65
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, and Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132-141, 2011.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
66
-
-
80053428657
-
Involvement of mitophagy in oncogenic K-Ras-induced transformation: Overcoming a cellular energy deficit from glucose deficiency
-
Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG, Yoon JK, Choi SE, Ko YG, Kim MJ, Lee SJ, Wang HJ, and Yoon G. Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7: 1187-1198, 2011.
-
(2011)
Autophagy
, vol.7
, pp. 1187-1198
-
-
Kim, J.H.1
Kim, H.Y.2
Lee, Y.K.3
Yoon, Y.S.4
Xu, W.G.5
Yoon, J.K.6
Choi, S.E.7
Ko, Y.G.8
Kim, M.J.9
Lee, S.J.10
Wang, H.J.11
Yoon, G.12
-
67
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
-
Kim JW, Tchernyshyov I, Semenza GL, and Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177-185, 2006.
-
(2006)
Cell Metab
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
68
-
-
56049091236
-
PINK1 controls mitochondrial localization of Parkin through direct phosphorylation
-
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, and Chung J. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377: 975-980, 2008.
-
(2008)
Biochem Biophys Res Commun
, vol.377
, pp. 975-980
-
-
Kim, Y.1
Park, J.2
Kim, S.3
Song, S.4
Kwon, S.K.5
Lee, S.H.6
Kitada, T.7
Kim, J.M.8
Chung, J.9
-
69
-
-
4644273585
-
Uth1p is involved in the autophagic degradation of mitochondria
-
Kissova I, Deffieu M, Manon S, and Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279: 39068-39074, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 39068-39074
-
-
Kissova, I.1
Deffieu, M.2
Manon, S.3
Camougrand, N.4
-
70
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, and Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608, 1998.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
71
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, and Muqit MM. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080, 2012.
-
(2012)
Open Biol
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
Knebel, A.11
Alessi, D.R.12
Muqit, M.M.13
-
72
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, and Okamoto K. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem 287: 10631-10638, 2012.
-
(2012)
J Biol Chem
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
73
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, and Matsuda N. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162-166, 2014.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
Endo, T.11
Fon, E.A.12
Trempe, J.F.13
Saeki, Y.14
Tanaka, K.15
Matsuda, N.16
-
74
-
-
84867724832
-
Mitochondria and mitophagy the yin and yang of cell death control
-
Kubli DA and Gustafsson AB. Mitochondria and mitophagy the yin and yang of cell death control. Circ Res 111: 1208-1221, 2012.
-
(2012)
Circ Res
, vol.111
, pp. 1208-1221
-
-
Kubli, D.A.1
Gustafsson, A.B.2
-
75
-
-
51649124519
-
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
-
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, and Thompson CB. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112: 1493-1502, 2008.
-
(2008)
Blood
, vol.112
, pp. 1493-1502
-
-
Kundu, M.1
Lindsten, T.2
Yang, C.Y.3
Wu, J.4
Zhao, F.5
Zhang, J.6
Selak, M.A.7
Ney, P.A.8
Thompson, C.B.9
-
76
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M, Jin SM, Kane LA, and Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22: 320-333, 2012.
-
(2012)
Dev Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
77
-
-
80355127945
-
Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
-
Lee Y, Lee HY, Hanna RA, and Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 301: H1924-H1931, 2011.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, pp. H1924-H1931
-
-
Lee, Y.1
Lee, H.Y.2
Hanna, R.A.3
Gustafsson, A.B.4
-
78
-
-
84865173843
-
Hypoxia suppresses conversion from proliferative arrest to cellular senescence
-
Leontieva OV, Natarajan V, Demidenko ZN, Burdelya LG, Gudkov AV, and Blagosklonny MV. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci U S A 109: 13314-13318, 2012.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 13314-13318
-
-
Leontieva, O.V.1
Natarajan, V.2
Demidenko, Z.N.3
Burdelya, L.G.4
Gudkov, A.V.5
Blagosklonny, M.V.6
-
79
-
-
33750347347
-
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
-
Lin MT and Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-795, 2006.
