-
1
-
-
84857675728
-
The mTOR signalling pathway in human cancer
-
CrossRefPubMed
-
Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 2012, 13, 1886-1918. [CrossRef] [PubMed]
-
(2012)
Int. J. Mol. Sci
, vol.13
, pp. 1886-1918
-
-
Pópulo, H.1
Lopes, J.M.2
Soares, P.3
-
2
-
-
70350418625
-
MTOR signaling at a glance
-
CrossRefPubMed
-
Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589-3594. [CrossRef] [PubMed]
-
(2009)
J. Cell Sci
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
3
-
-
84859927489
-
Emerging treatments in the management of tuberous sclerosis complex
-
CrossRefPubMed
-
Kohrman, M.H. Emerging treatments in the management of tuberous sclerosis complex. Pediatr. Neurol. 2012, 46, 267-275. [CrossRef] [PubMed]
-
(2012)
Pediatr. Neurol
, vol.46
, pp. 267-275
-
-
Kohrman, M.H.1
-
4
-
-
44449161481
-
The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
-
CrossRefPubMed
-
Huang, J.; Manning, B.D. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J. 2008, 412, 179-190. [CrossRef] [PubMed]
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
5
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
CrossRefPubMed
-
Menon, S.; Dibble, C.C.; Talbott, G.; Hoxhaj, G.; Valvezan, A.J.; Takahashi, H.; Cantley, L.C.; Manning, B.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156, 771-785. [CrossRef] [PubMed]
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
6
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
CrossRefPubMed
-
Cai, S.-L.; Tee, A.R.; Short, J.D.; Bergeron, J.M.; Kim, J.; Shen, J.; Guo, R.; Johnson, C.L.; Kiguchi, K.; Walker, C.L. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173, 279-289. [CrossRef] [PubMed]
-
(2006)
J. Cell Biol
, vol.173
, pp. 279-289
-
-
Cai, S.-L.1
Tee, A.R.2
Short, J.D.3
Bergeron, J.M.4
Kim, J.5
Shen, J.6
Guo, R.7
Johnson, C.L.8
Kiguchi, K.9
Walker, C.L.10
-
7
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
CrossRefPubMed
-
Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4, 648-657. [CrossRef] [PubMed]
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.-L.5
-
8
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2.
-
CrossRefPubMed
-
Potter, C.J.; Pedraza, L.G.; Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4, 658-665. [CrossRef] [PubMed]
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
9
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
CrossRefPubMed
-
Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30, 214-226. [CrossRef] [PubMed]
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
10
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
CrossRefPubMed
-
Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006, 126, 955-968. [CrossRef] [PubMed]
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
-
11
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
CrossRefPubMed
-
Smith, E.M.; Finn, S.G.; Tee, A.R.; Browne, G.J.; Proud, C.G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 2005, 280, 18717-18727. [CrossRef] [PubMed]
-
(2005)
J. Biol. Chem
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
Finn, S.G.2
Tee, A.R.3
Browne, G.J.4
Proud, C.G.5
-
12
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
CrossRefPubMed
-
Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47, 535-546. [CrossRef] [PubMed]
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
13
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
CrossRefPubMed
-
Inoki, K.; Li, Y.; Xu, T.; Guan, K.-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17, 1829-1834. [CrossRef] [PubMed]
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.-L.4
-
14
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
CrossRefPubMed
-
Zhang, Y.; Gao, X.; Saucedo, L.J.; Ru, B.; Edgar, B.A.; Pan, D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 2003, 5, 578-581. [CrossRef] [PubMed]
-
(2003)
Nat. Cell Biol
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
Ru, B.4
Edgar, B.A.5
Pan, D.6
-
15
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
CrossRef
-
Tee, A.R.; Manning, B.D.; Roux, P.P.; Cantley, L.C.; Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13, 1259-1268. [CrossRef]
-
(2003)
Curr. Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
16
-
-
4444276510
-
Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
-
CrossRefPubMed
-
Li, Y.; Inoki, K.; Guan, K.-L. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol. Cell Biol. 2004, 24, 7965-7975. [CrossRef] [PubMed]
-
(2004)
Mol. Cell Biol
, vol.24
, pp. 7965-7975
-
-
Li, Y.1
Inoki, K.2
Guan, K.-L.3
-
17
-
-
33845344736
-
Tuberin nuclear localization can be regulated by phosphorylation of its carboxyl terminus
-
CrossRefPubMed
-
York, B.; Lou, D.; Noonan, D.J. Tuberin nuclear localization can be regulated by phosphorylation of its carboxyl terminus. Mol. Cancer Res. 2006, 4, 885-897. [CrossRef] [PubMed]
-
(2006)
Mol. Cancer Res
, vol.4
, pp. 885-897
-
-
York, B.1
Lou, D.2
Noonan, D.J.3
-
18
-
-
33846475008
-
Akt regulates nuclear/cytoplasmic localization of tuberin
-
CrossRefPubMed
-
Rosner, M.; Freilinger, A.; Hengstschläger, M. Akt regulates nuclear/cytoplasmic localization of tuberin. Oncogene 2007, 26, 521-531. [CrossRef] [PubMed]
-
(2007)
Oncogene
, vol.26
, pp. 521-531
-
-
Rosner, M.1
Freilinger, A.2
Hengstschläger, M.3
-
19
-
-
84926418992
-
MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
-
CrossRefPubMed
-
Fawal, M.-A.; Brandt, M.; Djouder, N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev. Cell 2015, 33, 67-81. [CrossRef] [PubMed]
-
(2015)
Dev. Cell
, vol.33
, pp. 67-81
-
-
Fawal, M.-A.1
Brandt, M.2
Djouder, N.3
-
20
-
-
67649823420
-
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
-
CrossRefPubMed
-
Sato, T.; Nakashima, A.; Guo, L.; Tamanoi, F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 2009, 284, 12783-12791. [CrossRef] [PubMed]
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12783-12791
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
Tamanoi, F.4
-
21
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
CrossRefPubMed
-
Long, X.; Lin, Y.; Ortiz-Vega, S.; Yonezawa, K.; Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15, 702-713. [CrossRef] [PubMed]
-
(2005)
Curr. Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
22
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
CrossRefPubMed
-
Saucedo, L.J.; Gao, X.; Chiarelli, D.A.; Li, L.; Pan, D.; Edgar, B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 2003, 5, 566-571. [CrossRef] [PubMed]
-
(2003)
Nat. Cell Biol
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
Gao, X.2
Chiarelli, D.A.3
Li, L.4
Pan, D.5
Edgar, B.A.6
-
23
-
-
59749090661
-
Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor
-
CrossRefPubMed
-
Avruch, J.; Long, X.; Lin, Y.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Oshiro, N.; Kikkawa, U. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 2009, 37, 223-226. [CrossRef] [PubMed]
-
(2009)
Biochem. Soc. Trans
, vol.37
, pp. 223-226
-
-
Avruch, J.1
Long, X.2
Lin, Y.3
Ortiz-Vega, S.4
Rapley, J.5
Papageorgiou, A.6
Oshiro, N.7
Kikkawa, U.8
-
24
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (MTOR) is regulated by amino acid sufficiency
-
CrossRefPubMed
-
Long, X.; Ortiz-Vega, S.; Lin, Y.; Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 2005, 280, 23433-23436. [CrossRef] [PubMed]
-
(2005)
J. Biol. Chem
, vol.280
, pp. 23433-23436
-
-
Long, X.1
Ortiz-Vega, S.2
Lin, Y.3
Avruch, J.4
-
25
-
-
84938570135
-
Point mutations of the mTOR-RHEB pathway in renal cell carcinoma
-
CrossRefPubMed
-
