메뉴 건너뛰기




Volumn 31, Issue 2, 2017, Pages 101-126

Parps and adp-ribosylation: Recent advances linking molecular functions to biological outcomes

Author keywords

DNA repair; Gene regulation; Mono(ADP ribose) (MAR); Poly (ADP ribose) polymerase (PARP); Poly(ADP ribose) (PAR); RNA biology

Indexed keywords

NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE NUCLEOTIDE; POLY(ADENOSINE DIPHOSPHATE RIBOSE); NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NICOTINAMIDE NUCLEOTIDE ADENYLYLTRANSFERASE;

EID: 85014121562     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.291518.116     Document Type: Review
Times cited : (505)

References (217)
  • 1
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
    • Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13: 720–731.
    • (2012) Nat Rev Genet , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 2
    • 78651290340 scopus 로고    scopus 로고
    • Epigenetic modulation of host: New insights into immune evasion by viruses
    • Adhya D, Basu A. 2010. Epigenetic modulation of host: new insights into immune evasion by viruses. J Biosci 35: 647–663.
    • (2010) J Biosci , vol.35 , pp. 647-663
    • Adhya, D.1    Basu, A.2
  • 4
    • 85000916621 scopus 로고    scopus 로고
    • In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation
    • Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. 2016. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. Elife 5: e21475.
    • (2016) Elife , vol.5
    • Aguilera-Gomez, A.1    Van Oorschot, M.M.2    Veenendaal, T.3    Rabouille, C.4
  • 12
    • 0038329323 scopus 로고    scopus 로고
    • Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
    • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181–185.
    • (2003) Nature , vol.423 , pp. 181-185
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3    Medvedik, O.4    Sinclair, D.A.5
  • 13
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    • Araki T, Sasaki Y, Milbrandt J. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010–1013.
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1    Sasaki, Y.2    Milbrandt, J.3
  • 14
    • 11244280890 scopus 로고    scopus 로고
    • Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
    • Audebert M, Salles B, Calsou P. 2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117–55126.
    • (2004) J Biol Chem , vol.279 , pp. 55117-55126
    • Audebert, M.1    Salles, B.2    Calsou, P.3
  • 17
    • 84957668538 scopus 로고    scopus 로고
    • Analysis of chromatin ADP-ribosylation at the ge-nome-wide level and at specific loci by ADPr-ChAP
    • Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO. 2016. Analysis of chromatin ADP-ribosylation at the ge-nome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61: 474–485.
    • (2016) Mol Cell , vol.61 , pp. 474-485
    • Bartolomei, G.1    Leutert, M.2    Manzo, M.3    Baubec, T.4    Hottiger, M.O.5
  • 19
    • 84919400644 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3
    • Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. 2014b. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329: 18–25.
    • (2014) Exp Cell Res , vol.329 , pp. 18-25
    • Beck, C.1    Robert, I.2    Reina-San-martin, B.3    Schreiber, V.4    Dantzer, F.5
  • 20
  • 21
    • 27744501798 scopus 로고    scopus 로고
    • Subcellular com-partmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms
    • Berger F, Lau C, Dahlmann M, Ziegler M. 2005. Subcellular com-partmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280: 36334–36341.
    • (2005) J Biol Chem , vol.280 , pp. 36334-36341
    • Berger, F.1    Lau, C.2    Dahlmann, M.3    Ziegler, M.4
  • 22
    • 84857463264 scopus 로고    scopus 로고
    • Poly(ADP-Ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli
    • Boamah EK, Kotova E, Garabedian M, Jarnik M, Tulin AV. 2012. Poly(ADP-Ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli. PLoS Genet 8: e1002442.
    • (2012) Plos Genet , vol.8
    • Boamah, E.K.1    Kotova, E.2    Garabedian, M.3    Jarnik, M.4    Tulin, A.V.5
  • 24
    • 84962082445 scopus 로고    scopus 로고
    • PARP inhibitors: The race is on
    • Brown JS, Kaye SB, Yap TA. 2016. PARP inhibitors: the race is on. Br J Cancer 114: 713–715.
    • (2016) Br J Cancer , vol.114 , pp. 713-715
    • Brown, J.S.1    Kaye, S.B.2    Yap, T.A.3
  • 30
    • 84898015278 scopus 로고    scopus 로고
    • Engineering the substrate specificity of ADP-ribosyl-transferases for identifying direct protein targets
    • Carter-O’Connell I, Jin H, Morgan RK, David LL, Cohen MS. 2014. Engineering the substrate specificity of ADP-ribosyl-transferases for identifying direct protein targets. J Am Chem Soc 136: 5201–5204.
    • (2014) J am Chem Soc , vol.136 , pp. 5201-5204
    • Carter-O’connell, I.1    Jin, H.2    Morgan, R.K.3    David, L.L.4    Cohen, M.S.5
  • 31
  • 32
    • 84875939839 scopus 로고    scopus 로고
    • Mapping PARP-1 auto-ADP-ribosylation sites by liquid chro-matography-tandem mass spectrometry
    • Chapman JD, Gagne JP, Poirier GG, Goodlett DR. 2013. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chro-matography-tandem mass spectrometry. J Proteome Res 12: 1868–1880.
    • (2013) J Proteome Res , vol.12 , pp. 1868-1880
    • Chapman, J.D.1    Gagne, J.P.2    Poirier, G.G.3    Goodlett, D.R.4
  • 34
    • 80053158632 scopus 로고    scopus 로고
    • Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family
    • Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M. 2011. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci 108: 15972– 15977.
