메뉴 건너뛰기




Volumn 10, Issue 1, 2018, Pages

mTOR pathways in cancer and autophagy

Author keywords

Autophagy; Cancer; mTOR; Signaling

Indexed keywords

BECLIN 1; CELL PROTEIN; GLUTAMINE; GROWTH FACTOR; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; HYPOXIA INDUCIBLE FACTOR; HYPOXIA RESPONSE ELEMENT; LEUCINE; LEUCINE TRANSFER RNA LIGASE; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; METFORMIN; MICROPHTHALMIA ASSOCIATED TRANSCRIPTION FACTOR; PHOSPHOLIPASE C; PROCOLLAGEN PROLINE 2 OXOGLUTARATE 4 DIOXYGENASE; PROTEIN BCL 2; PROTEIN BNIP3; PROTEIN KINASE B; PROTEIN KINASE D; RAG PROTEIN; RAPAMYCIN; RHEB PROTEIN; SERINE; SERINE THREONINE PROTEIN KINASE ULK1; TARGET OF RAPAMYCIN KINASE; TUBEROUS SCLEROSIS COMPLEX 1; TUBEROUS SCLEROSIS COMPLEX 2; UNCLASSIFIED DRUG; VON HIPPEL LINDAU PROTEIN;

EID: 85040817970     PISSN: None     EISSN: 20726694     Source Type: Journal    
DOI: 10.3390/cancers10010018     Document Type: Review
Times cited : (242)

References (154)
  • 1
    • 84857675728 scopus 로고    scopus 로고
    • The mTOR signalling pathway in human cancer
    • CrossRefPubMed
    • Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 2012, 13, 1886-1918. [CrossRef] [PubMed]
    • (2012) Int. J. Mol. Sci , vol.13 , pp. 1886-1918
    • Pópulo, H.1    Lopes, J.M.2    Soares, P.3
  • 2
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signaling at a glance
    • CrossRefPubMed
    • Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589-3594. [CrossRef] [PubMed]
    • (2009) J. Cell Sci , vol.122 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 3
    • 84859927489 scopus 로고    scopus 로고
    • Emerging treatments in the management of tuberous sclerosis complex
    • CrossRefPubMed
    • Kohrman, M.H. Emerging treatments in the management of tuberous sclerosis complex. Pediatr. Neurol. 2012, 46, 267-275. [CrossRef] [PubMed]
    • (2012) Pediatr. Neurol , vol.46 , pp. 267-275
    • Kohrman, M.H.1
  • 4
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • CrossRefPubMed
    • Huang, J.; Manning, B.D. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J. 2008, 412, 179-190. [CrossRef] [PubMed]
    • (2008) Biochem. J. , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 5
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • CrossRefPubMed
    • Menon, S.; Dibble, C.C.; Talbott, G.; Hoxhaj, G.; Valvezan, A.J.; Takahashi, H.; Cantley, L.C.; Manning, B.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156, 771-785. [CrossRef] [PubMed]
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1    Dibble, C.C.2    Talbott, G.3    Hoxhaj, G.4    Valvezan, A.J.5    Takahashi, H.6    Cantley, L.C.7    Manning, B.D.8
  • 7
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • CrossRefPubMed
    • Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4, 648-657. [CrossRef] [PubMed]
    • (2002) Nat. Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.-L.5
  • 8
    • 0036714127 scopus 로고    scopus 로고
    • Akt regulates growth by directly phosphorylating Tsc2.
    • CrossRefPubMed
    • Potter, C.J.; Pedraza, L.G.; Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4, 658-665. [CrossRef] [PubMed]
    • (2002) Nat. Cell Biol , vol.4 , pp. 658-665
    • Potter, C.J.1    Pedraza, L.G.2    Xu, T.3
  • 10
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • CrossRefPubMed
    • Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006, 126, 955-968. [CrossRef] [PubMed]
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1    Ouyang, H.2    Zhu, T.3    Lindvall, C.4    Wang, Y.5    Zhang, X.6    Yang, Q.7    Bennett, C.8    Harada, Y.9    Stankunas, K.10
  • 11
    • 21244480367 scopus 로고    scopus 로고
    • The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
    • CrossRefPubMed
    • Smith, E.M.; Finn, S.G.; Tee, A.R.; Browne, G.J.; Proud, C.G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 2005, 280, 18717-18727. [CrossRef] [PubMed]
    • (2005) J. Biol. Chem , vol.280 , pp. 18717-18727
    • Smith, E.M.1    Finn, S.G.2    Tee, A.R.3    Browne, G.J.4    Proud, C.G.5
  • 13
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • CrossRefPubMed
    • Inoki, K.; Li, Y.; Xu, T.; Guan, K.-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17, 1829-1834. [CrossRef] [PubMed]
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.-L.4
  • 14
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • CrossRefPubMed
    • Zhang, Y.; Gao, X.; Saucedo, L.J.; Ru, B.; Edgar, B.A.; Pan, D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 2003, 5, 578-581. [CrossRef] [PubMed]
    • (2003) Nat. Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1    Gao, X.2    Saucedo, L.J.3    Ru, B.4    Edgar, B.A.5    Pan, D.6
  • 15
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • CrossRef
    • Tee, A.R.; Manning, B.D.; Roux, P.P.; Cantley, L.C.; Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13, 1259-1268. [CrossRef]
    • (2003) Curr. Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 16
    • 4444276510 scopus 로고    scopus 로고
    • Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
    • CrossRefPubMed
    • Li, Y.; Inoki, K.; Guan, K.-L. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol. Cell Biol. 2004, 24, 7965-7975. [CrossRef] [PubMed]
    • (2004) Mol. Cell Biol , vol.24 , pp. 7965-7975
    • Li, Y.1    Inoki, K.2    Guan, K.-L.3
  • 17
    • 33845344736 scopus 로고    scopus 로고
    • Tuberin nuclear localization can be regulated by phosphorylation of its carboxyl terminus