Ghosh, A.P.; Marshall, C.B.; Coric, T.; Shim, E.-H.; Kirkman, R.; Ballestas, M.E.; Ikura, M.; Bjornsti, M.-A.; Sudarshan, S. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget 2015, 6, 17895-17910. [CrossRef] [PubMed]
-
(2015)
Oncotarget
, vol.6
, pp. 17895-17910
-
-
Ghosh, A.P.1
Marshall, C.B.2
Coric, T.3
Shim, E.-H.4
Kirkman, R.5
Ballestas, M.E.6
Ikura, M.7
Bjornsti, M.-A.8
Sudarshan, S.9
-
26
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
CrossRef
-
Kim, D.-H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110, 163-175. [CrossRef]
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
27
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
CrossRef
-
Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110, 177-189. [CrossRef]
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
28
-
-
1942487890
-
Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function
-
CrossRefPubMed
-
Oshiro, N.; Yoshino, K.; Hidayat, S.; Tokunaga, C.; Hara, K.; Eguchi, S.; Avruch, J.; Yonezawa, K. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004, 9, 359-366. [CrossRef] [PubMed]
-
(2004)
Genes Cells
, vol.9
, pp. 359-366
-
-
Oshiro, N.1
Yoshino, K.2
Hidayat, S.3
Tokunaga, C.4
Hara, K.5
Eguchi, S.6
Avruch, J.7
Yonezawa, K.8
-
29
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
CrossRefPubMed
-
Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320, 1496-1501. [CrossRef] [PubMed]
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
30
-
-
0035831451
-
Proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
CrossRefPubMed
-
Sekiguchi, T.; Hirose, E.; Nakashima, N.; Ii, M.; Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 2001, 276, 7246-7257. [CrossRef] [PubMed]
-
(2001)
J. Biol. Chem
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
Novel, G.6
-
31
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
CrossRefPubMed
-
Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141, 290-303. [CrossRef] [PubMed]
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
32
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
CrossRefPubMed
-
Avruch, J.; Long, X.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Dai, N. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E592-E602. [CrossRef] [PubMed]
-
(2009)
Am. J. Physiol. Endocrinol. Metab
, vol.296
, pp. E592-E602
-
-
Avruch, J.1
Long, X.2
Ortiz-Vega, S.3
Rapley, J.4
Papageorgiou, A.5
Dai, N.6
-
33
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
CrossRefPubMed
-
Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10, 935-945. [CrossRef] [PubMed]
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.-L.5
-
34
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
CrossRefPubMed
-
Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150, 1196-1208. [CrossRef] [PubMed]
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
35
-
-
85032589731
-
Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex
-
CrossRefPubMed
-
Su, M.-Y.; Morris, K.L.; Kim, D.J.; Fu, Y.; Lawrence, R.; Stjepanovic, G.; Zoncu, R.; Hurley, J.H. Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex. Mol. Cell 2017, 68, 835-846.e3. [CrossRef] [PubMed]
-
(2017)
Mol. Cell
, vol.68
, pp. 835-846
-
-
Su, M.-Y.1
Morris, K.L.2
Kim, D.J.3
Fu, Y.4
Lawrence, R.5
Stjepanovic, G.6
Zoncu, R.7
Hurley, J.H.8
-
36
-
-
84946569689
-
Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly
-
CrossRefPubMed
-
Stransky, L.A.; Forgac, M. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly. J. Biol. Chem. 2015, 290, 27360-27369. [CrossRef] [PubMed]
-
(2015)
J. Biol. Chem
, vol.290
, pp. 27360-27369
-
-
Stransky, L.A.1
Forgac, M.2
-
37
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
CrossRefPubMed
-
Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334, 678-683. [CrossRef] [PubMed]
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
38
-
-
84871260456
-
Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
-
CrossRefPubMed
-
Ögmundsdóttir, M.H.; Heublein, S.; Kazi, S.; Reynolds, B.; Visvalingam, S.M.; Shaw, M.K.; Goberdhan, D.C.I. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012, 7, e36616. [CrossRef] [PubMed]
-
(2012)
Plos ONE
, pp. 7
-
-
Ögmundsdóttir, M.H.1
Heublein, S.2
Kazi, S.3
Reynolds, B.4
Visvalingam, S.M.5
Shaw, M.K.6
Goberdhan, D.C.I.7
-
39
-
-
77954757143
-
Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation
-
CrossRefPubMed
-
Heublein, S.; Kazi, S.; Ogmundsdóttir, M.H.; Attwood, E.V.; Kala, S.; Boyd, C.A.R.; Wilson, C.; Goberdhan, D.C.I. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010, 29, 4068-4079. [CrossRef] [PubMed]
-
(2010)
Oncogene
, vol.29
, pp. 4068-4079
-
-
Heublein, S.1
Kazi, S.2
Ogmundsdóttir, M.H.3
Attwood, E.V.4
Kala, S.5
Boyd, C.A.R.6
Wilson, C.7
Goberdhan, D.C.I.8
-
40
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
CrossRefPubMed
-
Zhang, C.-S.; Jiang, B.; Li, M.; Zhu, M.; Peng, Y.; Zhang, Y.-L.; Wu, Y.-Q.; Li, T.Y.; Liang, Y.; Lu, Z.; et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20, 526-540. [CrossRef] [PubMed]
-
(2014)
Cell Metab
, vol.20
, pp. 526-540
-
-
Zhang, C.-S.1
Jiang, B.2
Li, M.3
Zhu, M.4
Peng, Y.5
Zhang, Y.-L.6
Wu, Y.-Q.7
Li, T.Y.8
Liang, Y.9
Lu, Z.10
-
41
-
-
84885142437
-
AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
-
CrossRefPubMed
-
Zhang, Y.-L.; Guo, H.; Zhang, C.-S.; Lin, S.-Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian, G.; Zhang, C.; et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013, 18, 546-555. [CrossRef] [PubMed]
-
(2013)
Cell Metab
, vol.18
, pp. 546-555
-
-
Zhang, Y.-L.1
Guo, H.2
Zhang, C.-S.3
Lin, S.-Y.4
Yin, Z.5
Peng, Y.6
Luo, H.7
Shi, Y.8
Lian, G.9
Zhang, C.10
-
42
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
CrossRefPubMed
-
Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149, 410-424. [CrossRef] [PubMed]
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
43
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
CrossRefPubMed
-
Bonfils, G.; Jaquenoud, M.; Bontron, S.; Ostrowicz, C.; Ungermann, C.; De Virgilio, C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 2012, 46, 105-110. [CrossRef] [PubMed]
-
(2012)
Mol. Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
44
-
-
85030310246
-
Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction
-
CrossRefPubMed
-
Kim, J.H.; Lee, C.; Lee, M.; Wang, H.; Kim, K.; Park, S.J.; Yoon, I.; Jang, J.; Zhao, H.; Kim, H.K.; et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat. Commun. 2017, 8, 732. [CrossRef] [PubMed]
-
(2017)
Nat. Commun
, vol.8
, pp. 732
-
-
Kim, J.H.1
Lee, C.2
Lee, M.3
Wang, H.4
Kim, K.5
Park, S.J.6
Yoon, I.7
Jang, J.8
Zhao, H.9
Kim, H.K.10
-
45
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
CrossRefPubMed
-
Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.-X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.-L. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347, 194-198. [CrossRef] [PubMed]
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.-X.4
Park, H.W.5
Plouffe, S.W.6
Tagliabracci, V.S.7
Guan, K.-L.8
-
46
-
-
84872687720
-
Glutamine stimulates mTORC1 independent of the cell content of essential amino acids
-
CrossRefPubMed
-
Chiu, M.; Tardito, S.; Barilli, A.; Bianchi, M.G.; Dall’Asta, V.; Bussolati, O. Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 2012, 43, 2561-2567. [CrossRef] [PubMed]
-
(2012)
Amino Acids
, vol.43
, pp. 2561-2567
-
-
Chiu, M.1
Tardito, S.2
Barilli, A.3
Bianchi, M.G.4
Dall’Asta, V.5
Bussolati, O.6
-
47
-
-
85027998950
-
Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation
-
CrossRefPubMed
-
Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun. 2017, 8, 338. [CrossRef] [PubMed]
-
(2017)
Nat. Commun
, vol.8
, pp. 338
-
-
Tan, H.W.S.1
Sim, A.Y.L.2
Long, Y.C.3
-
48