-
(2006)
Nature
, vol.443
, pp. 787-795
-
-
Lin, M.T.1
Beal, M.F.2
-
80
-
-
84874931751
-
Reactive oxygen species and the free radical theory of aging
-
Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60: 1-4, 2013.
-
(2013)
Free Radic Biol Med
, vol.60
, pp. 1-4
-
-
Liochev, S.I.1
-
81
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, and Chen Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14: 177-185, 2012.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
Huang, L.11
Xue, P.12
Li, B.13
Wang, X.14
Jin, H.15
Wang, J.16
Yang, F.17
Liu, P.18
Zhu, Y.19
Sui, S.20
Chen, Q.21
more..
-
82
-
-
80052711240
-
Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress
-
Liu X and Hajnoczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18: 1561-1572, 2011.
-
(2011)
Cell Death Differ
, vol.18
, pp. 1561-1572
-
-
Liu, X.1
Hajnoczky, G.2
-
83
-
-
0030581151
-
Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c
-
Liu X, Kim CN, Yang J, Jemmerson R, and Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-157, 1996.
-
(1996)
Cell
, vol.86
, pp. 147-157
-
-
Liu, X.1
Kim, C.N.2
Yang, J.3
Jemmerson, R.4
Wang, X.5
-
84
-
-
0029759933
-
Oxygen-sensing by ion channels and the regulation of cellular functions
-
Lopez-Barneo J. Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci 19: 435-440, 1996.
-
(1996)
Trends Neurosci
, vol.19
, pp. 435-440
-
-
Lopez-Barneo, J.1
-
85
-
-
84887495000
-
Regulation and function of mitophagy in development and cancer
-
Lu H, Li G, Liu L, Feng L, Wang X, and Jin H. Regulation and function of mitophagy in development and cancer. Autophagy 9: 1720-1736, 2013.
-
(2013)
Autophagy
, vol.9
, pp. 1720-1736
-
-
Lu, H.1
Li, G.2
Liu, L.3
Feng, L.4
Wang, X.5
Jin, H.6
-
86
-
-
11144353586
-
ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease
-
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, and Wu H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304: 448-452, 2004.
-
(2004)
Science
, vol.304
, pp. 448-452
-
-
Lustbader, J.W.1
Cirilli, M.2
Lin, C.3
Xu, H.W.4
Takuma, K.5
Wang, N.6
Caspersen, C.7
Chen, X.8
Pollak, S.9
Chaney, M.10
Trinchese, F.11
Liu, S.12
Gunn-Moore, F.13
Lue, L.F.14
Walker, D.G.15
Kuppusamy, P.16
Zewier, Z.L.17
Arancio, O.18
Stern, D.19
Yan, S.S.20
Wu, H.21
more..
-
87
-
-
34250894388
-
BH3- only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X-L
-
Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, and Kroemer G. BH3- only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X-L. Autophagy 3: 374-376, 2007.
-
(2007)
Autophagy
, vol.3
, pp. 374-376
-
-
Maiuri, M.C.1
Criollo, A.2
Tasdemir, E.3
Vicencio, J.M.4
Tajeddine, N.5
Hickman, J.A.6
Geneste, O.7
Kroemer, G.8
-
88
-
-
34548188741
-
Self-eating and self-killing: Crosstalk between autophagy and apoptosis
-
Maiuri MC, Zalckvar E, Kimchi A, and Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752, 2007.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 741-752
-
-
Maiuri, M.C.1
Zalckvar, E.2
Kimchi, A.3
Kroemer, G.4
-
89
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, and Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458-471, 2007.
-
(2007)
Cell Metab
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Del Piccolo, P.6
Burden, S.J.7
Di Lisi, R.8
Sandri, C.9
Zhao, J.10
Goldberg, A.L.11
Schiaffino, S.12
Sandri, M.13
-
90
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
Mao K, Wang K, Liu X, and Klionsky DJ. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 26: 9-18, 2013.
-
(2013)
Dev Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
91
-
-
79958219318
-
Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
-
Mao K, Wang K, Zhao M, Xu T, and Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193: 755-767, 2011.