    • CrossRefPubMed
    • York, B.; Lou, D.; Noonan, D.J. Tuberin nuclear localization can be regulated by phosphorylation of its carboxyl terminus. Mol. Cancer Res. 2006, 4, 885-897. [CrossRef] [PubMed]
    • (2006) Mol. Cancer Res , vol.4 , pp. 885-897
    • York, B.1    Lou, D.2    Noonan, D.J.3
  • 18
    • 33846475008 scopus 로고    scopus 로고
    • Akt regulates nuclear/cytoplasmic localization of tuberin
    • CrossRefPubMed
    • Rosner, M.; Freilinger, A.; Hengstschläger, M. Akt regulates nuclear/cytoplasmic localization of tuberin. Oncogene 2007, 26, 521-531. [CrossRef] [PubMed]
    • (2007) Oncogene , vol.26 , pp. 521-531
    • Rosner, M.1    Freilinger, A.2    Hengstschläger, M.3
  • 19
    • 84926418992 scopus 로고    scopus 로고
    • MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
    • CrossRefPubMed
    • Fawal, M.-A.; Brandt, M.; Djouder, N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev. Cell 2015, 33, 67-81. [CrossRef] [PubMed]
    • (2015) Dev. Cell , vol.33 , pp. 67-81
    • Fawal, M.-A.1    Brandt, M.2    Djouder, N.3
  • 20
    • 67649823420 scopus 로고    scopus 로고
    • Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
    • CrossRefPubMed
    • Sato, T.; Nakashima, A.; Guo, L.; Tamanoi, F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 2009, 284, 12783-12791. [CrossRef] [PubMed]
    • (2009) J. Biol. Chem , vol.284 , pp. 12783-12791
    • Sato, T.1    Nakashima, A.2    Guo, L.3    Tamanoi, F.4
  • 21
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • CrossRefPubMed
    • Long, X.; Lin, Y.; Ortiz-Vega, S.; Yonezawa, K.; Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15, 702-713. [CrossRef] [PubMed]
    • (2005) Curr. Biol , vol.15 , pp. 702-713
    • Long, X.1    Lin, Y.2    Ortiz-Vega, S.3    Yonezawa, K.4    Avruch, J.5
  • 22
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • CrossRefPubMed
    • Saucedo, L.J.; Gao, X.; Chiarelli, D.A.; Li, L.; Pan, D.; Edgar, B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 2003, 5, 566-571. [CrossRef] [PubMed]
    • (2003) Nat. Cell Biol , vol.5 , pp. 566-571
    • Saucedo, L.J.1    Gao, X.2    Chiarelli, D.A.3    Li, L.4    Pan, D.5    Edgar, B.A.6
  • 23
    • 59749090661 scopus 로고    scopus 로고
    • Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor
    • CrossRefPubMed
    • Avruch, J.; Long, X.; Lin, Y.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Oshiro, N.; Kikkawa, U. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 2009, 37, 223-226. [CrossRef] [PubMed]
    • (2009) Biochem. Soc. Trans , vol.37 , pp. 223-226
    • Avruch, J.1    Long, X.2    Lin, Y.3    Ortiz-Vega, S.4    Rapley, J.5    Papageorgiou, A.6    Oshiro, N.7    Kikkawa, U.8
  • 24
    • 21244456553 scopus 로고    scopus 로고
    • Rheb binding to mammalian target of rapamycin (MTOR) is regulated by amino acid sufficiency
    • CrossRefPubMed
    • Long, X.; Ortiz-Vega, S.; Lin, Y.; Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 2005, 280, 23433-23436. [CrossRef] [PubMed]
    • (2005) J. Biol. Chem , vol.280 , pp. 23433-23436
    • Long, X.1    Ortiz-Vega, S.2    Lin, Y.3    Avruch, J.4
  • 26
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • CrossRef
    • Kim, D.-H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110, 163-175. [CrossRef]
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.-H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 28
    • 1942487890 scopus 로고    scopus 로고
    • Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function
    • CrossRefPubMed
    • Oshiro, N.; Yoshino, K.; Hidayat, S.; Tokunaga, C.; Hara, K.; Eguchi, S.; Avruch, J.; Yonezawa, K. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004, 9, 359-366. [CrossRef] [PubMed]
    • (2004) Genes Cells , vol.9 , pp. 359-366
    • Oshiro, N.1    Yoshino, K.2    Hidayat, S.3    Tokunaga, C.4    Hara, K.5    Eguchi, S.6    Avruch, J.7    Yonezawa, K.8
  • 30
    • 0035831451 scopus 로고    scopus 로고
    • Proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
    • CrossRefPubMed
    • Sekiguchi, T.; Hirose, E.; Nakashima, N.; Ii, M.; Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 2001, 276, 7246-7257. [CrossRef] [PubMed]
    • (2001) J. Biol. Chem , vol.276 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3    Ii, M.4    Nishimoto, T.5    Novel, G.6
  • 31
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • CrossRefPubMed
    • Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141, 290-303. [CrossRef] [PubMed]
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 33
    • 48649085816 scopus 로고    scopus 로고
    • Regulation of TORC1 by Rag GTPases in nutrient response
    • CrossRefPubMed
    • Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10, 935-945. [CrossRef] [PubMed]
    • (2008) Nat. Cell Biol , vol.10 , pp. 935-945
    • Kim, E.1    Goraksha-Hicks, P.2    Li, L.3    Neufeld, T.P.4    Guan, K.-L.5
  • 34
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • CrossRefPubMed
    • Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150, 1196-1208. [CrossRef] [PubMed]
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 36
    • 84946569689 scopus 로고    scopus 로고
    • Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly
    • CrossRefPubMed
    • Stransky, L.A.; Forgac, M. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly. J. Biol. Chem. 2015, 290, 27360-27369. [CrossRef] [PubMed]
    • (2015) J. Biol. Chem , vol.290 , pp. 27360-27369
    • Stransky, L.A.1    Forgac, M.2