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
CrossRefPubMed
-
Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 2012, 47, 349-358. [CrossRef] [PubMed]
-
(2012)
Mol. Cell
, vol.47
, pp. 349-358
-
-
Durán, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
Hall, M.N.7
-
49
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
CrossRefPubMed
-
Tsun, Z.-Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52, 495-505. [CrossRef] [PubMed]
-
(2013)
Mol. Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.-Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
Spooner, E.7
Sabatini, D.M.8
-
50
-
-
84943358458
-
Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2
-
CrossRefPubMed
-
Péli-Gulli, M.-P.; Sardu, A.; Panchaud, N.; Raucci, S.; De Virgilio, C. Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. Cell Rep. 2015, 13, 1-7. [CrossRef] [PubMed]
-
(2015)
Cell Rep
, vol.13
, pp. 1-7
-
-
Péli-Gulli, M.-P.1
Sardu, A.2
Panchaud, N.3
Raucci, S.4
De Virgilio, C.5
-
51
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
-
CrossRefPubMed
-
Petit, C.S.; Roczniak-Ferguson, A.; Ferguson, S.M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 2013, 202, 1107-1122. [CrossRef] [PubMed]
-
(2013)
J. Cell Biol
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
Roczniak-Ferguson, A.2
Ferguson, S.M.3
-
52
-
-
84946060339
-
Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression
-
CrossRefPubMed
-
Wu, M.; Si, S.; Li, Y.; Schoen, S.; Xiao, G.-Q.; Li, X.; Teh, B.T.; Wu, G.; Chen, J. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget 2015, 6, 32761-32773. [CrossRef] [PubMed]
-
(2015)
Oncotarget
, vol.6
, pp. 32761-32773
-
-
Wu, M.1
Si, S.2
Li, Y.3
Schoen, S.4
Xiao, G.-Q.5
Li, X.6
Teh, B.T.7
Wu, G.8
Chen, J.9
-
53
-
-
84911401404
-
Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation
-
CrossRefPubMed
-
Hasumi, Y.; Baba, M.; Hasumi, H.; Huang, Y.; Lang, M.; Reindorf, R.; Oh, H.; Sciarretta, S.; Nagashima, K.; Haines, D.C.; et al. Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation. Hum. Mol. Genet. 2014, 23, 5706-5719. [CrossRef] [PubMed]
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5706-5719
-
-
Hasumi, Y.1
Baba, M.2
Hasumi, H.3
Huang, Y.4
Lang, M.5
Reindorf, R.6
Oh, H.7
Sciarretta, S.8
Nagashima, K.9
Haines, D.C.10
-
54
-
-
77949681085
-
Renal tumour suppressor function of the Birt-Hogg-Dubé syndrome gene product folliculin
-
CrossRefPubMed
-
Hudon, V.; Sabourin, S.; Dydensborg, A.B.; Kottis, V.; Ghazi, A.; Paquet, M.; Crosby, K.; Pomerleau, V.; Uetani, N.; Pause, A. Renal tumour suppressor function of the Birt-Hogg-Dubé syndrome gene product folliculin. J. Med. Genet. 2010, 47, 182-189. [CrossRef] [PubMed]
-
(2010)
J. Med. Genet
, vol.47
, pp. 182-189
-
-
Hudon, V.1
Sabourin, S.2
Dydensborg, A.B.3
Kottis, V.4
Ghazi, A.5
Paquet, M.6
Crosby, K.7
Pomerleau, V.8
Uetani, N.9
Pause, A.10
-
55
-
-
84965059934
-
Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα
-
CrossRefPubMed
-
Yan, M.; Audet-Walsh, É.; Manteghi, S.; Rosa Dufour, C.; Walker, B.; Baba, M.; St-Pierre, J.; Giguère, V.; Pause, A. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes Dev. 2016, 30, 1034-1046. [CrossRef] [PubMed]
-
(2016)
Genes Dev
, vol.30
, pp. 1034-1046
-
-
Yan, M.1
Audet-Walsh, É.2
Manteghi, S.3
Rosa Dufour, C.4
Walker, B.5
Baba, M.6
St-Pierre, J.7
Giguère, V.8
Pause, A.9
-
56
-
-
85006035893
-
The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue
-
CrossRefPubMed
-
Wada, S.; Neinast, M.; Jang, C.; Ibrahim, Y.H.; Lee, G.; Babu, A.; Li, J.; Hoshino, A.; Rowe, G.C.; Rhee, J.; et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 2016, 30, 2551-2564. [CrossRef] [PubMed]
-
(2016)
Genes Dev
, vol.30
, pp. 2551-2564
-
-
Wada, S.1
Neinast, M.2
Jang, C.3
Ibrahim, Y.H.4
Lee, G.5
Babu, A.6
Li, J.7
Hoshino, A.8
Rowe, G.C.9
Rhee, J.10
-
57
-
-
84901305990
-
Folliculin regulates ampk-dependent autophagy and metabolic stress survival
-
CrossRefPubMed
-
Possik, E.; Jalali, Z.; Nouët, Y.; Yan, M.; Gingras, M.-C.; Schmeisser, K.; Panaite, L.; Dupuy, F.; Kharitidi, D.; Chotard, L.; et al. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. PLoS Genet. 2014, 10, e1004273. [CrossRef] [PubMed]
-
(2014)
Plos Genet
, pp. 10
-
-
Possik, E.1
Jalali, Z.2
Nouët, Y.3
Yan, M.4
Gingras, M.-C.5
Schmeisser, K.6
Panaite, L.7
Dupuy, F.8
Kharitidi, D.9
Chotard, L.10
-
58
-
-
84902201289
-
The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation
-
CrossRefPubMed
-
Yan, M.; Gingras, M.-C.; Dunlop, E.A.; Nouët, Y.; Dupuy, F.; Jalali, Z.; Possik, E.; Coull, B.J.; Kharitidi, D.; Dydensborg, A.B.; et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J. Clin. Investig. 2014, 124, 2640-2650. [CrossRef] [PubMed]
-
(2014)
J. Clin. Investig.
, vol.124
, pp. 2640-2650
-
-
Yan, M.1
Gingras, M.-C.2
Dunlop, E.A.3
Nouët, Y.4
Dupuy, F.5
Jalali, Z.6
Possik, E.7
Coull, B.J.8
Kharitidi, D.9
Dydensborg, A.B.10
-
59
-
-
84946594857
-
FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores
-
CrossRefPubMed
-
Possik, E.; Ajisebutu, A.; Manteghi, S.; Gingras, M.-C.; Vijayaraghavan, T.; Flamand, M.; Coull, B.; Schmeisser, K.; Duchaine, T.; van Steensel, M.; et al. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores. PLoS Genet. 2015, 11, e1005520. [CrossRef] [PubMed]
-
(2015)
Plos Genet
, pp. 11
-
-
Possik, E.1
Ajisebutu, A.2
Manteghi, S.3
Gingras, M.-C.4
Vijayaraghavan, T.5
Flamand, M.6
Coull, B.7
Schmeisser, K.8
Duchaine, T.9
Van Steensel, M.10
-
60
-
-
33750293584
-
Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling
-
CrossRefPubMed
-
Baba, M.; Hong, S.-B.; Sharma, N.; Warren, M.B.; Nickerson, M.L.; Iwamatsu, A.; Esposito, D.; Gillette, W.K.; Hopkins, R.F.; Hartley, J.L.; et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 15552-15557. [CrossRef] [PubMed]
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 15552-15557
-
-
Baba, M.1
Hong, S.-B.2
Sharma, N.3
Warren, M.B.4
Nickerson, M.L.5
Iwamatsu, A.6
Esposito, D.7
Gillette, W.K.8
Hopkins, R.F.9
Hartley, J.L.10
-
61
-
-
84963894095
-
Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes
-
CrossRefPubMed
-
Starling, G.P.; Yip, Y.Y.; Sanger, A.; Morton, P.E.; Eden, E.R.; Dodding, M.P. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016, 17, 823-841. [CrossRef] [PubMed]
-
(2016)
EMBO Rep
, vol.17
, pp. 823-841
-
-
Starling, G.P.1
Yip, Y.Y.2
Sanger, A.3
Morton, P.E.4
Eden, E.R.5
Dodding, M.P.6
-
62
-
-
84959288114
-
Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome
-
CrossRefPubMed
-
Hasumi, H.; Baba, M.; Hasumi, Y.; Furuya, M.; Yao, M. Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome. Int. J. Urol. 2016, 23, 204-210. [CrossRef] [PubMed]
-
(2016)
Int. J. Urol
, vol.23
, pp. 204-210
-
-
Hasumi, H.1
Baba, M.2
Hasumi, Y.3
Furuya, M.4
Yao, M.5
-
63
-
-
79960014848
-
ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
-
CrossRefPubMed
-
Dunlop, E.A.; Hunt, D.K.; Acosta-Jaquez, H.A.; Fingar, D.C.; Tee, A.R. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011, 7, 737-747. [CrossRef] [PubMed]
-
(2011)
Autophagy
, vol.7
, pp. 737-747
-
-
Dunlop, E.A.1
Hunt, D.K.2
Acosta-Jaquez, H.A.3
Fingar, D.C.4
Tee, A.R.5
-
64
-
-
85026854783
-
Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK
-
CrossRefPubMed
-
Zhang, C.-S.; Hawley, S.A.; Zong, Y.; Li, M.; Wang, Z.; Gray, A.; Ma, T.; Cui, J.; Feng, J.-W.; Zhu, M.; et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017, 548, 112-116. [CrossRef] [PubMed]
-
(2017)
Nature
, vol.548
, pp. 112-116
-
-
Zhang, C.-S.1
Hawley, S.A.2
Zong, Y.3
Li, M.4
Wang, Z.5
Gray, A.6
Ma, T.7
Cui, J.8
Feng, J.-W.9
Zhu, M.10
-
65
-
-
78649336706
-
The DNA damage response: Making it safe to play with knives.