-
(2011)
J Cell Biol
, vol.193
, pp. 755-767
-
-
Mao, K.1
Wang, K.2
Zhao, M.3
Xu, T.4
Klionsky, D.J.5
-
92
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, and Cuervo AM. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 13: 567-576, 2010.
-
(2010)
Nat Neurosci
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
Talloczy, Z.2
Wong, E.3
Tang, G.4
Koga, H.5
Kaushik, S.6
De Vries, R.7
Arias, E.8
Harris, S.9
Sulzer, D.10
Cuervo, A.M.11
-
93
-
-
0346027211
-
Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways
-
Mateo J, Garcia-Lecea M, Cadenas S, Hernandez C, and Moncada S. Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J 376: 537-544, 2003.
-
(2003)
Biochem J
, vol.376
, pp. 537-544
-
-
Mateo, J.1
Garcia-Lecea, M.2
Cadenas, S.3
Hernandez, C.4
Moncada, S.5
-
94
-
-
79959999581
-
Microautophagy in mammalian cells revisiting a 40-year-old conundrum
-
Mijaljica D, Prescott M, and Devenish RJ. Microautophagy in mammalian cells revisiting a 40-year-old conundrum. Autophagy 7: 673-682, 2011.
-
(2011)
Autophagy
, vol.7
, pp. 673-682
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
95
-
-
36249025723
-
Autophagy: Process and function
-
Mizushima N. Autophagy: process and function. Genes Dev 21: 2861-2873, 2007.
-
(2007)
Genes Dev
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
97
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen DF, and Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803, 2008.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
98
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, and Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298, 2010.
-
(2010)
PLoS Biol
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
99
-
-
84865536459
-
The mitochondrial Dnm1-like fission component is required for lgA2-induced mitophagy but dispensable for starvation-induced mitophagy in Ustilago maydis
-
Nieto-Jacobo F, Pasch D, and Basse CW. The mitochondrial Dnm1-like fission component is required for lgA2-induced mitophagy but dispensable for starvation-induced mitophagy in Ustilago maydis. Eukaryot Cell 11: 1154-1166, 2012.
-
(2012)
Eukaryot Cell
, vol.11
, pp. 1154-1166
-
-
Nieto-Jacobo, F.1
Pasch, D.2
Basse, C.W.3
-
100
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dotsch V, Ney PA, and Dikic I. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45-51, 2010.
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
Reichert, A.S.11
Terzic, J.12
Dotsch, V.13
Ney, P.A.14
Dikic, I.15
-
101
-
-
34250898919
-
Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy
-
Nowikovsky K, Reipert S, Devenish RJ, and Schweyen RJ. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14: 1647-1656, 2007.
-
(2007)
Cell Death Differ
, vol.14
, pp. 1647-1656
-
-
Nowikovsky, K.1
Reipert, S.2
Devenish, R.J.3
Schweyen, R.J.4
-
102
-
-
77954104112
-
Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update
-
Nuytemans K, Theuns J, Cruts M, and Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31: 763-780, 2010.
-
(2010)
Hum Mutat
, vol.31
, pp. 763-780
-
-
Nuytemans, K.1
Theuns, J.2
Cruts, M.3
Van Broeckhoven, C.4
-
103
-
-
0032945622
-
A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region
-
Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K, Motoyama N, and Nakajima T. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ 6: 314-325, 1999.
-
(1999)
Cell Death Differ
, vol.6
, pp. 314-325
-
-
Ohi, N.1
Tokunaga, A.2
Tsunoda, H.3
Nakano, K.4
Haraguchi, K.5
Oda, K.6
Motoyama, N.7
Nakajima, T.8
-
104
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto K, Kondo-Okamoto N, and Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17: 87-97, 2009.
-
(2009)
Dev Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
105
-
-
84876335261
-
Mitophagy in neurodegeneration and aging
-
Palikaras K and Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet 3: 297, 2012.