    • (2011) Proc Natl Acad Sci , vol.108
    • Cho, S.H.1    Ahn, A.K.2    Bhargava, P.3    Lee, C.H.4    Eischen, C.M.5    McGuinness, O.6    Boothby, M.7
  • 36
    • 78649349810 scopus 로고    scopus 로고
    • A chromatin localization screen reveals poly (ADP ribose)-regulated recruit- ment of the repressive polycomb and NuRD complexes to sites of DNA damage
    • Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE, Gygi SP, Colaiacovo MP, Elledge SJ. 2010. A chromatin localization screen reveals poly (ADP ribose)-regulated recruit- ment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci 107: 18475–18480.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 18475-18480
    • Chou, D.M.1    Adamson, B.2    Dephoure, N.E.3    Tan, X.4    Nottke, A.C.5    Hurov, K.E.6    Gygi, S.P.7    Colaiacovo, M.P.8    Elledge, S.J.9
  • 37
    • 84886717487 scopus 로고    scopus 로고
    • Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond
    • Curtin NJ, Szabo C. 2013. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 34: 1217–1256.
    • (2013) Mol Aspects Med , vol.34 , pp. 1217-1256
    • Curtin, N.J.1    Szabo, C.2
  • 38
    • 84905366697 scopus 로고    scopus 로고
    • Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl) ation sites from cells
    • Daniels CM, Ong SE, Leung AK. 2014. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl) ation sites from cells. J Proteome Res 13: 3510–3522.
    • (2014) J Proteome Res , vol.13 , pp. 3510-3522
    • Daniels, C.M.1    Ong, S.E.2    Leung, A.K.3
  • 39
    • 84937604540 scopus 로고    scopus 로고
    • The promise of proteomics for the study of ADP-ribosylation
    • Daniels CM, Ong SE, Leung AK. 2015a. The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58: 911–924.
    • (2015) Mol Cell , vol.58 , pp. 911-924
    • Daniels, C.M.1    Ong, S.E.2    Leung, A.K.3
  • 41
    • 84867647908 scopus 로고    scopus 로고
    • Rules of engagement: Molecular insights from host-virus arms races
    • Daugherty MD, Malik HS. 2012. Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46: 677–700.
    • (2012) Annu Rev Genet , vol.46 , pp. 677-700
    • Daugherty, M.D.1    Malik, H.S.2
  • 42
    • 84901594799 scopus 로고    scopus 로고
    • Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts
    • Daugherty MD, Young JM, Kerns JA, Malik HS. 2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10: e1004403.
    • (2014) Plos Genet , vol.10
    • Daugherty, M.D.1    Young, J.M.2    Kerns, J.A.3    Malik, H.S.4
  • 46
    • 84861231399 scopus 로고    scopus 로고
    • The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art
    • De Vos M, Schreiber V, Dantzer F. 2012. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84: 137–146.
    • (2012) Biochem Pharmacol , vol.84 , pp. 137-146
    • De Vos, M.1    Schreiber, V.2    Dantzer, F.3
  • 47
    • 0023905661 scopus 로고
    • The establishment of polarity by hippocampal neurons in culture
    • Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal neurons in culture. J Neurosci 8: 1454–1468.
    • (1988) J Neurosci , vol.8 , pp. 1454-1468
    • Dotti, C.G.1    Sullivan, C.A.2    Banker, G.A.3
  • 48
    • 53149147473 scopus 로고    scopus 로고
    • The potential of PARP inhibitors in genetic breast and ovarian cancers
    • Drew Y, Calvert H. 2008. The potential of PARP inhibitors in genetic breast and ovarian cancers. Ann N Y Acad Sci 1138: 136–145.
    • (2008) Ann N Y Acad Sci , vol.1138 , pp. 136-145
    • Drew, Y.1    Calvert, H.2
  • 49
    • 84961390441 scopus 로고    scopus 로고
    • Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer
    • Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, Jayson G, Sludden J, Murray J, Jamieson D, et al. 2016. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer 114: 723–730.
    • (2016) Br J Cancer , vol.114 , pp. 723-730
    • Drew, Y.1    Ledermann, J.2    Hall, G.3    Rea, D.4    Glasspool, R.5    Highley, M.6    Jayson, G.7    Sludden, J.8    Murray, J.9    Jamieson, D.10
  • 52
    • 0035808313 scopus 로고    scopus 로고
    • Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase
    • Emanuelli M, Carnevali F, Saccucci F, Pierella F, Amici A, Raffaelli N, Magni G. 2001. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J Biol Chem 276: 406–412.
    • (2001) J Biol Chem , vol.276 , pp. 406-412
    • Emanuelli, M.1    Carnevali, F.2    Saccucci, F.3    Pierella, F.4    Amici, A.5    Raffaelli, N.6    Magni, G.7
  • 55
    • 76749171311 scopus 로고    scopus 로고
    • Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation
    • Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohls-son R, Murrell A, Klenova E. 2010. Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol 30: 1199–1216.