-
CrossRefPubMed
-
Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179-204. [CrossRef] [PubMed]
-
(2010)
Mol. Cell
, vol.40
, pp. 179-204
-
-
Ciccia, A.1
Elledge, S.J.2
-
66
-
-
79960599136
-
Regulation of mammalian target of rapamycin complex 1 (MTORC1) by hypoxia: Causes and consequences
-
CrossRefPubMed
-
Cam, H.; Houghton, P.J. Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: Causes and consequences. Target. Oncol. 2011, 6, 95-102. [CrossRef] [PubMed]
-
(2011)
Target. Oncol.
, vol.6
, pp. 95-102
-
-
Cam, H.1
Houghton, P.J.2
-
67
-
-
0026468180
-
A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation
-
CrossRefPubMed
-
Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 1992, 12, 5447-5454. [CrossRef] [PubMed]
-
(1992)
Mol. Cell Biol
, vol.12
, pp. 5447-5454
-
-
Semenza, G.L.1
Wang, G.L.2
-
68
-
-
0034682783
-
Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein
-
CrossRefPubMed
-
Cockman, M.E.; Masson, N.; Mole, D.R.; Jaakkola, P.; Chang, G.W.; Clifford, S.C.; Maher, E.R.; Pugh, C.W.; Ratcliffe, P.J.; Maxwell, P.H. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 2000, 275, 25733-25741. [CrossRef] [PubMed]
-
(2000)
J. Biol. Chem
, vol.275
, pp. 25733-25741
-
-
Cockman, M.E.1
Masson, N.2
Mole, D.R.3
Jaakkola, P.4
Chang, G.W.5
Clifford, S.C.6
Maher, E.R.7
Pugh, C.W.8
Ratcliffe, P.J.9
Maxwell, P.H.10
-
69
-
-
0035834409
-
A conserved family of prolyl-4-hydroxylases that modify HIF
-
CrossRefPubMed
-
Bruick, R.K.; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294, 1337-1340. [CrossRef] [PubMed]
-
(2001)
Science
, vol.294
, pp. 1337-1340
-
-
Bruick, R.K.1
McKnight, S.L.2
-
70
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
CrossRefPubMed
-
DeYoung, M.P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22, 239-251. [CrossRef] [PubMed]
-
(2008)
Genes Dev
, vol.22
, pp. 239-251
-
-
Deyoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
71
-
-
77949528224
-
Structural analysis and functional implications of the negative mTORC1 regulator REDD1
-
CrossRefPubMed
-
Vega-Rubin-de-Celis, S.; Abdallah, Z.; Kinch, L.; Grishin, N.V.; Brugarolas, J.; Zhang, X. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 2010, 49, 2491-2501. [CrossRef] [PubMed]
-
(2010)
Biochemistry
, vol.49
, pp. 2491-2501
-
-
Vega-Rubin-De-Celis, S.1
Abdallah, Z.2
Kinch, L.3
Grishin, N.V.4
Brugarolas, J.5
Zhang, X.6
-
72
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
CrossRefPubMed
-
Brugarolas, J.; Lei, K.; Hurley, R.L.; Manning, B.D.; Reiling, J.H.; Hafen, E.; Witters, L.A.; Ellisen, L.W.; Kaelin, W.G. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004, 18, 2893-2904. [CrossRef] [PubMed]
-
(2004)
Genes Dev
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
Manning, B.D.4
Reiling, J.H.5
Hafen, E.6
Witters, L.A.7
Ellisen, L.W.8
Kaelin, W.G.9
-
73
-
-
37248999267
-
Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
-
CrossRefPubMed
-
Li, Y.; Wang, Y.; Kim, E.; Beemiller, P.; Wang, C.-Y.; Swanson, J.; You, M.; Guan, K.-L. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 2007, 282, 35803-35813. [CrossRef] [PubMed]
-
(2007)
J. Biol. Chem
, vol.282
, pp. 35803-35813
-
-
Li, Y.1
Wang, Y.2
Kim, E.3
Beemiller, P.4
Wang, C.-Y.5
Swanson, J.6
You, M.7
Guan, K.-L.8
-
74
-
-
14044277429
-
The molecular machinery of autophagy: Unanswered questions
-
CrossRefPubMed
-
Klionsky, D.J. The molecular machinery of autophagy: Unanswered questions. J. Cell Sci. 2005, 118, 7-18. [CrossRef] [PubMed]
-
(2005)
J. Cell Sci
, vol.118
, pp. 7-18
-
-
Klionsky, D.J.1
-
75
-
-
36249025723
-
Autophagy: Process and function
-
CrossRefPubMed
-
Mizushima, N. Autophagy: Process and function. Genes Dev. 2007, 21, 2861-2873. [CrossRef] [PubMed]
-
(2007)
Genes Dev
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
76
-
-
75649108606
-
Role of autophagy and autophagy genes in inflammatory bowel disease
-
PubMed
-
Cadwell, K.; Stappenbeck, T.S.; Virgin, H.W. Role of autophagy and autophagy genes in inflammatory bowel disease. Curr. Top MicroBiol. Immunol. 2009, 335, 141-167. [PubMed]
-
(2009)
Curr. Top Microbiol. Immunol.