-
(2012)
Front Genet
, vol.3
, pp. 297
-
-
Palikaras, K.1
Tavernarakis, N.2
-
106
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I, Cairns RA, Fontana L, Lim AL, and Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187-197, 2006.
-
(2006)
Cell Metab
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
Lim, A.L.4
Denko, N.C.5
-
107
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, and Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157-1161, 2006.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
Bae, E.7
Kim, J.8
Shong, M.9
Kim, J.M.10
Chung, J.11
-
108
-
-
70350402494
-
Hypoxia and neurodegeneration
-
Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, and Boyle JP. Hypoxia and neurodegeneration. Ann N Y Acad Sci 1177: 169-177, 2009.
-
(2009)
Ann N y Acad Sci
, vol.1177
, pp. 169-177
-
-
Peers, C.1
Dallas, M.L.2
Boycott, H.E.3
Scragg, J.L.4
Pearson, H.A.5
Boyle, J.P.6
-
109
-
-
0034464870
-
Intracellular pathways linking hypoxia to activation of c-fos and AP-1
-
Premkumar DR, Adhikary G, Overholt JL, Simonson MS, Cherniack NS, and Prabhakar NR. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol 475: 101-109, 2000.
-
(2000)
Adv Exp Med Biol
, vol.475
, pp. 101-109
-
-
Premkumar, D.R.1
Adhikary, G.2
Overholt, J.L.3
Simonson, M.S.4
Cherniack, N.S.5
Prabhakar, N.R.6
-
110
-
-
0030937718
-
Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit
-
Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, and Ratcliffe PJ. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272: 11205-11214, 1997.
-
(1997)
J Biol Chem
, vol.272
, pp. 11205-11214
-
-
Pugh, C.W.1
O'Rourke, J.F.2
Nagao, M.3
Gleadle, J.M.4
Ratcliffe, P.J.5
-
111
-
-
77957683915
-
Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
-
Quinsay MN, Thomas RL, Lee Y, and Gustafsson AB. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6: 855-862, 2010.
-
(2010)
Autophagy
, vol.6
, pp. 855-862
-
-
Quinsay, M.N.1
Thomas, R.L.2
Lee, Y.3
Gustafsson, A.B.4
-
112
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold AS, Kostelecky B, Elia N, and Lippincott- Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108: 10190-10195, 2011.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott- Schwartz, J.4
-
113
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B, Moreau K, Jahreiss L, Puri C, and Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12: 747-757, 2010.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
114
-
-
0033984094
-
BNIP3 heterodimerizes with Bcl-2/Bcl-X-L and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites
-
Ray R, Chen G, Vande Velde C, Cizeau J, Park JH, Reed JC, Gietz RD, and Greenberg AH. BNIP3 heterodimerizes with Bcl-2/Bcl-X-L and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 275: 1439-1448, 2000.
-
(2000)
J Biol Chem
, vol.275
, pp. 1439-1448
-
-
Ray, R.1
Chen, G.2
Vande Velde, C.3
Cizeau, J.4
Park, J.H.5
Reed, J.C.6
Gietz, R.D.7
Greenberg, A.H.8
-
115
-
-
33644606491
-
Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes
-
Rodriguez-Enriquez S, Kim I, Currin RT, and Lemasters JJ. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2: 39-46, 2006.
-
(2006)
Autophagy
, vol.2
, pp. 39-46
-
-
Rodriguez-Enriquez, S.1
Kim, I.2
Currin, R.T.3
Lemasters, J.J.4
-
116
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov V, Dotsch V, Johansen T, and Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53: 167-178, 2014.
-
(2014)
Mol Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dotsch, V.2
Johansen, T.3
Kirkin, V.4
-
117
-
-
74949118681
-
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
-
Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, and Wouters BG. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120: 127-141, 2010.
-
(2010)
J Clin Invest
, vol.120
, pp. 127-141
-
-
Rouschop, K.M.1
Van Den Beucken, T.2
Dubois, L.3
Niessen, H.4
Bussink, J.5
Savelkouls, K.6
Keulers, T.7
Mujcic, H.8
Landuyt, W.9
Voncken, J.W.10
Lambin, P.11
Van Der Kogel, A.J.12
Koritzinsky, M.13
Wouters, B.G.14
-
118
-
-
77955467319
-
Regulation of autophagy by ATF4 in response to severe hypoxia
-
Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, and Harris AL. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29: 4424-4435, 2010.