  • 37
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • CrossRefPubMed
    • Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334, 678-683. [CrossRef] [PubMed]
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 38
    • 84871260456 scopus 로고    scopus 로고
    • Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
    • CrossRefPubMed
    • Ögmundsdóttir, M.H.; Heublein, S.; Kazi, S.; Reynolds, B.; Visvalingam, S.M.; Shaw, M.K.; Goberdhan, D.C.I. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012, 7, e36616. [CrossRef] [PubMed]
    • (2012) Plos ONE , pp. 7
    • Ögmundsdóttir, M.H.1    Heublein, S.2    Kazi, S.3    Reynolds, B.4    Visvalingam, S.M.5    Shaw, M.K.6    Goberdhan, D.C.I.7
  • 39
    • 77954757143 scopus 로고    scopus 로고
    • Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation
    • CrossRefPubMed
    • Heublein, S.; Kazi, S.; Ogmundsdóttir, M.H.; Attwood, E.V.; Kala, S.; Boyd, C.A.R.; Wilson, C.; Goberdhan, D.C.I. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010, 29, 4068-4079. [CrossRef] [PubMed]
    • (2010) Oncogene , vol.29 , pp. 4068-4079
    • Heublein, S.1    Kazi, S.2    Ogmundsdóttir, M.H.3    Attwood, E.V.4    Kala, S.5    Boyd, C.A.R.6    Wilson, C.7    Goberdhan, D.C.I.8
  • 40
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • CrossRefPubMed
    • Zhang, C.-S.; Jiang, B.; Li, M.; Zhu, M.; Peng, Y.; Zhang, Y.-L.; Wu, Y.-Q.; Li, T.Y.; Liang, Y.; Lu, Z.; et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20, 526-540. [CrossRef] [PubMed]
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.-S.1    Jiang, B.2    Li, M.3    Zhu, M.4    Peng, Y.5    Zhang, Y.-L.6    Wu, Y.-Q.7    Li, T.Y.8    Liang, Y.9    Lu, Z.10
  • 41
    • 84885142437 scopus 로고    scopus 로고
    • AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
    • CrossRefPubMed
    • Zhang, Y.-L.; Guo, H.; Zhang, C.-S.; Lin, S.-Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian, G.; Zhang, C.; et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013, 18, 546-555. [CrossRef] [PubMed]
    • (2013) Cell Metab , vol.18 , pp. 546-555
    • Zhang, Y.-L.1    Guo, H.2    Zhang, C.-S.3    Lin, S.-Y.4    Yin, Z.5    Peng, Y.6    Luo, H.7    Shi, Y.8    Lian, G.9    Zhang, C.10
  • 42
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • CrossRefPubMed
    • Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149, 410-424. [CrossRef] [PubMed]
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 44
    • 85030310246 scopus 로고    scopus 로고
    • Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction
    • CrossRefPubMed
    • Kim, J.H.; Lee, C.; Lee, M.; Wang, H.; Kim, K.; Park, S.J.; Yoon, I.; Jang, J.; Zhao, H.; Kim, H.K.; et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat. Commun. 2017, 8, 732. [CrossRef] [PubMed]
    • (2017) Nat. Commun , vol.8 , pp. 732
    • Kim, J.H.1    Lee, C.2    Lee, M.3    Wang, H.4    Kim, K.5    Park, S.J.6    Yoon, I.7    Jang, J.8    Zhao, H.9    Kim, H.K.10
  • 46
    • 84872687720 scopus 로고    scopus 로고
    • Glutamine stimulates mTORC1 independent of the cell content of essential amino acids
    • CrossRefPubMed
    • Chiu, M.; Tardito, S.; Barilli, A.; Bianchi, M.G.; Dall’Asta, V.; Bussolati, O. Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 2012, 43, 2561-2567. [CrossRef] [PubMed]
    • (2012) Amino Acids , vol.43 , pp. 2561-2567
    • Chiu, M.1    Tardito, S.2    Barilli, A.3    Bianchi, M.G.4    Dall’Asta, V.5    Bussolati, O.6
  • 47
    • 85027998950 scopus 로고    scopus 로고
    • Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation
    • CrossRefPubMed
    • Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun. 2017, 8, 338. [CrossRef] [PubMed]
    • (2017) Nat. Commun , vol.8 , pp. 338
    • Tan, H.W.S.1    Sim, A.Y.L.2    Long, Y.C.3
  • 49
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • CrossRefPubMed
    • Tsun, Z.-Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52, 495-505. [CrossRef] [PubMed]
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.-Y.1    Bar-Peled, L.2    Chantranupong, L.3    Zoncu, R.4    Wang, T.5    Kim, C.6    Spooner, E.7    Sabatini, D.M.8
  • 50
    • 84943358458 scopus 로고    scopus 로고
    • Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2
    • CrossRefPubMed
    • Péli-Gulli, M.-P.; Sardu, A.; Panchaud, N.; Raucci, S.; De Virgilio, C. Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. Cell Rep. 2015, 13, 1-7. [CrossRef] [PubMed]
    • (2015) Cell Rep , vol.13 , pp. 1-7
    • Péli-Gulli, M.-P.1    Sardu, A.2    Panchaud, N.3    Raucci, S.4    De Virgilio, C.5
  • 51
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • CrossRefPubMed
    • Petit, C.S.; Roczniak-Ferguson, A.; Ferguson, S.M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 2013, 202, 1107-1122. [CrossRef] [PubMed]
    • (2013) J. Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 52
    • 84946060339 scopus 로고    scopus 로고
    • Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression
    • CrossRefPubMed
    • Wu, M.; Si, S.; Li, Y.; Schoen, S.; Xiao, G.-Q.; Li, X.; Teh, B.T.; Wu, G.; Chen, J. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget 2015, 6, 32761-32773. [CrossRef] [PubMed]
    • (2015) Oncotarget , vol.6 , pp. 32761-32773
    • Wu, M.1    Si, S.2    Li, Y.3    Schoen, S.4    Xiao, G.-Q.5    Li, X.6    Teh, B.T.7    Wu, G.8    Chen, J.9
  • 55
    • 84965059934 scopus 로고    scopus 로고
    • Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα
    • CrossRefPubMed
    • Yan, M.; Audet-Walsh, É.; Manteghi, S.; Rosa Dufour, C.; Walker, B.; Baba, M.; St-Pierre, J.; Giguère, V.; Pause, A. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes Dev. 2016, 30, 1034-1046. [CrossRef] [PubMed]
    • (2016) Genes Dev , vol.30 , pp. 1034-1046
    • Yan, M.1    Audet-Walsh, É.2    Manteghi, S.3    Rosa Dufour, C.4    Walker, B.5    Baba, M.6    St-Pierre, J.7    Giguère, V.8    Pause, A.9
  • 56
    • 85006035893 scopus 로고    scopus 로고
    • The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue
    • CrossRefPubMed
    • Wada, S.; Neinast, M.; Jang, C.; Ibrahim, Y.H.; Lee, G.; Babu, A.; Li, J.; Hoshino, A.; Rowe, G.C.; Rhee, J.; et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 2016, 30, 2551-2564. [CrossRef] [PubMed]
    • (2016) Genes Dev , vol.30 , pp. 2551-2564
    • Wada, S.1    Neinast, M.2    Jang, C.3    Ibrahim, Y.H.4    Lee, G.5    Babu, A.6    Li, J.7    Hoshino, A.8    Rowe, G.C.9    Rhee, J.10
  • 61
    • 84963894095 scopus 로고    scopus 로고
    • Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes
    • CrossRefPubMed
    • Starling, G.P.; Yip, Y.Y.; Sanger, A.; Morton, P.E.; Eden, E.R.; Dodding, M.P. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016, 17, 823-841. [CrossRef] [PubMed]
    • (2016) EMBO Rep , vol.17 , pp. 823-841
    • Starling, G.P.1    Yip, Y.Y.2    Sanger, A.3    Morton, P.E.4    Eden, E.R.5    Dodding, M.P.6
  • 62
    • 84959288114 scopus 로고    scopus 로고
    • Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome
    • CrossRefPubMed
    • Hasumi, H.; Baba, M.; Hasumi, Y.; Furuya, M.; Yao, M. Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome. Int. J. Urol. 2016, 23, 204-210. [CrossRef] [PubMed]
    • (2016) Int. J. Urol , vol.23 , pp. 204-210
    • Hasumi, H.1    Baba, M.2    Hasumi, Y.3    Furuya, M.4    Yao, M.5
  • 63
    • 79960014848 scopus 로고    scopus 로고
    • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
    • CrossRefPubMed
    • Dunlop, E.A.; Hunt, D.K.; Acosta-Jaquez, H.A.; Fingar, D.C.; Tee, A.R. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011, 7, 737-747. [CrossRef] [PubMed]
    • (2011) Autophagy , vol.7 , pp. 737-747
    • Dunlop, E.A.1    Hunt, D.K.2    Acosta-Jaquez, H.A.3    Fingar, D.C.4    Tee, A.R.5
  • 64
    • 85026854783 scopus 로고    scopus 로고
    • Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK
    • CrossRefPubMed
    • Zhang, C.-S.; Hawley, S.A.; Zong, Y.; Li, M.; Wang, Z.; Gray, A.; Ma, T.; Cui, J.; Feng, J.-W.; Zhu, M.; et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017, 548, 112-116. [CrossRef] [PubMed]
    • (2017) Nature , vol.548 , pp. 112-116
    • Zhang, C.-S.1    Hawley, S.A.2    Zong, Y.3    Li, M.4    Wang, Z.5    Gray, A.6    Ma, T.7    Cui, J.8    Feng, J.-W.9    Zhu, M.10
  • 65
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives.
    • CrossRefPubMed
    • Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179-204. [CrossRef] [PubMed]
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 66
    • 79960599136 scopus 로고    scopus 로고
    • Regulation of mammalian target of rapamycin complex 1 (MTORC1) by hypoxia: Causes and consequences
    • CrossRefPubMed
    • Cam, H.; Houghton, P.J. Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: Causes and consequences. Target. Oncol. 2011, 6, 95-102. [CrossRef] [PubMed]
    • (2011) Target. Oncol. , vol.6 , pp. 95-102
    • Cam, H.1    Houghton, P.J.2
  • 67
    • 0026468180 scopus 로고
    • A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation
    • CrossRefPubMed
    • Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 1992, 12, 5447-5454. [CrossRef] [PubMed]
    • (1992) Mol. Cell Biol , vol.12 , pp. 5447-5454
    • Semenza, G.L.1    Wang, G.L.2
  • 69
    • 0035834409 scopus 로고    scopus 로고
    • A conserved family of prolyl-4-hydroxylases that modify HIF
    • CrossRefPubMed
    • Bruick, R.K.; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294, 1337-1340. [CrossRef] [PubMed]
    • (2001) Science , vol.294 , pp. 1337-1340
    • Bruick, R.K.1    McKnight, S.L.2
  • 70
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
    • CrossRefPubMed
    • DeYoung, M.P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22, 239-251. [CrossRef] [PubMed]
    • (2008) Genes Dev , vol.22 , pp. 239-251
    • Deyoung, M.P.1    Horak, P.2    Sofer, A.3    Sgroi, D.4    Ellisen, L.W.5
  • 71
    • 77949528224 scopus 로고    scopus 로고
    • Structural analysis and functional implications of the negative mTORC1 regulator REDD1
    • CrossRefPubMed
    • Vega-Rubin-de-Celis, S.; Abdallah, Z.; Kinch, L.; Grishin, N.V.; Brugarolas, J.; Zhang, X. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 2010, 49, 2491-2501. [CrossRef] [PubMed]
    • (2010) Biochemistry , vol.49 , pp. 2491-2501
    • Vega-Rubin-De-Celis, S.1    Abdallah, Z.2    Kinch, L.3    Grishin, N.V.4    Brugarolas, J.5    Zhang, X.6
  • 73
    • 37248999267 scopus 로고    scopus 로고
    • Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
    • CrossRefPubMed
    • Li, Y.; Wang, Y.; Kim, E.; Beemiller, P.; Wang, C.-Y.; Swanson, J.; You, M.; Guan, K.-L. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 2007, 282, 35803-35813. [CrossRef] [PubMed]
    • (2007) J. Biol. Chem , vol.282 , pp. 35803-35813
    • Li, Y.1    Wang, Y.2    Kim, E.3    Beemiller, P.4    Wang, C.-Y.5    Swanson, J.6    You, M.7    Guan, K.-L.8
  • 74
    • 14044277429 scopus 로고    scopus 로고