, vol.335
, pp. 141-167
-
-
Cadwell, K.1
Stappenbeck, T.S.2
Virgin, H.W.3
-
77
-
-
34548265278
-
Autophagy and human disease
-
CrossRefPubMed
-
Huang, J.; Klionsky, D.J. Autophagy and human disease. Cell Cycle 2007, 6, 1837-1849. [CrossRef] [PubMed]
-
(2007)
Cell Cycle
, vol.6
, pp. 1837-1849
-
-
Huang, J.1
Klionsky, D.J.2
-
78
-
-
77951237079
-
Autophagy genes as tumor suppressors
-
CrossRefPubMed
-
Liang, C.; Jung, J.U. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol. 2010, 22, 226-233. [CrossRef] [PubMed]
-
(2010)
Curr. Opin. Cell Biol
, vol.22
, pp. 226-233
-
-
Liang, C.1
Jung, J.U.2
-
79
-
-
4344563878
-
Role and regulation of starvation-induced autophagy in the Drosophila fat body
-
CrossRefPubMed
-
Scott, R.C.; Schuldiner, O.; Neufeld, T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 2004, 7, 167-178. [CrossRef] [PubMed]
-
(2004)
Dev. Cell
, vol.7
, pp. 167-178
-
-
Scott, R.C.1
Schuldiner, O.2
Neufeld, T.P.3
-
80
-
-
69349087479
-
Anti- and pro-tumor functions of autophagy
-
CrossRefPubMed
-
Morselli, E.; Galluzzi, L.; Kepp, O.; Vicencio, J.-M.; Criollo, A.; Maiuri, M.C.; Kroemer, G. Anti- and pro-tumor functions of autophagy. Biochim. Biophys. Acta 2009, 1793, 1524-1532. [CrossRef] [PubMed]
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 1524-1532
-
-
Morselli, E.1
Galluzzi, L.2
Kepp, O.3
Vicencio, J.-M.4
Criollo, A.5
Maiuri, M.C.6
Kroemer, G.7
-
81
-
-
27644466759
-
Autophagy and signaling: Their role in cell survival and cell death
-
CrossRefPubMed
-
Codogno, P.; Meijer, A.J. Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ. 2005, 12, 1509-1518. [CrossRef] [PubMed]
-
(2005)
Cell Death Differ
, vol.12
, pp. 1509-1518
-
-
Codogno, P.1
Meijer, A.J.2
-
82
-
-
78649712949
-
MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
CrossRefPubMed
-
Oh, W.J.; Wu, C.; Kim, S.J.; Facchinetti, V.; Julien, L.-A.; Finlan, M.; Roux, P.P.; Su, B.; Jacinto, E. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29, 3939-3951. [CrossRef] [PubMed]
-
(2010)
EMBO J
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
Wu, C.2
Kim, S.J.3
Facchinetti, V.4
Julien, L.-A.5
Finlan, M.6
Roux, P.P.7
Su, B.8
Jacinto, E.9
-
83
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
CrossRefPubMed
-
Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell 2011, 144, 757-768. [CrossRef] [PubMed]
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
84
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
CrossRefPubMed
-
Ganley, I.G.; Lam, D.H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297-12305. [CrossRef] [PubMed]
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
85
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
CrossRefPubMed
-
Hosokawa, N.; Hara, T.; Kaizuka, T.; Kishi, C.; Takamura, A.; Miura, Y.; Iemura, S.; Natsume, T.; Takehana, K.; Yamada, N.; et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20, 1981-1991. [CrossRef] [PubMed]
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
86
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.
-
CrossRefPubMed
-
Jung, C.H.; Jun, C.B.; Ro, S.-H.; Kim, Y.-M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20, 1992-2003. [CrossRef] [PubMed]
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.-H.3
Kim, Y.-M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.-H.8
-
87
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
CrossRefPubMed
-
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132-141. [CrossRef] [PubMed]
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.-L.4
-
88
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
CrossRefPubMed
-
Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad Sci. USA 2011, 108, 4788-4793. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad Sci. USA
, vol.108
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
89
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
CrossRefPubMed
-
Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15, 406-416. [CrossRef] [PubMed]
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
Bordi, M.6
Gretzmeier, C.7
Dengjel, J.8
Piacentini, M.9
Fimia, G.M.10
-
90
-
-
81155123729
-
The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
-
CrossRefPubMed
-
Bach, M.; Larance, M.; James, D.E.; Ramm, G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 2011, 440, 283-291. [CrossRef] [PubMed]
-
(2011)
Biochem. J
, vol.440
, pp. 283-291
-
-
Bach, M.1
Larance, M.2
James, D.E.3
Ramm, G.4
-
91
-
-
79251587803
-
Phosphorylation of ULK1 (HATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
CrossRefPubMed
-
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331, 456-461. [CrossRef] [PubMed]
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
-
92
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
CrossRefPubMed
-
Lee, J.W.; Park, S.; Takahashi, Y.; Wang, H.-G. The association of AMPK with ULK1 regulates autophagy. PLoS ONE 2010, 5, e15394. [CrossRef] [PubMed]
-
(2010)
Plos ONE
, pp. 5
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.-G.4
-
93
-
-
80053430528
-
ULK1 inhibits the kinase activity of mTORC1 and cell proliferation
-
CrossRefPubMed
-
Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.-H. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011, 7, 1212-1221. [CrossRef] [PubMed]
-
(2011)
Autophagy
, vol.7
, pp. 1212-1221
-
-
Jung, C.H.1
Seo, M.2
Otto, N.M.3
Kim, D.-H.4
-
94
-
-
77957728513
-
The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
-
CrossRefPubMed
-
Di Bartolomeo, S.; Corazzari, M.; Nazio, F.; Oliverio, S.; Lisi, G.; Antonioli, M.; Pagliarini, V.; Matteoni, S.; Fuoco, C.; Giunta, L.; et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 2010, 191, 155-168. [CrossRef] [PubMed]
-
(2010)
J. Cell Biol
, vol.191
, pp. 155-168
-
-
Di Bartolomeo, S.1
Corazzari, M.2
Nazio, F.3
Oliverio, S.4
Lisi, G.5
Antonioli, M.6
Pagliarini, V.7
Matteoni, S.8
Fuoco, C.9
Giunta, L.10
-
95
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
CrossRefPubMed
-
Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.-Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.-L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15, 741-750. [CrossRef] [PubMed]
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.-Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.-L.10
-
96
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
CrossRefPubMed
-
Matsunaga, K.; Morita, E.; Saitoh, T.; Akira, S.; Ktistakis, N.T.; Izumi, T.; Noda, T.; Yoshimori, T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 2010, 190, 511-521. [CrossRef] [PubMed]
-
(2010)
J. Cell Biol
, vol.190
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
Akira, S.4
Ktistakis, N.T.5
Izumi, T.6
Noda, T.7
Yoshimori, T.8
-
97
-
-
85003429997
-
ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models
-
CrossRefPubMed
-
Wold, M.S.; Lim, J.; Lachance, V.; Deng, Z.; Yue, Z. ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models. Mol. Neurodegener. 2016, 11, 76. [CrossRef] [PubMed]
-
(2016)
Mol. Neurodegener
, vol.11
, pp. 76