-
(2010)
Oncogene
, vol.29
, pp. 4424-4435
-
-
Rzymski, T.1
Milani, M.2
Pike, L.3
Buffa, F.4
Mellor, H.R.5
Winchester, L.6
Pires, I.7
Hammond, E.8
Ragoussis, I.9
Harris, A.L.10
-
119
-
-
73949083594
-
Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
-
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, and Akira S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106: 20842-20846, 2009.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 20842-20846
-
-
Saitoh, T.1
Fujita, N.2
Hayashi, T.3
Takahara, K.4
Satoh, T.5
Lee, H.6
Matsunaga, K.7
Kageyama, S.8
Omori, H.9
Noda, T.10
Yamamoto, N.11
Kawai, T.12
Ishii, K.13
Takeuchi, O.14
Yoshimori, T.15
Akira, S.16
-
120
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, and Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290-303, 2010.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
121
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, and Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-1501, 2008.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
122
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, and Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232-235, 2008.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
123
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, and Harper JW. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372-376, 2013.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
124
-
-
67650219052
-
Nix directly binds to GABARAP a possible crosstalk between apoptosis and autophagy
-
Schwarten M, Mohrluder J, Ma PX, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, and Willbold D. Nix directly binds to GABARAP a possible crosstalk between apoptosis and autophagy. Autophagy 5: 690-698, 2009.
-
(2009)
Autophagy
, vol.5
, pp. 690-698
-
-
Schwarten, M.1
Mohrluder, J.2
Ma, P.X.3
Stoldt, M.4
Thielmann, Y.5
Stangler, T.6
Hersch, N.7
Hoffmann, B.8
Merkel, R.9
Willbold, D.10
-
125
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, and Ney PA. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104: 19500-19505, 2007.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
Ney, P.A.11
-
126
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 148: 399-408, 2012.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
127
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di Malta C, Polito VA, Garcia-Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, and Ballabio A. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429-1433, 2011.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia-Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
Sardiello, M.11
Rubinsztein, D.C.12
Ballabio, A.13
-
128
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang LB, Chen S, Du FH, Li S, Zhao LP, and Wang XD. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 108: 4788-4793, 2011.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4788-4793
-
-
Shang, L.B.1
Chen, S.2
Du, F.H.3
Li, S.4
Zhao, L.P.5
Wang, X.D.6
-
129
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, and Hattori N. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002, 2012.
-
(2012)
Sci Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
130
-
-
84870013071
-
Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy
-
Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, and Dreier L. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287: 40652-40660, 2012.
-
(2012)
J Biol Chem
, vol.287
, pp. 40652-40660
-
-
Sun, Y.1
Vashisht, A.A.2
Tchieu, J.3
Wohlschlegel, J.A.4
Dreier, L.5
-
131
-
-
34848899280
-
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, and Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142-1151, 2007.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.D.4
Sun, M.5
Sato, Y.6
Liang, C.7
Jung, J.U.8
Cheng, J.Q.9
Mule, J.J.10
Pledger, W.J.11
Wang, H.G.12
-
132
-
-
84876499607
-
Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy
-
Takahashi Y, Hori T, Cooper TK, Liao J, Desai N, Serfass JM, Young MM, Park S, Izu Y, and Wang HG. Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy. Blood 121: 1622-1632, 2013.
-
(2013)
Blood
, vol.121
, pp. 1622-1632
-
-
Takahashi, Y.1
Hori, T.2
Cooper, T.K.3
Liao, J.4
Desai, N.5
Serfass, J.M.6
Young, M.M.7
Park, S.8
Izu, Y.9
Wang, H.G.10
-
133
-
-
78650816366
-
Bif-1 regulates Atg9 trafficking by mediating the fission of golgi membranes during autophagy
-
Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, and Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of golgi membranes during autophagy. Autophagy 7: 61-73, 2011.