    • The molecular machinery of autophagy: Unanswered questions
    • CrossRefPubMed
    • Klionsky, D.J. The molecular machinery of autophagy: Unanswered questions. J. Cell Sci. 2005, 118, 7-18. [CrossRef] [PubMed]
    • (2005) J. Cell Sci , vol.118 , pp. 7-18
    • Klionsky, D.J.1
  • 75
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: Process and function
    • CrossRefPubMed
    • Mizushima, N. Autophagy: Process and function. Genes Dev. 2007, 21, 2861-2873. [CrossRef] [PubMed]
    • (2007) Genes Dev , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 76
    • 75649108606 scopus 로고    scopus 로고
    • Role of autophagy and autophagy genes in inflammatory bowel disease
    • PubMed
    • Cadwell, K.; Stappenbeck, T.S.; Virgin, H.W. Role of autophagy and autophagy genes in inflammatory bowel disease. Curr. Top MicroBiol. Immunol. 2009, 335, 141-167. [PubMed]
    • (2009) Curr. Top Microbiol. Immunol. , vol.335 , pp. 141-167
    • Cadwell, K.1    Stappenbeck, T.S.2    Virgin, H.W.3
  • 77
    • 34548265278 scopus 로고    scopus 로고
    • Autophagy and human disease
    • CrossRefPubMed
    • Huang, J.; Klionsky, D.J. Autophagy and human disease. Cell Cycle 2007, 6, 1837-1849. [CrossRef] [PubMed]
    • (2007) Cell Cycle , vol.6 , pp. 1837-1849
    • Huang, J.1    Klionsky, D.J.2
  • 78
    • 77951237079 scopus 로고    scopus 로고
    • Autophagy genes as tumor suppressors
    • CrossRefPubMed
    • Liang, C.; Jung, J.U. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol. 2010, 22, 226-233. [CrossRef] [PubMed]
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 226-233
    • Liang, C.1    Jung, J.U.2
  • 79
    • 4344563878 scopus 로고    scopus 로고
    • Role and regulation of starvation-induced autophagy in the Drosophila fat body
    • CrossRefPubMed
    • Scott, R.C.; Schuldiner, O.; Neufeld, T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 2004, 7, 167-178. [CrossRef] [PubMed]
    • (2004) Dev. Cell , vol.7 , pp. 167-178
    • Scott, R.C.1    Schuldiner, O.2    Neufeld, T.P.3
  • 81
    • 27644466759 scopus 로고    scopus 로고
    • Autophagy and signaling: Their role in cell survival and cell death
    • CrossRefPubMed
    • Codogno, P.; Meijer, A.J. Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ. 2005, 12, 1509-1518. [CrossRef] [PubMed]
    • (2005) Cell Death Differ , vol.12 , pp. 1509-1518
    • Codogno, P.1    Meijer, A.J.2
  • 82
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • CrossRefPubMed
    • Oh, W.J.; Wu, C.; Kim, S.J.; Facchinetti, V.; Julien, L.-A.; Finlan, M.; Roux, P.P.; Su, B.; Jacinto, E. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29, 3939-3951. [CrossRef] [PubMed]
    • (2010) EMBO J , vol.29 , pp. 3939-3951
    • Oh, W.J.1    Wu, C.2    Kim, S.J.3    Facchinetti, V.4    Julien, L.-A.5    Finlan, M.6    Roux, P.P.7    Su, B.8    Jacinto, E.9
  • 83
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • CrossRefPubMed
    • Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell 2011, 144, 757-768. [CrossRef] [PubMed]
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 84
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • CrossRefPubMed
    • Ganley, I.G.; Lam, D.H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297-12305. [CrossRef] [PubMed]
    • (2009) J. Biol. Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam, D.H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 86
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.
    • CrossRefPubMed
    • Jung, C.H.; Jun, C.B.; Ro, S.-H.; Kim, Y.-M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20, 1992-2003. [CrossRef] [PubMed]
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.-H.3    Kim, Y.-M.4    Otto, N.M.5    Cao, J.6    Kundu, M.7    Kim, D.-H.8
  • 87
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • CrossRefPubMed
    • Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132-141. [CrossRef] [PubMed]
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.-L.4
  • 88
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
    • CrossRefPubMed
    • Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad Sci. USA 2011, 108, 4788-4793. [CrossRef] [PubMed]
    • (2011) Proc. Natl. Acad Sci. USA , vol.108 , pp. 4788-4793
    • Shang, L.1    Chen, S.2    Du, F.3    Li, S.4    Zhao, L.5    Wang, X.6
  • 90
    • 81155123729 scopus 로고    scopus 로고
    • The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
    • CrossRefPubMed
    • Bach, M.; Larance, M.; James, D.E.; Ramm, G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 2011, 440, 283-291. [CrossRef] [PubMed]
    • (2011) Biochem. J , vol.440 , pp. 283-291
    • Bach, M.1    Larance, M.2    James, D.E.3    Ramm, G.4
  • 92
    • 78149476877 scopus 로고    scopus 로고
    • The association of AMPK with ULK1 regulates autophagy
    • CrossRefPubMed
    • Lee, J.W.; Park, S.; Takahashi, Y.; Wang, H.-G. The association of AMPK with ULK1 regulates autophagy. PLoS ONE 2010, 5, e15394. [CrossRef] [PubMed]
    • (2010) Plos ONE , pp. 5
    • Lee, J.W.1    Park, S.2    Takahashi, Y.3    Wang, H.-G.4
  • 93
    • 80053430528 scopus 로고    scopus 로고
    • ULK1 inhibits the kinase activity of mTORC1 and cell proliferation
    • CrossRefPubMed
    • Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.-H. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011, 7, 1212-1221. [CrossRef] [PubMed]
    • (2011) Autophagy , vol.7 , pp. 1212-1221
    • Jung, C.H.1    Seo, M.2    Otto, N.M.3    Kim, D.-H.4
  • 96
    • 77955895424 scopus 로고    scopus 로고
    • Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
    • CrossRefPubMed
    • Matsunaga, K.; Morita, E.; Saitoh, T.; Akira, S.; Ktistakis, N.T.; Izumi, T.; Noda, T.; Yoshimori, T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 2010, 190, 511-521. [CrossRef] [PubMed]
    • (2010) J. Cell Biol , vol.190 , pp. 511-521
    • Matsunaga, K.1    Morita, E.2    Saitoh, T.3    Akira, S.4    Ktistakis, N.T.5    Izumi, T.6    Noda, T.7    Yoshimori, T.8
  • 97
    • 85003429997 scopus 로고    scopus 로고
    • ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models
    • CrossRefPubMed
    • Wold, M.S.; Lim, J.; Lachance, V.; Deng, Z.; Yue, Z. ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models. Mol. Neurodegener. 2016, 11, 76. [CrossRef] [PubMed]
    • (2016) Mol. Neurodegener , vol.11 , pp. 76
    • Wold, M.S.1    Lim, J.2    Lachance, V.3    Deng, Z.4    Yue, Z.5
  • 98
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by mTOR in nutrient stress-induced autophagy
    • CrossRefPubMed
    • Yuan, H.-X.; Russell, R.C.; Guan, K.-L. Regulation of PIK3C3/VPS34 complexes by mTOR in nutrient stress-induced autophagy. Autophagy 2013, 9, 1983-1995. [CrossRef] [PubMed]
    • (2013) Autophagy , vol.9 , pp. 1983-1995
    • Yuan, H.-X.1    Russell, R.C.2    Guan, K.-L.3
  • 100
    • 77955716131 scopus 로고    scopus 로고
    • DAP1, a novel substrate of mTOR, negatively regulates autophagy
    • CrossRefPubMed
    • Koren, I.; Reem, E.; Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 2010, 20, 1093-1098. [CrossRef] [PubMed]
    • (2010) Curr. Biol , vol.20 , pp. 1093-1098
    • Koren, I.1    Reem, E.2    Kimchi, A.3
  • 101
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • CrossRefPubMed
    • Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.; Yaffe, M.B.; et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332, 1317-1322. [CrossRef] [PubMed]
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1    Kang, S.A.2    Rameseder, J.3    Zhang, Y.4    Ottina, K.A.5    Lim, D.6    Peterson, T.R.7    Choi, Y.8    Gray, N.S.9    Yaffe, M.B.10
  • 102
    • 84924415434 scopus 로고    scopus 로고
    • Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates
    • CrossRefPubMed
    • Lim, J.; Lachenmayer, M.L.; Wu, S.; Liu, W.; Kundu, M.; Wang, R.; Komatsu, M.; Oh, Y.J.; Zhao, Y.; Yue, Z. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015, 11, e1004987. [CrossRef] [PubMed]
    • (2015) Plos Genet , pp. 11
    • Lim, J.1    Lachenmayer, M.L.2    Wu, S.3    Liu, W.4    Kundu, M.5    Wang, R.6    Komatsu, M.7    Oh, Y.J.8    Zhao, Y.9    Yue, Z.10
  • 103
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • CrossRefPubMed
    • Martina, J.A.; Chen, Y.; Gucek, M.; Puertollano, R. mTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8, 903-914. [CrossRef] [PubMed]
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 108
    • 84893055506 scopus 로고    scopus 로고
    • The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
    • CrossRefPubMed
    • Martina, J.A.; Diab, H.I.; Lishu, L.; Jeong A L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 2014, 7, ra9. [CrossRef] [PubMed]
    • (2014) Sci. Signal , vol.7
    • Martina, J.A.1    Diab, H.I.2    Lishu, L.3    Jeong, A.L.4    Patange, S.5    Raben, N.6    Puertollano, R.7
  • 109
    • 84874352229 scopus 로고    scopus 로고
    • Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
    • CrossRefPubMed
    • Martina, J.A.; Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 2013, 200, 475-491. [CrossRef] [PubMed]
    • (2013) J. Cell Biol , vol.200 , pp. 475-491
    • Martina, J.A.1    Puertollano, R.2
  • 111
    • 84975756856 scopus 로고    scopus 로고
    • AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy
    • CrossRefPubMed
    • Shin, H.-J.R.; Kim, H.; Oh, S.; Lee, J.-G.; Kee, M.; Ko, H.-J.; Kweon, M.-N.; Won, K.-J.; Baek, S.H. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 2016, 534, 553-557. [CrossRef] [PubMed]
    • (2016) Nature , vol.534 , pp. 553-557
    • Shin, H.-J.R.1    Kim, H.2    Oh, S.3    Lee, J.-G.4    Kee, M.5    Ko, H.-J.6    Kweon, M.-N.7    Won, K.-J.8    Baek, S.H.9
  • 113
    • 84966600317 scopus 로고    scopus 로고
    • An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense
    • CrossRefPubMed
    • Najibi, M.; Labed, S.A.; Visvikis, O.; Irazoqui, J.E. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016, 15, 1728-1742. [CrossRef] [PubMed]
    • (2016) Cell Rep , vol.15 , pp. 1728-1742
    • Najibi, M.1    Labed, S.A.2    Visvikis, O.3    Irazoqui, J.E.4
  • 114
    • 84974666968 scopus 로고    scopus 로고
    • TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages
    • CrossRefPubMed
    • Pastore, N.; Brady, O.A.; Diab, H.I.; Martina, J.A.; Sun, L.; Huynh, T.; Lim, J.-A.; Zare, H.; Raben, N.; Ballabio, A.; et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016, 12, 1240-1258. [CrossRef] [PubMed]
    • (2016) Autophagy , vol.12 , pp. 1240-1258
    • Pastore, N.1    Brady, O.A.2    Diab, H.I.3    Martina, J.A.4    Sun, L.5    Huynh, T.6    Lim, J.-A.7    Zare, H.8    Raben, N.9    Ballabio, A.10
  • 116
    • 0037180757 scopus 로고    scopus 로고
    • Inflammation and cancer
    • CrossRefPubMed
    • Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860-867. [CrossRef] [PubMed]
    • (2002) Nature , vol.420 , pp. 860-867
    • Coussens, L.M.1    Werb, Z.2
  • 117
    • 69949106925 scopus 로고    scopus 로고
    • The double-edged sword of autophagy modulation in cancer.