    • (2010) Mol Cell Biol , vol.30 , pp. 1199-1216
    • Farrar, D.1    Rai, S.2    Chernukhin, I.3    Jagodic, M.4    Ito, Y.5    Yammine, S.6    Ohls-Son, R.7    Murrell, A.8    Klenova, E.9
  • 56
    • 84879415959 scopus 로고    scopus 로고
    • Macrodomain-containing proteins: Regulating new intracellular functions of mono(ADP-ribosyl)ation
    • Feijs KL, Forst AH, Verheugd P, Luscher B. 2013. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14: 443–451.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 443-451
    • Feijs, K.L.1    Forst, A.H.2    Verheugd, P.3    Luscher, B.4
  • 57
    • 84876528414 scopus 로고    scopus 로고
    • The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair
    • Fenton AL, Shirodkar P, Macrae CJ, Meng L, Koch CA. 2013. The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair. Nucleic Acids Res 41: 4080–4092.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4080-4092
    • Fenton, A.L.1    Shirodkar, P.2    Macrae, C.J.3    Meng, L.4    Koch, C.A.5
  • 59
    • 84948455989 scopus 로고    scopus 로고
    • No driver behind the wheel? Targeting transcription in cancer
    • Franco HL, Kraus WL. 2015. No driver behind the wheel? Targeting transcription in cancer. Cell 163: 28–30.
    • (2015) Cell , vol.163 , pp. 28-30
    • Franco, H.L.1    Kraus, W.L.2
  • 62
    • 0037031709 scopus 로고    scopus 로고
    • Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein
    • Gao G, Guo X, Goff SP. 2002. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297: 1703–1706.
    • (2002) Science , vol.297 , pp. 1703-1706
    • Gao, G.1    Guo, X.2    Goff, S.P.3
  • 63
    • 69249093784 scopus 로고    scopus 로고
    • PARP1 poly(ADP-ribosyl) ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell differentiation
    • Gao F, Kwon SW, Zhao Y, Jin Y. 2009. PARP1 poly(ADP-ribosyl) ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell differentiation. J Biol Chem 284: 22263–22273.
    • (2009) J Biol Chem , vol.284 , pp. 22263-22273
    • Gao, F.1    Kwon, S.W.2    Zhao, Y.3    Jin, Y.4
  • 64
    • 33747453473 scopus 로고    scopus 로고
    • Insulators: Exploiting transcriptional and epigenetic mechanisms
    • Gaszner M, Felsenfeld G. 2006. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7: 703–713.
    • (2006) Nat Rev Genet , vol.7 , pp. 703-713
    • Gaszner, M.1    Felsenfeld, G.2
  • 66
    • 84962696787 scopus 로고    scopus 로고
    • HPF1/ C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity
    • Gibbs-Seymour I, Fontana P, Rack JG, Ahel I. 2016. HPF1/ C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 62: 432–442.
    • (2016) Mol Cell , vol.62 , pp. 432-442
    • Gibbs-Seymour, I.1    Fontana, P.2    Rack, J.G.3    Ahel, I.4
  • 67
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson BA, Kraus WL. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13: 411–424.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 71
    • 84864381495 scopus 로고    scopus 로고
    • Herpes simplex virus 1 infection activates poly(ADP-ribose) poly- merase and triggers the degradation of poly(ADP-ribose) glycohydrolase
    • Grady SL, Hwang J, Vastag L, Rabinowitz JD, Shenk T. 2012. Herpes simplex virus 1 infection activates poly(ADP-ribose) poly- merase and triggers the degradation of poly(ADP-ribose) glycohydrolase. J Virol 86: 8259–8268.
    • (2012) J Virol , vol.86 , pp. 8259-8268
    • Grady, S.L.1    Hwang, J.2    Vastag, L.3    Rabinowitz, J.D.4    Shenk, T.5
  • 73
    • 84859051225 scopus 로고    scopus 로고
    • Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA
    • Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R. 2012. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45: 790–800.
    • (2012) Mol Cell , vol.45 , pp. 790-800
    • Guetg, C.1    Scheifele, F.2    Rosenthal, F.3    Hottiger, M.O.4    Santoro, R.5
  • 74
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5: 253–295.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 75
    • 84892616285 scopus 로고    scopus 로고
    • Evaluation and structural basis for the inhibition of tankyrases by PARP inhibitors
    • Haikarainen T, Narwal M, Joensuu P, Lehtio L. 2014. Evaluation and structural basis for the inhibition of tankyrases by PARP inhibitors. ACS Med Chem Lett 5: 18–22.
    • (2014) ACS Med Chem Lett , vol.5 , pp. 18-22
    • Haikarainen, T.1    Narwal, M.2    Joensuu, P.3    Lehtio, L.4
  • 76
    • 34447548569 scopus 로고    scopus 로고
    • Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents
    • Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG. 2007. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282: 16441–16453.
    • (2007) J Biol Chem , vol.282 , pp. 16441-16453
    • Haince, J.F.1    Kozlov, S.2    Dawson, V.L.3    Dawson, T.M.4    Hendzel, M.J.5    Lavin, M.F.6    Poirier, G.G.7
  • 78
    • 0036710459 scopus 로고    scopus 로고
    • The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-κB in inflammatory disorders
    • Hassa PO, Hottiger MO. 2002. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cell Mol Life Sci 59: 1534–1553.
    • (2002) Cell Mol Life Sci , vol.59 , pp. 1534-1553
    • Hassa, P.O.1    Hottiger, M.O.2
  • 79
    • 0242496900 scopus 로고    scopus 로고
    • Transcriptional coactivation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1
    • Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO. 2003. Transcriptional coactivation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J Biol Chem 278: 45145–45153.