-
-
Wold, M.S.1
Lim, J.2
Lachance, V.3
Deng, Z.4
Yue, Z.5
-
98
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by mTOR in nutrient stress-induced autophagy
-
CrossRefPubMed
-
Yuan, H.-X.; Russell, R.C.; Guan, K.-L. Regulation of PIK3C3/VPS34 complexes by mTOR in nutrient stress-induced autophagy. Autophagy 2013, 9, 1983-1995. [CrossRef] [PubMed]
-
(2013)
Autophagy
, vol.9
, pp. 1983-1995
-
-
Yuan, H.-X.1
Russell, R.C.2
Guan, K.-L.3
-
99
-
-
79959963047
-
Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
-
CrossRefPubMed
-
Löffler, A.S.; Alers, S.; Dieterle, A.M.; Keppeler, H.; Franz-Wachtel, M.; Kundu, M.; Campbell, D.G.; Wesselborg, S.; Alessi, D.R.; Stork, B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011, 7, 696-706. [CrossRef] [PubMed]
-
(2011)
Autophagy
, vol.7
, pp. 696-706
-
-
Löffler, A.S.1
Alers, S.2
Dieterle, A.M.3
Keppeler, H.4
Franz-Wachtel, M.5
Kundu, M.6
Campbell, D.G.7
Wesselborg, S.8
Alessi, D.R.9
Stork, B.10
-
100
-
-
77955716131
-
DAP1, a novel substrate of mTOR, negatively regulates autophagy
-
CrossRefPubMed
-
Koren, I.; Reem, E.; Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 2010, 20, 1093-1098. [CrossRef] [PubMed]
-
(2010)
Curr. Biol
, vol.20
, pp. 1093-1098
-
-
Koren, I.1
Reem, E.2
Kimchi, A.3
-
101
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
CrossRefPubMed
-
Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.; Yaffe, M.B.; et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332, 1317-1322. [CrossRef] [PubMed]
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
Peterson, T.R.7
Choi, Y.8
Gray, N.S.9
Yaffe, M.B.10
-
102
-
-
84924415434
-
Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates
-
CrossRefPubMed
-
Lim, J.; Lachenmayer, M.L.; Wu, S.; Liu, W.; Kundu, M.; Wang, R.; Komatsu, M.; Oh, Y.J.; Zhao, Y.; Yue, Z. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015, 11, e1004987. [CrossRef] [PubMed]
-
(2015)
Plos Genet
, pp. 11
-
-
Lim, J.1
Lachenmayer, M.L.2
Wu, S.3
Liu, W.4
Kundu, M.5
Wang, R.6
Komatsu, M.7
Oh, Y.J.8
Zhao, Y.9
Yue, Z.10
-
103
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
CrossRefPubMed
-
Martina, J.A.; Chen, Y.; Gucek, M.; Puertollano, R. mTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8, 903-914. [CrossRef] [PubMed]
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
104
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
CrossRefPubMed
-
Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5, ra42. [CrossRef] [PubMed]
-
(2012)
Sci. Signal
, vol.5
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
Walther, T.C.7
Ferguson, S.M.8
-
105
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
CrossRefPubMed
-
Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31, 1095-1108. [CrossRef] [PubMed]
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
-
106
-
-
85011634328
-
Multistep regulation of TFEB by mTORC1
-
CrossRefPubMed
-
Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by mTORC1. Autophagy 2017, 13, 464-472. [CrossRef] [PubMed]
-
(2017)
Autophagy
, vol.13
, pp. 464-472
-
-
Vega-Rubin-De-Celis, S.1
Peña-Llopis, S.2
Konda, M.3
Brugarolas, J.4
-
107
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
CrossRefPubMed
-
Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332, 1429-1433. [CrossRef] [PubMed]
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
108
-
-
84893055506
-
The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
CrossRefPubMed
-
Martina, J.A.; Diab, H.I.; Lishu, L.; Jeong A L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 2014, 7, ra9. [CrossRef] [PubMed]
-
(2014)
Sci. Signal
, vol.7
-
-
Martina, J.A.1
Diab, H.I.2
Lishu, L.3
Jeong, A.L.4
Patange, S.5
Raben, N.6
Puertollano, R.7
-
109
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
CrossRefPubMed
-
Martina, J.A.; Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 2013, 200, 475-491. [CrossRef] [PubMed]
-
(2013)
J. Cell Biol
, vol.200
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
110
-
-
84959487667
-
AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes
-
CrossRefPubMed
-
Young, N.P.; Kamireddy, A.; Van Nostrand, J.L.; Eichner, L.J.; Shokhirev, M.N.; Dayn, Y.; Shaw, R.J. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 2016, 30, 535-552. [CrossRef] [PubMed]
-
(2016)
Genes Dev
, vol.30
, pp. 535-552
-
-
Young, N.P.1
Kamireddy, A.2
Van Nostrand, J.L.3
Eichner, L.J.4
Shokhirev, M.N.5
Dayn, Y.6
Shaw, R.J.7
-
111
-
-
84975756856
-
AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy
-
CrossRefPubMed
-
Shin, H.-J.R.; Kim, H.; Oh, S.; Lee, J.-G.; Kee, M.; Ko, H.-J.; Kweon, M.-N.; Won, K.-J.; Baek, S.H. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 2016, 534, 553-557. [CrossRef] [PubMed]
-
(2016)
Nature
, vol.534
, pp. 553-557
-
-
Shin, H.-J.R.1
Kim, H.2
Oh, S.3
Lee, J.-G.4
Kee, M.5
Ko, H.-J.6
Kweon, M.-N.7
Won, K.-J.8
Baek, S.H.9
-
112
-
-
84903795431
-
Rag GTPases are cardioprotective by regulating lysosomal function
-
CrossRefPubMed
-
Kim, Y.C.; Park, H.W.; Sciarretta, S.; Mo, J.-S.; Jewell, J.L.; Russell, R.C.; Wu, X.; Sadoshima, J.; Guan, K.-L. Rag GTPases are cardioprotective by regulating lysosomal function. Nat. Commun. 2014, 5, 4241. [CrossRef] [PubMed]
-
(2014)
Nat. Commun
, vol.5
, pp. 4241
-
-
Kim, Y.C.1
Park, H.W.2
Sciarretta, S.3
Mo, J.-S.4
Jewell, J.L.5
Russell, R.C.6
Wu, X.7
Sadoshima, J.8
Guan, K.-L.9
-
113
-
-
84966600317
-
An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense
-
CrossRefPubMed
-
Najibi, M.; Labed, S.A.; Visvikis, O.; Irazoqui, J.E. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016, 15, 1728-1742. [CrossRef] [PubMed]
-
(2016)
Cell Rep
, vol.15
, pp. 1728-1742
-
-
Najibi, M.1
Labed, S.A.2
Visvikis, O.3
Irazoqui, J.E.4
-
114
-
-
84974666968
-
TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages
-
CrossRefPubMed
-
Pastore, N.; Brady, O.A.; Diab, H.I.; Martina, J.A.; Sun, L.; Huynh, T.; Lim, J.-A.; Zare, H.; Raben, N.; Ballabio, A.; et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016, 12, 1240-1258. [CrossRef] [PubMed]
-
(2016)
Autophagy
, vol.12
, pp. 1240-1258
-
-
Pastore, N.1
Brady, O.A.2
Diab, H.I.3
Martina, J.A.4
Sun, L.5
Huynh, T.6
Lim, J.-A.7
Zare, H.8
Raben, N.9
Ballabio, A.10
-
115
-
-
84902658412
-
Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes
-
CrossRefPubMed
-
Visvikis, O.; Ihuegbu, N.; Labed, S.A.; Luhachack, L.G.; Alves, A.-M.F.; Wollenberg, A.C.; Stuart, L.M.; Stormo, G.D.; Irazoqui, J.E. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 2014, 40, 896-909. [CrossRef] [PubMed]
-
(2014)
Immunity
, vol.40
, pp. 896-909
-
-
Visvikis, O.1
Ihuegbu, N.2
Labed, S.A.3
Luhachack, L.G.4
Alves, A.-M.F.5
Wollenberg, A.C.6
Stuart, L.M.7
Stormo, G.D.8
Irazoqui, J.E.9
-
116
-
-
0037180757
-
Inflammation and cancer
-
CrossRefPubMed
-
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860-867. [CrossRef] [PubMed]
-
(2002)
Nature
, vol.420
, pp. 860-867
-
-
Coussens, L.M.1
Werb, Z.2
-
117
-
-
69949106925
-
The double-edged sword of autophagy modulation in cancer.