    • CrossRefPubMed
    • White, E.; DiPaola, R.S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 2009, 15, 5308-5316. [CrossRef] [PubMed]
    • (2009) Clin. Cancer Res , vol.15 , pp. 5308-5316
    • White, E.1    Dipaola, R.S.2
  • 119
    • 84988905857 scopus 로고    scopus 로고
    • Recent insights into the function of autophagy in cancer
    • CrossRefPubMed
    • Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016, 30, 1913-1930. [CrossRef] [PubMed]
    • (2016) Genes Dev , vol.30 , pp. 1913-1930
    • Amaravadi, R.1    Kimmelman, A.C.2    White, E.3
  • 120
    • 79956224883 scopus 로고    scopus 로고
    • Targeting autophagy during cancer therapy to improve clinical outcomes
    • CrossRefPubMed
    • Levy, J.M.M.; Thorburn, A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol. Ther. 2011, 131, 130-141. [CrossRef] [PubMed]
    • (2011) Pharmacol. Ther , vol.131 , pp. 130-141
    • Levy, J.M.M.1    Thorburn, A.2
  • 121
    • 85003956475 scopus 로고    scopus 로고
    • Therapeutic targeting of autophagy
    • CrossRefPubMed
    • Towers, C.G.; Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 2016, 14, 15-23. [CrossRef] [PubMed]
    • (2016) Ebiomedicine , vol.14 , pp. 15-23
    • Towers, C.G.1    Thorburn, A.2
  • 122
    • 4344595626 scopus 로고    scopus 로고
    • Regulation and role of autophagy in mammalian cells
    • CrossRefPubMed
    • Meijer, A.J.; Codogno, P. Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell Biol. 2004, 36, 2445-2462. [CrossRef] [PubMed]
    • (2004) Int. J. Biochem. Cell Biol , vol.36 , pp. 2445-2462
    • Meijer, A.J.1    Codogno, P.2
  • 123
    • 0037451783 scopus 로고    scopus 로고
    • Autophagy: A barrier or an adaptive response to cancer.
    • CrossRef
    • Ogier-Denis, E.; Codogno, P. Autophagy: A barrier or an adaptive response to cancer. Biochim. Biophys. Acta 2003, 1603, 113-128. [CrossRef]
    • (2003) Biochim. Biophys. Acta , vol.1603 , pp. 113-128
    • Ogier-Denis, E.1    Codogno, P.2
  • 125
    • 77951228508 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy: Cell death or cell survival
    • CrossRefPubMed
    • Mazure, N.M.; Pouysségur, J. Hypoxia-induced autophagy: Cell death or cell survival? Curr. Opin. Cell Biol. 2010, 22, 177-180. [CrossRef] [PubMed]
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 177-180
    • Mazure, N.M.1    Pouysségur, J.2
  • 126
    • 78751556979 scopus 로고    scopus 로고
    • Autophagy as a therapeutic target in cancer
    • CrossRefPubMed
    • Chen, N.; Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther. 2011, 11, 157-168. [CrossRef] [PubMed]
    • (2011) Cancer Biol. Ther. , vol.11 , pp. 157-168
    • Chen, N.1    Karantza, V.2
  • 127
    • 1842583789 scopus 로고    scopus 로고
    • Development by self-digestion: Molecular mechanisms and biological functions of autophagy
    • CrossRef
    • Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 2004, 6, 463-477. [CrossRef]
    • (2004) Dev. Cell , vol.6 , pp. 463-477
    • Levine, B.1    Klionsky, D.J.2
  • 128
    • 57449121645 scopus 로고    scopus 로고
    • The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells
    • CrossRefPubMed
    • Lu, Z.; Luo, R.Z.; Lu, Y.; Zhang, X.; Yu, Q.; Khare, S.; Kondo, S.; Kondo, Y.; Yu, Y.; Mills, G.B.; et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Investig. 2008, 118, 3917-3929. [CrossRef] [PubMed]
    • (2008) J. Clin. Investig. , vol.118 , pp. 3917-3929
    • Lu, Z.1    Luo, R.Z.2    Lu, Y.3    Zhang, X.4    Yu, Q.5    Khare, S.6    Kondo, S.7    Kondo, Y.8    Yu, Y.9    Mills, G.B.10
  • 129
    • 67650021571 scopus 로고    scopus 로고
    • Autophagy-A double-edged sword in oncology
    • CrossRefPubMed
    • Apel, A.; Zentgraf, H.; Büchler, M.W.; Herr, I. Autophagy-A double-edged sword in oncology. Int. J. Cancer 2009, 125, 991-995. [CrossRef] [PubMed]
    • (2009) Int. J. Cancer , vol.125 , pp. 991-995
    • Apel, A.1    Zentgraf, H.2    Büchler, M.W.3    Herr, I.4
  • 130
    • 67949104883 scopus 로고    scopus 로고
    • Stenmark, H. Autophagy in tumour suppression and promotion
    • CrossRefPubMed
    • Brech, A.; Ahlquist, T.; Lothe, R.A.; Stenmark, H. Autophagy in tumour suppression and promotion. Mol. Oncol. 2009, 3, 366-375. [CrossRef] [PubMed]
    • (2009) Mol. Oncol , vol.3 , pp. 366-375
    • Brech, A.1    Ahlquist, T.2    Lothe, R.A.3
  • 131
    • 77953699668 scopus 로고    scopus 로고
    • Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
    • CrossRefPubMed
    • Dalby, K.N.; Tekedereli, I.; Lopez-Berestein, G.; Ozpolat, B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010, 6, 322-329. [CrossRef] [PubMed]
    • (2010) Autophagy , vol.6 , pp. 322-329
    • Dalby, K.N.1    Tekedereli, I.2    Lopez-Berestein, G.3    Ozpolat, B.4
  • 132
    • 34147193472 scopus 로고    scopus 로고
    • Cell biology: Autophagy and cancer
    • CrossRefPubMed
    • Levine, B. Cell biology: Autophagy and cancer. Nature 2007, 446, 745-747. [CrossRef] [PubMed]
    • (2007) Nature , vol.446 , pp. 745-747
    • Levine, B.1
  • 134
    • 80755132255 scopus 로고    scopus 로고
    • Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study
    • CrossRefPubMed
    • Shen, S.; Kepp, O.; Michaud, M.; Martins, I.; Minoux, H.; Métivier, D.; Maiuri, M.C.; Kroemer, R.T.; Kroemer, G. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011, 30, 4544-4556. [CrossRef] [PubMed]