    • (2003) J Biol Chem , vol.278 , pp. 45145-45153
    • Hassa, P.O.1    Buerki, C.2    Lombardi, C.3    Imhof, R.4    Hottiger, M.O.5
  • 80
    • 28844493947 scopus 로고    scopus 로고
    • Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription
    • Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, Gersbach M, Imhof R, Hottiger MO. 2005. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription. J Biol Chem 280: 40450–40464.
    • (2005) J Biol Chem , vol.280 , pp. 40450-40464
    • Hassa, P.O.1    Haenni, S.S.2    Buerki, C.3    Meier, N.I.4    Lane, W.S.5    Owen, H.6    Gersbach, M.7    Imhof, R.8    Hottiger, M.O.9
  • 81
    • 40649124718 scopus 로고    scopus 로고
    • Protein ar-ginine methyltransferase 1 coactivates NF-κB-dependent gene expression synergistically with CARM1 and PARP1
    • Hassa PO, Covic M, Bedford MT, Hottiger MO. 2008. Protein ar-ginine methyltransferase 1 coactivates NF-κB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol 377: 668–678.
    • (2008) J Mol Biol , vol.377 , pp. 668-678
    • Hassa, P.O.1    Covic, M.2    Bedford, M.T.3    Hottiger, M.O.4
  • 82
    • 22144494168 scopus 로고    scopus 로고
    • Getting a grip on O-acetyl-ADP-ribose
    • Hoff KG, Wolberger C. 2005. Getting a grip on O-acetyl-ADP-ribose. Nat Struct Mol Biol 12: 560–561.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 560-561
    • Hoff, K.G.1    Wolberger, C.2
  • 83
    • 84937597371 scopus 로고    scopus 로고
    • SnapShot: ADP-ribosylation signaling
    • Hottiger MO. 2015. SnapShot: ADP-ribosylation signaling. Mol Cell 58: 1134–1134 e1131.
    • (2015) Mol Cell , vol.58 , pp. 1134
    • Hottiger, M.O.1
  • 92
    • 85008226645 scopus 로고    scopus 로고
    • The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA
    • Jankevicius G, Ariza A, Ahel M, Ahel I. 2016. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64: 1109–1116.
    • (2016) Mol Cell , vol.64 , pp. 1109-1116
    • Jankevicius, G.1    Ariza, A.2    Ahel, M.3    Ahel, I.4
  • 93
    • 0024521948 scopus 로고
    • Differentiation of 3T3-L1 pre-adipo-cytes induced by inhibitors of poly(ADP-ribose) polymerase and by related noninhibitory acids
    • Janssen OE, Hilz H. 1989. Differentiation of 3T3-L1 pre-adipo-cytes induced by inhibitors of poly(ADP-ribose) polymerase and by related noninhibitory acids. Eur J Biochem 180: 595–602.
    • (1989) Eur J Biochem , vol.180 , pp. 595-602
    • Janssen, O.E.1    Hilz, H.2
  • 95
    • 84886246082 scopus 로고    scopus 로고
    • Proteome-wide identification of poly (ADP-ribosyl)ation targets in different genotoxic stress responses
    • Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML. 2013. Proteome-wide identification of poly (ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52: 272–285.
    • (2013) Mol Cell , vol.52 , pp. 272-285
    • Jungmichel, S.1    Rosenthal, F.2    Altmeyer, M.3    Lukas, J.4    Hottiger, M.O.5    Nielsen, M.L.6
  • 96
    • 84869094697 scopus 로고    scopus 로고
    • PARP16 is a tail-anchored endoplasmic re-ticulum protein required for the PERK- and IRE1α-mediated unfolded protein response
    • Jwa M, Chang P. 2012. PARP16 is a tail-anchored endoplasmic re-ticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat Cell Biol 14: 1223–1230.
    • (2012) Nat Cell Biol , vol.14 , pp. 1223-1230
    • Jwa, M.1    Chang, P.2
  • 100
    • 84886727115 scopus 로고    scopus 로고
    • Structural biology of the writers, readers, and erasers in mono- and poly (ADP-ribose) mediated signaling
    • Karlberg T, Langelier MF, Pascal JM, Schuler H. 2013. Structural biology of the writers, readers, and erasers in mono- and poly (ADP-ribose) mediated signaling. Mol Aspects Med 34: 1088–1108.
    • (2013) Mol Aspects Med , vol.34 , pp. 1088-1108
    • Karlberg, T.1    Langelier, M.F.2    Pascal, J.M.3    Schuler, H.4
  • 103
    • 0021774471 scopus 로고
    • Monoclonal antibodies to poly(Adenosine diphosphate ribose) recognize different structures
    • Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugi-mura T. 1984. Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23: 3771–3777.
    • (1984) Biochemistry , vol.23 , pp. 3771-3777
    • Kawamitsu, H.1    Hoshino, H.2    Okada, H.3    Miwa, M.4    Momoi, H.5    Sugi-Mura, T.6
  • 104
    • 0023890320 scopus 로고
    • + glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C
    • + glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta 965: 76–81.
    • (1988) Biochim Biophys Acta , vol.965 , pp. 76-81
    • Kim, U.H.1    Rockwood, S.F.2    Kim, H.R.3    Daynes, R.A.4
  • 105
    • 0027180293 scopus 로고
    • Purification and characterization of NAD glycohydrolase from rabbit erythrocytes
    • Kim UH, Kim MK, Kim JS, Han MK, Park BH, Kim HR. 1993. Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys 305: 147–152.