-
CrossRefPubMed
-
White, E.; DiPaola, R.S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 2009, 15, 5308-5316. [CrossRef] [PubMed]
-
(2009)
Clin. Cancer Res
, vol.15
, pp. 5308-5316
-
-
White, E.1
Dipaola, R.S.2
-
118
-
-
84926252071
-
Karantza, V.; et al. Autophagy in malignant transformation and cancer progression
-
CrossRefPubMed
-
Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J.M.; Amaravadi, R.K.; Baehrecke, E.H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D.A.; Karantza, V.; et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015, 34, 856-880. [CrossRef] [PubMed]
-
(2015)
EMBO J
, vol.34
, pp. 856-880
-
-
Galluzzi, L.1
Pietrocola, F.2
Bravo-San Pedro, J.M.3
Amaravadi, R.K.4
Baehrecke, E.H.5
Cecconi, F.6
Codogno, P.7
Debnath, J.8
Gewirtz, D.A.9
-
119
-
-
84988905857
-
Recent insights into the function of autophagy in cancer
-
CrossRefPubMed
-
Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016, 30, 1913-1930. [CrossRef] [PubMed]
-
(2016)
Genes Dev
, vol.30
, pp. 1913-1930
-
-
Amaravadi, R.1
Kimmelman, A.C.2
White, E.3
-
120
-
-
79956224883
-
Targeting autophagy during cancer therapy to improve clinical outcomes
-
CrossRefPubMed
-
Levy, J.M.M.; Thorburn, A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol. Ther. 2011, 131, 130-141. [CrossRef] [PubMed]
-
(2011)
Pharmacol. Ther
, vol.131
, pp. 130-141
-
-
Levy, J.M.M.1
Thorburn, A.2
-
121
-
-
85003956475
-
Therapeutic targeting of autophagy
-
CrossRefPubMed
-
Towers, C.G.; Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 2016, 14, 15-23. [CrossRef] [PubMed]
-
(2016)
Ebiomedicine
, vol.14
, pp. 15-23
-
-
Towers, C.G.1
Thorburn, A.2
-
122
-
-
4344595626
-
Regulation and role of autophagy in mammalian cells
-
CrossRefPubMed
-
Meijer, A.J.; Codogno, P. Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell Biol. 2004, 36, 2445-2462. [CrossRef] [PubMed]
-
(2004)
Int. J. Biochem. Cell Biol
, vol.36
, pp. 2445-2462
-
-
Meijer, A.J.1
Codogno, P.2
-
123
-
-
0037451783
-
Autophagy: A barrier or an adaptive response to cancer.
-
CrossRef
-
Ogier-Denis, E.; Codogno, P. Autophagy: A barrier or an adaptive response to cancer. Biochim. Biophys. Acta 2003, 1603, 113-128. [CrossRef]
-
(2003)
Biochim. Biophys. Acta
, vol.1603
, pp. 113-128
-
-
Ogier-Denis, E.1
Codogno, P.2
-
124
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
CrossRefPubMed
-
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10, 51-64. [CrossRef] [PubMed]
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
Chen, G.6
Mukherjee, C.7
Shi, Y.8
Gélinas, C.9
Fan, Y.10
-
125
-
-
77951228508
-
Hypoxia-induced autophagy: Cell death or cell survival
-
CrossRefPubMed
-
Mazure, N.M.; Pouysségur, J. Hypoxia-induced autophagy: Cell death or cell survival? Curr. Opin. Cell Biol. 2010, 22, 177-180. [CrossRef] [PubMed]
-
(2010)
Curr. Opin. Cell Biol
, vol.22
, pp. 177-180
-
-
Mazure, N.M.1
Pouysségur, J.2
-
126
-
-
78751556979
-
Autophagy as a therapeutic target in cancer
-
CrossRefPubMed
-
Chen, N.; Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther. 2011, 11, 157-168. [CrossRef] [PubMed]
-
(2011)
Cancer Biol. Ther.
, vol.11
, pp. 157-168
-
-
Chen, N.1
Karantza, V.2
-
127
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
CrossRef
-
Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 2004, 6, 463-477. [CrossRef]
-
(2004)
Dev. Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
128
-
-
57449121645
-
The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells
-
CrossRefPubMed
-
Lu, Z.; Luo, R.Z.; Lu, Y.; Zhang, X.; Yu, Q.; Khare, S.; Kondo, S.; Kondo, Y.; Yu, Y.; Mills, G.B.; et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Investig. 2008, 118, 3917-3929. [CrossRef] [PubMed]
-
(2008)
J. Clin. Investig.
, vol.118
, pp. 3917-3929
-
-
Lu, Z.1
Luo, R.Z.2
Lu, Y.3
Zhang, X.4
Yu, Q.5
Khare, S.6
Kondo, S.7
Kondo, Y.8
Yu, Y.9
Mills, G.B.10
-
129
-
-
67650021571
-
Autophagy-A double-edged sword in oncology
-
CrossRefPubMed
-
Apel, A.; Zentgraf, H.; Büchler, M.W.; Herr, I. Autophagy-A double-edged sword in oncology. Int. J. Cancer 2009, 125, 991-995. [CrossRef] [PubMed]
-
(2009)
Int. J. Cancer
, vol.125
, pp. 991-995
-
-
Apel, A.1
Zentgraf, H.2
Büchler, M.W.3
Herr, I.4
-
130
-
-
67949104883
-
Stenmark, H. Autophagy in tumour suppression and promotion
-
CrossRefPubMed
-
Brech, A.; Ahlquist, T.; Lothe, R.A.; Stenmark, H. Autophagy in tumour suppression and promotion. Mol. Oncol. 2009, 3, 366-375. [CrossRef] [PubMed]
-
(2009)
Mol. Oncol
, vol.3
, pp. 366-375
-
-
Brech, A.1
Ahlquist, T.2
Lothe, R.A.3
-
131
-
-
77953699668
-
Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
-
CrossRefPubMed
-
Dalby, K.N.; Tekedereli, I.; Lopez-Berestein, G.; Ozpolat, B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010, 6, 322-329. [CrossRef] [PubMed]
-
(2010)
Autophagy
, vol.6
, pp. 322-329
-
-
Dalby, K.N.1
Tekedereli, I.2
Lopez-Berestein, G.3
Ozpolat, B.4
-
132
-
-
34147193472
-
Cell biology: Autophagy and cancer
-
CrossRefPubMed
-
Levine, B. Cell biology: Autophagy and cancer. Nature 2007, 446, 745-747. [CrossRef] [PubMed]
-
(2007)
Nature
, vol.446
, pp. 745-747
-
-
Levine, B.1
-
133
-
-
36448943299
-
Role of autophagy in cancer
-
CrossRefPubMed
-
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer 2007, 7, 961-967. [CrossRef] [PubMed]
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 961-967
-
-
Mathew, R.1
Karantza-Wadsworth, V.2
White, E.3
-
134
-
-
80755132255
-
Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study
-
CrossRefPubMed
-
Shen, S.; Kepp, O.; Michaud, M.; Martins, I.; Minoux, H.; Métivier, D.; Maiuri, M.C.; Kroemer, R.T.; Kroemer, G. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011, 30, 4544-4556. [CrossRef] [PubMed]
-
(2011)
Oncogene
, vol.30
, pp. 4544-4556
-
-
Shen, S.1
Kepp, O.2
Michaud, M.3
Martins, I.4
Minoux, H.5
Métivier, D.6
Maiuri, M.C.7
Kroemer, R.T.8
Kroemer, G.9
-
135
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
CrossRefPubMed
-
Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.-M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17, 654-666. [CrossRef] [PubMed]
-
(2011)
Clin. Cancer Res
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
Lippincott-Schwartz, J.2
Yin, X.-M.3
Weiss, W.A.4
Takebe, N.5
Timmer, W.6
Dipaola, R.S.7
Lotze, M.T.8
White, E.9
-
136
-
-
84877628647
-
Autophagy in human health and disease
-
CrossRefPubMed
-
Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 651-662. [CrossRef] [PubMed]
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 651-662
-
-
Choi, A.M.K.1
Ryter, S.W.2
Levine, B.3
-
137
-
-
20444461067
-
Metformin and reduced risk of cancer in diabetic patients
-
CrossRefPubMed
-
Evans, J.M.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304-1305. [CrossRef] [PubMed]