    • (2011) Oncogene , vol.30 , pp. 4544-4556
    • Shen, S.1    Kepp, O.2    Michaud, M.3    Martins, I.4    Minoux, H.5    Métivier, D.6    Maiuri, M.C.7    Kroemer, R.T.8    Kroemer, G.9
  • 136
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • CrossRefPubMed
    • Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 651-662. [CrossRef] [PubMed]
    • (2013) N. Engl. J. Med. , vol.368 , pp. 651-662
    • Choi, A.M.K.1    Ryter, S.W.2    Levine, B.3
  • 137
    • 20444461067 scopus 로고    scopus 로고
    • Metformin and reduced risk of cancer in diabetic patients
    • CrossRefPubMed
    • Evans, J.M.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304-1305. [CrossRef] [PubMed]
    • (2005) BMJ , vol.330 , pp. 1304-1305
    • Evans, J.M.M.1    Donnelly, L.A.2    Emslie-Smith, A.M.3    Alessi, D.R.4    Morris, A.D.5
  • 139
    • 84920504512 scopus 로고    scopus 로고
    • MTOR: A pharmacologic target for autophagy regulation
    • CrossRefPubMed
    • Kim, Y.C.; Guan, K.-L. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Investig. 2015, 125, 25-32. [CrossRef] [PubMed]
    • (2015) J. Clin. Investig , vol.125 , pp. 25-32
    • Kim, Y.C.1    Guan, K.-L.2
  • 140
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • CrossRefPubMed
    • Shimobayashi, M.; Hall, M.N. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 2014, 15, 155-162. [CrossRef] [PubMed]
    • (2014) Nat. Rev. Mol. Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 142
    • 84959076797 scopus 로고    scopus 로고
    • Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton
    • CrossRefPubMed
    • Chagin, A.S. Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton. Curr. Opin. Pharmacol. 2016, 28, 1-7. [CrossRef] [PubMed]
    • (2016) Curr. Opin. Pharmacol , vol.28 , pp. 1-7
    • Chagin, A.S.1
  • 143
    • 63749129788 scopus 로고    scopus 로고
    • PI3K and mTOR inhibitors: A new generation of targeted anticancer agents
    • CrossRefPubMed
    • Brachmann, S.; Fritsch, C.; Maira, S.-M.; García-Echeverría, C. PI3K and mTOR inhibitors: A new generation of targeted anticancer agents. Curr. Opin. Cell Biol. 2009, 21, 194-198. [CrossRef] [PubMed]
    • (2009) Curr. Opin. Cell Biol , vol.21 , pp. 194-198
    • Brachmann, S.1    Fritsch, C.2    Maira, S.-M.3    García-Echeverría, C.4
  • 144
    • 17144427728 scopus 로고    scopus 로고
    • Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
    • CrossRefPubMed
    • Takeuchi, H.; Kondo, Y.; Fujiwara, K.; Kanzawa, T.; Aoki, H.; Mills, G.B.; Kondo, S. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005, 65, 3336-3346. [CrossRef] [PubMed]
    • (2005) Cancer Res , vol.65 , pp. 3336-3346
    • Takeuchi, H.1    Kondo, Y.2    Fujiwara, K.3    Kanzawa, T.4    Aoki, H.5    Mills, G.B.6    Kondo, S.7
  • 145
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
    • CrossRefPubMed
    • Ravikumar, B.; Duden, R.; Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 2002, 11, 1107-1117. [CrossRef] [PubMed]
    • (2002) Hum. Mol. Genet , vol.11 , pp. 1107-1117
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 146
    • 84885574879 scopus 로고    scopus 로고
    • Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence
    • CrossRefPubMed
    • Nam, H.Y.; Han, M.W.; Chang, H.W.; Kim, S.Y.; Kim, S.W. Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 2013, 9, 1631-1632. [CrossRef] [PubMed]
    • (2013) Autophagy , vol.9 , pp. 1631-1632
    • Nam, H.Y.1    Han, M.W.2    Chang, H.W.3    Kim, S.Y.4    Kim, S.W.5
  • 148
  • 150
    • 37349041710 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease
    • CrossRefPubMed
    • Hardie, D.G. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008, 582, 81-89. [CrossRef] [PubMed]
    • (2008) FEBS Lett , vol.582 , pp. 81-89
    • Hardie, D.G.1
  • 152
    • 84859360525 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
    • CrossRefPubMed
    • Shi, W.-Y.; Xiao, D.; Wang, L.; Dong, L.-H.; Yan, Z.-X.; Shen, Z.-X.; Chen, S.-J.; Chen, Y.; Zhao, W.-L. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012, 3, e275. [CrossRef] [PubMed]
    • (2012) Cell Death Dis , pp. 3
    • Shi, W.-Y.1    Xiao, D.2    Wang, L.3    Dong, L.-H.4    Yan, Z.-X.5    Shen, Z.-X.6    Chen, S.-J.7    Chen, Y.8    Zhao, W.-L.9
  • 153
    • 84896776849 scopus 로고    scopus 로고
    • Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling
    • CrossRefPubMed
    • Feng, Y.; Ke, C.; Tang, Q.; Dong, H.; Zheng, X.; Lin, W.; Ke, J.; Huang, J.; Yeung, S.-C.J.; Zhang, H. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014, 5, e1088. [CrossRef] [PubMed]
    • (2014) Cell Death Dis , pp. 5
    • Feng, Y.1    Ke, C.2    Tang, Q.3    Dong, H.4    Zheng, X.5    Lin, W.6    Ke, J.7    Huang, J.8    Yeung, S.-C.J.9    Zhang, H.10
  • 154
    • 84966477947 scopus 로고    scopus 로고
    • Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis
    • CrossRefPubMed
    • Nazim, U.M.; Moon, J.-H.; Lee, J.-H.; Lee, Y.-J.; Seol, J.-W.; Eo, S.-K.; Lee, J.-H.; Park, S.-Y. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis. Oncotarget 2016, 7, 23468-23481. [CrossRef] [PubMed]
    • (2016) Oncotarget , vol.7 , pp. 23468-23481
    • Nazim, U.M.1    Moon, J.-H.2    Lee, J.-H.3    Lee, Y.-J.4    Seol, J.-W.5    Eo, S.-K.6    Lee, J.-H.7    Park, S.-Y.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.