    • (1993) Arch Biochem Biophys , vol.305 , pp. 147-152
    • Kim, U.H.1    Kim, M.K.2    Kim, J.S.3    Han, M.K.4    Park, B.H.5    Kim, H.R.6
  • 106
    • 10944227347 scopus 로고    scopus 로고
    • +-de-pendent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1
    • +-de-pendent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119: 803–814.
    • (2004) Cell , vol.119 , pp. 803-814
    • Kim, M.Y.1    Mauro, S.2    Gevry, N.3    Lis, J.T.4    Kraus, W.L.5
  • 111
    • 33744475759 scopus 로고    scopus 로고
    • Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
    • Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P. 2006. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5: 873–877.
    • (2006) Cell Cycle , vol.5 , pp. 873-877
    • Kolthur-Seetharam, U.1    Dantzer, F.2    McBurney, M.W.3    De Murcia, G.4    Sassone-Corsi, P.5
  • 112
    • 0038682011 scopus 로고    scopus 로고
    • PARP goes transcription
    • Kraus WL, Lis JT. 2003. PARP goes transcription. Cell 113: 677–683.
    • (2003) Cell , vol.113 , pp. 677-683
    • Kraus, W.L.1    Lis, J.T.2
  • 114
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets
    • Krishnakumar R, Kraus WL. 2010a. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39: 8–24.
    • (2010) Mol Cell , vol.39 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.L.2
  • 115
    • 77956526559 scopus 로고    scopus 로고
    • PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway
    • Krishnakumar R, Kraus WL. 2010b. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 39: 736–749.
    • (2010) Mol Cell , vol.39 , pp. 736-749
    • Krishnakumar, R.1    Kraus, W.L.2
  • 116
  • 117
    • 84962429901 scopus 로고    scopus 로고
    • Virus–host interactions and the ARTD/PARP family of enzymes
    • Kuny CV, Sullivan CS. 2016. Virus–host interactions and the ARTD/PARP family of enzymes. PLoS Pathog 12: e1005453.
    • (2016) Plos Pathog , vol.12
    • Kuny, C.V.1    Sullivan, C.S.2
  • 119
    • 77953305213 scopus 로고    scopus 로고
    • The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction
    • Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM. 2010. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 285: 18877–18887.
    • (2010) J Biol Chem , vol.285 , pp. 18877-18887
    • Langelier, M.F.1    Ruhl, D.D.2    Planck, J.L.3    Kraus, W.L.4    Pascal, J.M.5
  • 120
    • 79953176276 scopus 로고    scopus 로고
    • Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: Structural and functional insights into DNA-dependent PARP-1 activity
    • Langelier MF, Planck JL, Roy S, Pascal JM. 2011. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem 286: 10690–10701.
    • (2011) J Biol Chem , vol.286 , pp. 10690-10701
    • Langelier, M.F.1    Planck, J.L.2    Roy, S.3    Pascal, J.M.4
  • 121
    • 84860806404 scopus 로고    scopus 로고
    • Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1
    • Langelier MF, Planck JL, Roy S, Pascal JM. 2012. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336: 728–732.
    • (2012) Science , vol.336 , pp. 728-732
    • Langelier, M.F.1    Planck, J.L.2    Roy, S.3    Pascal, J.M.4
  • 122
    • 84903977632 scopus 로고    scopus 로고
    • PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1
    • Langelier MF, Riccio AA, Pascal JM. 2014. PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42: 7762–7775.
    • (2014) Nucleic Acids Res , vol.42 , pp. 7762-7775
    • Langelier, M.F.1    Riccio, A.A.2    Pascal, J.M.3
  • 125
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. 2011. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42: 489–499.
    • (2011) Mol Cell , vol.42 , pp. 489-499
    • Leung, A.K.1    Vyas, S.2    Rood, J.E.3    Bhutkar, A.4    Sharp, P.A.5    Chang, P.6
  • 126
    • 77952716489 scopus 로고    scopus 로고
    • Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response
    • Li GY, McCulloch RD, Fenton AL, Cheung M, Meng L, Ikura M, Koch CA. 2010. Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response. Proc Natl Acad Sci 107: 9129–9134.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 9129-9134
    • Li, G.Y.1    McCulloch, R.D.2    Fenton, A.L.3    Cheung, M.4    Meng, L.5    Ikura, M.6    Koch, C.A.7
  • 127
    • 84882724418 scopus 로고    scopus 로고
    • The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response
    • Li M, Lu LY, Yang CY, Wang S, Yu X. 2013. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27: 1752–1768.
    • (2013) Genes Dev 27 , pp. 1752-1768
    • Li, M.1    Ly, L.2    Yang, C.Y.3    Wang, S.4    Yu, X.5
  • 129
    • 34547607850 scopus 로고    scopus 로고
    • Nicotinamide adenine dinucleotide: Beyond a redox coenzyme
    • Lin H. 2007. Nicotinamide adenine dinucleotide: beyond a redox coenzyme. Org Biomol Chem 5: 2541–2554.
    • (2007) Org Biomol Chem , vol.5 , pp. 2541-2554
    • Lin, H.1
  • 132
    • 84857891632 scopus 로고    scopus 로고
    • On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1
    • Luo X, Kraus WL. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26: 417–432.