-
(2005)
BMJ
, vol.330
, pp. 1304-1305
-
-
Evans, J.M.M.1
Donnelly, L.A.2
Emslie-Smith, A.M.3
Alessi, D.R.4
Morris, A.D.5
-
138
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
CrossRefPubMed
-
Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392-395. [CrossRef] [PubMed]
-
(2009)
Nature
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
Strong, R.2
Sharp, Z.D.3
Nelson, J.F.4
Astle, C.M.5
Flurkey, K.6
Nadon, N.L.7
Wilkinson, J.E.8
Frenkel, K.9
Carter, C.S.10
-
139
-
-
84920504512
-
MTOR: A pharmacologic target for autophagy regulation
-
CrossRefPubMed
-
Kim, Y.C.; Guan, K.-L. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Investig. 2015, 125, 25-32. [CrossRef] [PubMed]
-
(2015)
J. Clin. Investig
, vol.125
, pp. 25-32
-
-
Kim, Y.C.1
Guan, K.-L.2
-
140
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
CrossRefPubMed
-
Shimobayashi, M.; Hall, M.N. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 2014, 15, 155-162. [CrossRef] [PubMed]
-
(2014)
Nat. Rev. Mol. Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
141
-
-
84952950121
-
Architecture of human mTOR complex 1
-
CrossRefPubMed
-
Aylett, C.H.S.; Sauer, E.; Imseng, S.; Boehringer, D.; Hall, M.N.; Ban, N.; Maier, T. Architecture of human mTOR complex 1. Science 2016, 351, 48-52. [CrossRef] [PubMed]
-
(2016)
Science
, vol.351
, pp. 48-52
-
-
Aylett, C.H.S.1
Sauer, E.2
Imseng, S.3
Boehringer, D.4
Hall, M.N.5
Ban, N.6
Maier, T.7
-
142
-
-
84959076797
-
Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton
-
CrossRefPubMed
-
Chagin, A.S. Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton. Curr. Opin. Pharmacol. 2016, 28, 1-7. [CrossRef] [PubMed]
-
(2016)
Curr. Opin. Pharmacol
, vol.28
, pp. 1-7
-
-
Chagin, A.S.1
-
143
-
-
63749129788
-
PI3K and mTOR inhibitors: A new generation of targeted anticancer agents
-
CrossRefPubMed
-
Brachmann, S.; Fritsch, C.; Maira, S.-M.; García-Echeverría, C. PI3K and mTOR inhibitors: A new generation of targeted anticancer agents. Curr. Opin. Cell Biol. 2009, 21, 194-198. [CrossRef] [PubMed]
-
(2009)
Curr. Opin. Cell Biol
, vol.21
, pp. 194-198
-
-
Brachmann, S.1
Fritsch, C.2
Maira, S.-M.3
García-Echeverría, C.4
-
144
-
-
17144427728
-
Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
-
CrossRefPubMed
-
Takeuchi, H.; Kondo, Y.; Fujiwara, K.; Kanzawa, T.; Aoki, H.; Mills, G.B.; Kondo, S. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005, 65, 3336-3346. [CrossRef] [PubMed]
-
(2005)
Cancer Res
, vol.65
, pp. 3336-3346
-
-
Takeuchi, H.1
Kondo, Y.2
Fujiwara, K.3
Kanzawa, T.4
Aoki, H.5
Mills, G.B.6
Kondo, S.7
-
145
-
-
0036566266
-
Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
-
CrossRefPubMed
-
Ravikumar, B.; Duden, R.; Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 2002, 11, 1107-1117. [CrossRef] [PubMed]
-
(2002)
Hum. Mol. Genet
, vol.11
, pp. 1107-1117
-
-
Ravikumar, B.1
Duden, R.2
Rubinsztein, D.C.3
-
146
-
-
84885574879
-
Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence
-
CrossRefPubMed
-
Nam, H.Y.; Han, M.W.; Chang, H.W.; Kim, S.Y.; Kim, S.W. Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 2013, 9, 1631-1632. [CrossRef] [PubMed]
-
(2013)
Autophagy
, vol.9
, pp. 1631-1632
-
-
Nam, H.Y.1
Han, M.W.2
Chang, H.W.3
Kim, S.Y.4
Kim, S.W.5
-
147
-
-
84893108714
-
Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide
-
CrossRefPubMed
-
Parkhitko, A.A.; Priolo, C.; Coloff, J.L.; Yun, J.; Wu, J.J.; Mizumura, K.; Xu, W.; Malinowska, I.A.; Yu, J.; Kwiatkowski, D.J.; et al. Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol. Cancer Res. 2014, 12, 48-57. [CrossRef] [PubMed]
-
(2014)
Mol. Cancer Res
, vol.12
, pp. 48-57
-
-
Parkhitko, A.A.1
Priolo, C.2
Coloff, J.L.3
Yun, J.4
Wu, J.J.5
Mizumura, K.6
Xu, W.7
Malinowska, I.A.8
Yu, J.9
Kwiatkowski, D.J.10
-
148
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
CrossRefPubMed
-
Thoreen, C.C.; Kang, S.A.; Chang, J.W.; Liu, Q.; Zhang, J.; Gao, Y.; Reichling, L.J.; Sim, T.; Sabatini, D.M.; Gray, N.S. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 2009, 284, 8023-8032. [CrossRef] [PubMed]
-
(2009)
J. Biol. Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
149
-
-
84969872786
-
Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
-
CrossRefPubMed
-
Rodrik-Outmezguine, V.S.; Okaniwa, M.; Yao, Z.; Novotny, C.J.; McWhirter, C.; Banaji, A.; Won, H.; Wong, W.; Berger, M.; de Stanchina, E.; et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016, 534, 272-276. [CrossRef] [PubMed]
-
(2016)
Nature
, vol.534
, pp. 272-276
-
-
Rodrik-Outmezguine, V.S.1
Okaniwa, M.2
Yao, Z.3
Novotny, C.J.4
McWhirter, C.5
Banaji, A.6
Won, H.7
Wong, W.8
Berger, M.9
De Stanchina, E.10
-
150
-
-
37349041710
-
Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease
-
CrossRefPubMed
-
Hardie, D.G. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008, 582, 81-89. [CrossRef] [PubMed]
-
(2008)
FEBS Lett
, vol.582
, pp. 81-89
-
-
Hardie, D.G.1
-
151
-
-
80053417028
-
Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
-
CrossRefPubMed
-
Tomic, T.; Botton, T.; Cerezo, M.; Robert, G.; Luciano, F.; Puissant, A.; Gounon, P.; Allegra, M.; Bertolotto, C.; Bereder, J.-M.; et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011, 2, e199. [CrossRef] [PubMed]
-
(2011)
Cell Death Dis
, pp. 2
-
-
Tomic, T.1
Botton, T.2
Cerezo, M.3
Robert, G.4
Luciano, F.5
Puissant, A.6
Gounon, P.7
Allegra, M.8
Bertolotto, C.9
Bereder, J.-M.10
-
152
-
-
84859360525
-
Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
-
CrossRefPubMed
-
Shi, W.-Y.; Xiao, D.; Wang, L.; Dong, L.-H.; Yan, Z.-X.; Shen, Z.-X.; Chen, S.-J.; Chen, Y.; Zhao, W.-L. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012, 3, e275. [CrossRef] [PubMed]
-
(2012)
Cell Death Dis
, pp. 3
-
-
Shi, W.-Y.1
Xiao, D.2
Wang, L.3
Dong, L.-H.4
Yan, Z.-X.5
Shen, Z.-X.6
Chen, S.-J.7
Chen, Y.8
Zhao, W.-L.9
-
153
-
-
84896776849
-
Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling
-
CrossRefPubMed
-
Feng, Y.; Ke, C.; Tang, Q.; Dong, H.; Zheng, X.; Lin, W.; Ke, J.; Huang, J.; Yeung, S.-C.J.; Zhang, H. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014, 5, e1088. [CrossRef] [PubMed]
-
(2014)
Cell Death Dis
, pp. 5
-
-
Feng, Y.1
Ke, C.2
Tang, Q.3
Dong, H.4
Zheng, X.5
Lin, W.6
Ke, J.7
Huang, J.8
Yeung, S.-C.J.9
Zhang, H.10
-
154
-
-
84966477947
-
Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis
-
CrossRefPubMed
-
Nazim, U.M.; Moon, J.-H.; Lee, J.-H.; Lee, Y.-J.; Seol, J.-W.; Eo, S.-K.; Lee, J.-H.; Park, S.-Y. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis. Oncotarget 2016, 7, 23468-23481. [CrossRef] [PubMed]
-
(2016)
Oncotarget
, vol.7
, pp. 23468-23481
-
-
Nazim, U.M.1
Moon, J.-H.2
Lee, J.-H.3
Lee, Y.-J.4
Seol, J.-W.5
Eo, S.-K.6
Lee, J.-H.7
Park, S.-Y.8
|