-
(2011)
Autophagy
, vol.7
, pp. 61-73
-
-
Takahashi, Y.1
Meyerkord, C.L.2
Hori, T.3
Runkle, K.4
Fox, T.E.5
Kester, M.6
Loughran, T.P.7
Wang, H.G.8
-
134
-
-
34247172582
-
Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
-
Tal R, Winter G, Ecker N, Klionsky DJ, and Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282: 5617-5624, 2007.
-
(2007)
J Biol Chem
, vol.282
, pp. 5617-5624
-
-
Tal, R.1
Winter, G.2
Ecker, N.3
Klionsky, D.J.4
Abeliovich, H.5
-
135
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, and Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367-1380, 2010.
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
136
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, and Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-6242, 2007.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
137
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, and Shirihai OS. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27: 433-446, 2008.
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
Alroy, J.11
Wu, M.12
Py, B.F.13
Yuan, J.14
Deeney, J.T.15
Corkey, B.E.16
Shirihai, O.S.17
-
138
-
-
0036019932
-
Redox control of cell death
-
Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J. Redox control of cell death. Antioxid Redox Signal 4: 405-414, 2002.
-
(2002)
Antioxid Redox Signal
, vol.4
, pp. 405-414
-
-
Ueda, S.1
Masutani, H.2
Nakamura, H.3
Tanaka, T.4
Ueno, M.5
Yodoi, J.6
-
139
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, and Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158-1160, 2004.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
Albanese, A.11
Nussbaum, R.12
Gonzalez-Maldonado, R.13
Deller, T.14
Salvi, S.15
Cortelli, P.16
Gilks, W.P.17
Latchman, D.S.18
Harvey, R.J.19
Dallapiccola, B.20
Auburger, G.21
Wood, N.W.22
more..
-
140
-
-
0029051439
-
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
-
Wang GL, Jiang BH, Rue EA, and Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92: 5510-5514, 1995.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 5510-5514
-
-
Wang, G.L.1
Jiang, B.H.2
Rue, E.A.3
Semenza, G.L.4
-
141
-
-
79953231682
-
Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease
-
Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, Zhou J, and Chen Q. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286: 11649-11658, 2011.
-
(2011)
J Biol Chem
, vol.286
, pp. 11649-11658
-
-
Wang, H.1
Song, P.2
Du, L.3
Tian, W.4
Yue, W.5
Liu, M.6
Li, D.7
Wang, B.8
Zhu, Y.9
Cao, C.10
Zhou, J.11
Chen, Q.12
-
142
-
-
81055140895
-
PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang XN, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, and Schwarz TL. PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893-906, 2011.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.N.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
Selkoe, D.6
Rice, S.7
Steen, J.8
LaVoie, M.J.9
Schwarz, T.L.10
-
143
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 123: 309-314, 1956.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
144
-
-
64549112144
-
Pink1 forms a multiprotein complex with miro and milton, linking Pink1 function to mitochondrial trafficking
-
Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, and Selkoe DJ. Pink1 forms a multiprotein complex with miro and milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48: 2045-2052, 2009.
-
(2009)
Biochemistry
, vol.48
, pp. 2045-2052
-
-
Weihofen, A.1
Thomas, K.J.2
Ostaszewski, B.L.3
Cookson, M.R.4
Selkoe, D.J.5
-
145
-
-
79957534572
-
Targeting hypoxia in cancer therapy
-
Wilson WR and Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 11: 393-410, 2011.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 393-410
-
-
Wilson, W.R.1
Hay, M.P.2
-
146
-
-
84878256973
-
Metabolism: Putting energy into mitophagy
-
Wrighton KH. Metabolism: putting energy into mitophagy. Nat Rev Mol Cell Biol 14: 324, 2013.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 324
-
-
Wrighton, K.H.1
-
147
-
-
84907893501
-
The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy
-
Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, and Chen Q. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10: 1712-1725, 2014.