    • (2012) Genes Dev 26 , pp. 417-432
    • Luo, X.1    Kraus, W.L.2
  • 133
    • 85010445057 scopus 로고    scopus 로고
    • PARP-1 controls the adipogenic transcriptional program by PARylating C/EBPβ and modulating its transcriptional activity
    • Luo X, Ryu KW, Kim D, Nandu T, Medina CJ, Gupte R, Gibson BA, Soccio RE, Yu Y, Gupta RK, et al. 2017. PARP-1 controls the adipogenic transcriptional program by PARylating C/EBPβ and modulating its transcriptional activity. Mol Cell 65: 260–271.
    • (2017) Mol Cell , vol.65 , pp. 260-271
    • Luo, X.1    Ryu, K.W.2    Kim, D.3    Nandu, T.4    Medina, C.J.5    Gupte, R.6    Gibson, B.A.7    Soccio, R.E.8    Yu, Y.9    Gupta, R.K.10
  • 134
    • 67449102614 scopus 로고    scopus 로고
    • The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket
    • Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N, Neuvo-nen M, Ahola T, Forrester N, Gould EA, Lafitte D, et al. 2009. The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol 83: 6534–6545.
    • (2009) J Virol , vol.83 , pp. 6534-6545
    • Malet, H.1    Coutard, B.2    Jamal, S.3    Dutartre, H.4    Papageorgiou, N.5    Neuvo-Nen, M.6    Ahola, T.7    Forrester, N.8    Gould, E.A.9    Lafitte, D.10
  • 137
    • 84864003593 scopus 로고    scopus 로고
    • Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes
    • Martinez-Zamudio R, Ha HC. 2012. Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 32: 2490–2502.
    • (2012) Mol Cell Biol , vol.32 , pp. 2490-2502
    • Martinez-Zamudio, R.1    Ha, H.C.2
  • 138
    • 0031844311 scopus 로고    scopus 로고
    • XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage
    • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. 1998. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18: 3563–3571.
    • (1998) Mol Cell Biol , vol.18 , pp. 3563-3571
    • Masson, M.1    Niedergang, C.2    Schreiber, V.3    Muller, S.4    Menissier-De Murcia, J.5    De Murcia, G.6
  • 141
    • 0022483295 scopus 로고
    • Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resistant hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides
    • Meyer T, Hilz H. 1986. Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resistant hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur J Biochem 155: 157–165.
    • (1986) Eur J Biochem , vol.155 , pp. 157-165
    • Meyer, T.1    Hilz, H.2
  • 142
    • 62849083222 scopus 로고    scopus 로고
    • The emerging role of nuclear architecture in DNA repair and genome maintenance
    • Misteli T, Soutoglou E. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10: 243–254.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 243-254
    • Misteli, T.1    Soutoglou, E.2
  • 143
    • 84930817295 scopus 로고    scopus 로고
    • The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition
    • Moldovan JB, Moran JV. 2015. The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet 11: e1005121.
    • (2015) Plos Genet , vol.11
    • Moldovan, J.B.1    Moran, J.V.2
  • 144
    • 78449259404 scopus 로고    scopus 로고
    • Method for the synthesis of mono-ADP-ribose conjugated peptides
    • Moyle PM, Muir TW. 2010. Method for the synthesis of mono-ADP-ribose conjugated peptides. J Am Chem Soc 132: 15878–15880.
    • (2010) J am Chem Soc , vol.132 , pp. 15878-15880
    • Moyle, P.M.1    Muir, T.W.2
  • 145
    • 79960954611 scopus 로고    scopus 로고
    • Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression
    • Murawska M, Hassler M, Renkawitz-Pohl R, Ladurner A, Brehm A. 2011. Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. PLoS Genet 7: e1002206.
    • (2011) Plos Genet , vol.7
    • Murawska, M.1    Hassler, M.2    Renkawitz-Pohl, R.3    Ladurner, A.4    Brehm, A.5
  • 146
  • 147
    • 84860844237 scopus 로고    scopus 로고
    • ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose)
    • Niere M, Mashimo M, Agledal L, Dolle C, Kasamatsu A, Kato J, Moss J, Ziegler M. 2012. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem 287: 16088–16102.
    • (2012) J Biol Chem , vol.287 , pp. 16088-16102
    • Niere, M.1    Mashimo, M.2    Agledal, L.3    Dolle, C.4    Kasamatsu, A.5    Kato, J.6    Moss, J.7    Ziegler, M.8
  • 148
    • 34250359929 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome
    • Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. 2007. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282: 12851–12859.
    • (2007) J Biol Chem , vol.282 , pp. 12851-12859
    • Nusinow, D.A.1    Hernandez-Munoz, I.2    Fazzio, T.G.3    Shah, G.M.4    Kraus, W.L.5    Panning, B.6
  • 149
    • 0034789109 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation of transcription factor Yin Yang 1 under conditions of DNA damage
    • Oei SL, Shi Y. 2001. Poly(ADP-ribosyl)ation of transcription factor Yin Yang 1 under conditions of DNA damage. Biochem Biophys Res Commun 285: 27–31.
    • (2001) Biochem Biophys Res Commun , vol.285 , pp. 27-31
    • Oei, S.L.1    Shi, Y.2
  • 150
    • 33644849513 scopus 로고    scopus 로고
    • Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase
    • Oka S, Kato J, Moss J. 2006. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281: 705–713.
    • (2006) J Biol Chem , vol.281 , pp. 705-713
    • Oka, S.1    Kato, J.2    Moss, J.3
  • 151
    • 0038583869 scopus 로고    scopus 로고
    • Spatial and temporal cellular responses to single-strand breaks in human cells
    • Okano S, Lan L, Caldecott KW, Mori T, Yasui A. 2003. Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 23: 3974–3981.
    • (2003) Mol Cell Biol , vol.23 , pp. 3974-3981
    • Okano, S.1    Lan, L.2    Caldecott, K.W.3    Mori, T.4    Yasui, A.5
  • 154
    • 84884840336 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation regulates insulator function and intrachromoso-mal interactions in Drosophila
    • Ong CT, Van Bortle K, Ramos E, Corces VG. 2013. Poly(ADP-ribosyl)ation regulates insulator function and intrachromoso-mal interactions in Drosophila. Cell 155: 148–159.
    • (2013) Cell , vol.155 , pp. 148-159
    • Ong, C.T.1    Van Bortle, K.2    Ramos, E.3    Corces, V.G.4
  • 159
    • 0019502871 scopus 로고
    • On the mechanism of preadipocyte differentiation. Masking of poly(ADP-ri-bose) synthetase activity during differentiation of 3T3-L1 preadipocytes
    • Pekala PH, Lane MD, Watkins PA, Moss J. 1981. On the mechanism of preadipocyte differentiation. Masking of poly(ADP-ri-bose) synthetase activity during differentiation of 3T3-L1 preadipocytes. J Biol Chem 256: 4871–4876.
    • (1981) J Biol Chem , vol.256 , pp. 4871-4876
    • Pekala, P.H.1    Lane, M.D.2    Watkins, P.A.3    Moss, J.4
  • 160
    • 84964894737 scopus 로고    scopus 로고
    • Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress
    • Pellegrino S, Altmeyer M. 2016. Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress. Front Genet 7: 63.
    • (2016) Front Genet , vol.7 , pp. 63
    • Pellegrino, S.1    Altmeyer, M.2
  • 161
    • 46149108345 scopus 로고    scopus 로고
    • Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci
    • Petesch SJ, Lis JT. 2008. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134: 74–84.
    • (2008) Cell , vol.134 , pp. 74-84
    • Petesch, S.J.1    Lis, J.T.2
  • 162
    • 0034731455 scopus 로고    scopus 로고
    • Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins
    • Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. 2000. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275: 40974–40980.
    • (2000) J Biol Chem , vol.275 , pp. 40974-40980
    • Pleschke, J.M.1    Kleczkowska, H.E.2    Strohm, M.3    Althaus, F.R.4
  • 164
    • 84974663169 scopus 로고    scopus 로고
    • Macrodomains: Structure, function, evolution, and catalytic activities
    • Rack JG, Perina D, Ahel I. 2016. Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85: 431–454.
    • (2016) Annu Rev Biochem , vol.85 , pp. 431-454
    • Rack, J.G.1    Perina, D.2    Ahel, I.3
  • 167
    • 10944270187 scopus 로고    scopus 로고
    • The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransfer-ase regulates Sir2 activity in mammalian cells
    • Revollo JR, Grimm AA, Imai S. 2004. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransfer-ase regulates Sir2 activity in mammalian cells. J Biol Chem 279: 50754–50763.
    • (2004) J Biol Chem , vol.279 , pp. 50754-50763
    • Revollo, J.R.1    Grimm, A.A.2    Imai, S.3
  • 168
    • 84960493553 scopus 로고    scopus 로고
    • PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage
    • Riccio AA, Cingolani G, Pascal JM. 2016. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res 44: 1691–1702.
    • (2016) Nucleic Acids Res , vol.44 , pp. 1691-1702
    • Riccio, A.A.1    Cingolani, G.2    Pascal, J.M.3
  • 169
  • 171
    • 84941081849 scopus 로고    scopus 로고
    • Optimization of LTQ-Orbitrap mass spectrometer parameters for the identification of ADP-ribosylation sites
    • Rosenthal F, Nanni P, Barkow-Oesterreicher S, Hottiger MO. 2015. Optimization of LTQ-Orbitrap mass spectrometer parameters for the identification of ADP-ribosylation sites. J Proteome Res 14: 4072–4079.
    • (2015) J Proteome Res , vol.14 , pp. 4072-4079
    • Rosenthal, F.1    Nanni, P.2    Barkow-Oesterreicher, S.3    Hottiger, M.O.4
  • 175
    • 84925815358 scopus 로고    scopus 로고
    • New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases
    • Ryu KW, Kim DS, Kraus WL. 2015. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115: 2453–2481.
    • (2015) Chem Rev , vol.115 , pp. 2453-2481
    • Ryu, K.W.1    Kim, D.S.2    Kraus, W.L.3
  • 177
    • 84883867139 scopus 로고    scopus 로고
    • What pathogens have taught us about posttranslational modifications
    • Salomon D, Orth K. 2013. What pathogens have taught us about posttranslational modifications. Cell Host Microbe 14: 269–279.
    • (2013) Cell Host Microbe , vol.14 , pp. 269-279
    • Salomon, D.1    Orth, K.2
  • 182
    • 0036532116 scopus 로고    scopus 로고
    • The emerging power of chemical genetics
    • Specht KM, Shokat KM. 2002. The emerging power of chemical genetics. Curr Opin Cell Biol 14: 155–159.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 155-159
    • Specht, K.M.1    Shokat, K.M.2
  • 185
    • 85014060602 scopus 로고    scopus 로고
    • Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage
    • Steffen JD, McCauley MM, Pascal JM. 2016. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Nucleic Acids Res 44: 9771–9783.