-
(2014)
Autophagy
, vol.10
, pp. 1712-1725
-
-
Wu, H.1
Xue, D.2
Chen, G.3
Han, Z.4
Huang, L.5
Zhu, C.6
Wang, X.7
Jin, H.8
Wang, J.9
Zhu, Y.10
Liu, L.11
Chen, Q.12
-
148
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, and Lu B. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103: 10793-10798, 2006.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
Huang, Z.4
Ouyang, Y.5
Wang, J.W.6
Yang, L.7
Beal, M.F.8
Vogel, H.9
Lu, B.10
-
149
-
-
0032524656
-
Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence
-
Yasuda M, Theodorakis P, Subramanian T, and Chinnadurai G. Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 273: 12415-12421, 1998.
-
(1998)
J Biol Chem
, vol.273
, pp. 12415-12421
-
-
Yasuda, M.1
Theodorakis, P.2
Subramanian, T.3
Chinnadurai, G.4
-
150
-
-
75749135725
-
The conserved oligomeric Golgi complex is involved in doublemembrane vesicle formation during autophagy
-
Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li ZJ, Hughson FM, Baba M, and Klionsky DJ. The conserved oligomeric Golgi complex is involved in doublemembrane vesicle formation during autophagy. J Cell Biol 188: 101-114, 2010.
-
(2010)
J Cell Biol
, vol.188
, pp. 101-114
-
-
Yen, W.L.1
Shintani, T.2
Nair, U.3
Cao, Y.4
Richardson, B.C.5
Li, Z.J.6
Hughson, F.M.7
Baba, M.8
Klionsky, D.J.9
-
151
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Yla-Anttila P, Vihinen H, Jokita E, and Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5: 1180-1185, 2009.
-
(2009)
Autophagy
, vol.5
, pp. 1180-1185
-
-
Yla-Anttila, P.1
Vihinen, H.2
Jokita, E.3
Eskelinen, E.L.4
-
152
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii SR, Kishi C, Ishihara N, and Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286: 19630-19640, 2011.
-
(2011)
J Biol Chem
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
153
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, and Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903, 2008.
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
154
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang J and Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16: 939-946, 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
155
-
-
67650230871
-
Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation
-
Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, and Ney PA. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114: 157-164, 2009.
-
(2009)
Blood
, vol.114
, pp. 157-164
-
-
Zhang, J.1
Randall, M.S.2
Loyd, M.R.3
Dorsey, F.C.4
Kundu, M.5
Cleveland, J.L.6
Ney, P.A.7
-
156
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
-
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, and Jin S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106: 19860-19865, 2009.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
Goldman, S.2
Baerga, R.3
Zhao, Y.4
Komatsu, M.5
Jin, S.6
-
157
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
Zhao Y, Yang J, Liao WJ, Liu XY, Zhang H, Wang S, Wang DL, Feng JN, Yu L, and Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: 665-675, 2010.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 665-675
-
-
Zhao, Y.1
Yang, J.2
Liao, W.J.3
Liu, X.Y.4
Zhang, H.5
Wang, S.6
Wang, D.L.7
Feng, J.N.8
Yu, L.9
Zhu, W.G.10
-
158
-
-
77953288101
-
Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients
-
Zhu L, Wang Q, Zhang L, Fang Z, Zhao F, Lv Z, Gu Z, Zhang J, Wang J, Zen K, Xiang Y, Wang D, and Zhang CY. Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res 20: 676-687, 2010.
-
(2010)
Cell Res
, vol.20
, pp. 676-687
-
-
Zhu, L.1
Wang, Q.2
Zhang, L.3
Fang, Z.4
Zhao, F.5
Lv, Z.6
Gu, Z.7
Zhang, J.8
Wang, J.9
Zen, K.10
Xiang, Y.11
Wang, D.12
Zhang, C.Y.13
-
159
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, and Brady NR. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288: 1099-1113, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
-
160
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani E, Tao RN, and Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107: 5018-5023, 2010.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
161
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang SY, Sancak Y, and Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334: 678-683, 2011.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.Y.4
Sancak, Y.5
Sabatini, D.M.6
|