    • (2016) Nucleic Acids Res , vol.44 , pp. 9771-9783
    • Steffen, J.D.1    McCauley, M.M.2    Pascal, J.M.3
  • 186
    • 84964893893 scopus 로고    scopus 로고
    • Readers of poly(ADP-ribose): Designed to be fit for purpose
    • Teloni F, Altmeyer M. 2016. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44: 993–1006.
    • (2016) Nucleic Acids Res , vol.44 , pp. 993-1006
    • Teloni, F.1    Altmeyer, M.2
  • 190
    • 84923279851 scopus 로고    scopus 로고
    • PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript
    • Todorova T, Bock FJ, Chang P. 2014. PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun 5: 5362.
    • (2014) Nat Commun , vol.5 , pp. 5362
    • Todorova, T.1    Bock, F.J.2    Chang, P.3
  • 191
    • 77953289374 scopus 로고    scopus 로고
    • Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
    • Tong L, Denu JM. 2010. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim Biophys Acta 1804: 1617–1625.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1617-1625
    • Tong, L.1    Denu, J.M.2
  • 192
    • 0037462597 scopus 로고    scopus 로고
    • Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci
    • Tulin A, Spradling A. 2003. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299: 560–562.
    • (2003) Science , vol.299 , pp. 560-562
    • Tulin, A.1    Spradling, A.2
  • 193
    • 33644777616 scopus 로고    scopus 로고
    • Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing
    • Tulin A, Naumova NM, Menon AK, Spradling AC. 2006. Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 172: 363–371.
    • (2006) Genetics , vol.172 , pp. 363-371
    • Tulin, A.1    Naumova, N.M.2    Menon, A.K.3    Spradling, A.C.4
  • 197
    • 84882437564 scopus 로고    scopus 로고
    • A systematic analysis of the PARP protein family identifies new functions critical for cell physiology
    • Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. 2013. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4: 2240.
    • (2013) Nat Commun , vol.4 , pp. 2240
    • Vyas, S.1    Chesarone-Cataldo, M.2    Todorova, T.3    Huang, Y.H.4    Chang, P.5
  • 200
    • 84863010981 scopus 로고    scopus 로고
    • Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination
    • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W. 2012. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26: 235–240.
    • (2012) Genes Dev , vol.26 , pp. 235-240
    • Wang, Z.1    Michaud, G.A.2    Cheng, Z.3    Zhang, Y.4    Hinds, T.R.5    Fan, E.6    Cong, F.7    Xu, W.8
  • 203
    • 84907211041 scopus 로고    scopus 로고
    • PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation
    • Welsby I, Hutin D, Gueydan C, Kruys V, Rongvaux A, Leo O. 2014. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J Biol Chem 289: 26642–26657.
    • (2014) J Biol Chem , vol.289 , pp. 26642-26657
    • Welsby, I.1    Hutin, D.2    Gueydan, C.3    Kruys, V.4    Rongvaux, A.5    Leo, O.6
  • 204
    • 85009817261 scopus 로고    scopus 로고
    • Chemical proteomics reveals ADPribosylation of small GTPases during oxidative stress
    • Westcott NP, Fernandez JP, Molina H, Hang HC. 2017. Chemical proteomics reveals ADPribosylation of small GTPases during oxidative stress. Nat Chem Biol doi: 10.1038/nchembio.2280.
    • (2017) Nat Chem Biol
    • Westcott, N.P.1    Fernandez, J.P.2    Molina, H.3    Hang, H.C.4
  • 206
    • 0030695332 scopus 로고    scopus 로고
    • Chromatin remodeling and the control of gene expression
    • Wu C. 1997. Chromatin remodeling and the control of gene expression. J Biol Chem 272: 28171–28174.
    • (1997) J Biol Chem , vol.272 , pp. 28171-28174
    • Wu, C.1
  • 207
    • 37549068090 scopus 로고    scopus 로고
    • +/NADPH in cellular functions and cell death: Regulation and biological consequences
    • +/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10: 179–206.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 179-206
    • Ying, W.1
  • 210
    • 0038644836 scopus 로고    scopus 로고
    • Structural characterization of a human cy-tosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis
    • Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H. 2003. Structural characterization of a human cy-tosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem 278: 13503–13511.
    • (2003) J Biol Chem , vol.278 , pp. 13503-13511
    • Zhang, X.1    Kurnasov, O.V.2    Karthikeyan, S.3    Grishin, N.V.4    Osterman, A.L.5    Zhang, H.6
  • 214
    • 84884906084 scopus 로고    scopus 로고
    • Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome
    • Zhang Y, Wang J, Ding M, Yu Y. 2013. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10: 981–984.
    • (2013) Nat Methods , vol.10 , pp. 981-984
    • Zhang, Y.1    Wang, J.2    Ding, M.3    Yu, Y.4
  • 215
    • 84947866665 scopus 로고    scopus 로고
    • PARP9DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection
    • Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z, Tidwell RM, Atkinson JJ, et al. 2015. PARP9DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol 16: 1215–1227.
    • (2015) Nat Immunol , vol.16 , pp. 1215-1227
    • Zhang, Y.1    Mao, D.2    Roswit, W.T.3    Jin, X.4    Patel, A.C.5    Patel, D.A.6    Agapov, E.7    Wang, Z.8    Tidwell, R.M.9    Atkinson, J.J.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.