메뉴 건너뛰기




Volumn 5, Issue NOVEMBER2016, 2016, Pages

In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation

Author keywords

[No Author keywords available]

Indexed keywords

ARSENIC ACID; DOUBLE STRANDED RNA; GREEN FLUORESCENT PROTEIN; MEMBRANE PROTEIN; MONOCLONAL ANTIBODY; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 16; POLYCLONAL ANTIBODY; SEC16 PROTEIN; UNCLASSIFIED DRUG; ADENOSINE DIPHOSPHATE RIBOSE; AMINO ACID; DROSOPHILA PROTEIN; FLUORESCENT DYE; PARP16 PROTEIN, DROSOPHILA;

EID: 85000916621     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.21475     Document Type: Article
Times cited : (47)

References (44)
  • 3
    • 84981694383 scopus 로고    scopus 로고
    • Intracellular Mono-ADP-Ribosylation in signaling and disease
    • Bütepage M, Eckei L, Verheugd P, Lüscher B. 2015. Intracellular Mono-ADP-Ribosylation in signaling and disease. Cells 4:569–595. doi: 10.3390/cells4040569
    • (2015) Cells , vol.4 , pp. 569-595
    • Bütepage, M.1    Eckei, L.2    Verheugd, P.3    Lüscher, B.4
  • 4
    • 84953223672 scopus 로고    scopus 로고
    • Identifying family-member-specific targets of Mono-ARTDs by using a chemical genetics approach
    • Carter-O’Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I, Cohen MS. 2016. Identifying family-member-specific targets of Mono-ARTDs by using a chemical genetics approach. Cell Reports 14:621–631. doi: 10.1016/j.celrep.2015.12.045 PMID: 26774478
    • (2016) Cell Reports , vol.14 , pp. 621-631
    • Carter-O’connell, I.1    Jin, H.2    Morgan, R.K.3    Zaja, R.4    David, L.L.5    Ahel, I.6    Cohen, M.S.7
  • 5
    • 0033389550 scopus 로고    scopus 로고
    • Implication of poly (ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism: Decreases in mouse brain NAD+ and ATP caused by MPTP are prevented by the PARP inhibitor benzamide
    • Cosi C, Marien M. 1999. Implication of poly (ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism: Decreases in mouse brain NAD+ and ATP caused by MPTP are prevented by the PARP inhibitor benzamide. Annals of the New York Academy of Sciences 890:227–239. doi: 10.1111/j.1749-6632.1999.tb07998.x PMID: 10668429
    • (1999) Annals of the New York Academy of Sciences , vol.890 , pp. 227-239
    • Cosi, C.1    Marien, M.2
  • 6
    • 63149116496 scopus 로고    scopus 로고
    • Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome
    • Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M. 2009. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. PNAS 106:4243–4248. doi: 10.1073/pnas.0900066106 PMID: 19246377
    • (2009) PNAS , vol.106 , pp. 4243-4248
    • Dani, N.1    Stilla, A.2    Marchegiani, A.3    Tamburro, A.4    Till, S.5    Ladurner, A.G.6    Corda, D.7    Di Girolamo, M.8
  • 7
    • 84862233980 scopus 로고    scopus 로고
    • PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1
    • Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. 2012. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS One 7:e37352. doi: 10.1371/journal.pone.0037352 PMID: 22701565
    • (2012) Plos One , vol.7
    • Di Paola, S.1    Micaroni, M.2    Di Tullio, G.3    Buccione, R.4    Di Girolamo, M.5
  • 9
    • 84868227016 scopus 로고    scopus 로고
    • Induction of cancerous stem cells during embryonic stem cell differentiation
    • Fujimori H, Shikanai M, Teraoka H, Masutani M, Yoshioka K. 2012. Induction of cancerous stem cells during embryonic stem cell differentiation. Journal of Biological Chemistry 287:36777–36791. doi: 10.1074/jbc.M112.372557 PMID: 22961983
    • (2012) Journal of Biological Chemistry , vol.287 , pp. 36777-36791
    • Fujimori, H.1    Shikanai, M.2    Teraoka, H.3    Masutani, M.4    Yoshioka, K.5
  • 12
    • 84962696787 scopus 로고    scopus 로고
    • Hpf1/c4orf27 is a PARP-1-Interacting protein that regulates PARP-1 ADP-Ribosylation activity
    • Gibbs-Seymour I, Fontana P, Rack JG, Ahel I,. 2016. Hpf1/c4orf27 is a PARP-1-Interacting protein that regulates PARP-1 ADP-Ribosylation activity. Molecular Cell. 62:432–442. doi: 10.1016/j.molcel.2016.03.008 PMID: 27067600
    • (2016) Molecular Cell , vol.62 , pp. 432-442
    • Gibbs-Seymour, I.1    Fontana, P.2    Rack, J.G.3    Ahel, I.4
  • 13
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson BA, Kraus WL. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Reviews Molecular Cell Biology 13:411–424. doi: 10.1038/nrm3376 PMID: 22713970
    • (2012) Nature Reviews Molecular Cell Biology , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 14
    • 0026037624 scopus 로고
    • A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins
    • Hancock JF, Cadwallader K, Paterson H, Marshall CJ. 1991. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. The EMBO Journal 10:4033–4039. PMID: 1756714
    • (1991) The EMBO Journal , vol.10 , pp. 4033-4039
    • Hancock, J.F.1    Cadwallader, K.2    Paterson, H.3    Marshall, C.J.4
  • 18
    • 57349165449 scopus 로고    scopus 로고
    • Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif
    • Ivan V, de Voer G, Xanthakis D, Spoorendonk KM, Kondylis V, Rabouille C. 2008. Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif. Molecular Biology of the Cell 19:4352–4365. doi: 10.1091/mbc.E08-03-0246 PMID: 18614796
    • (2008) Molecular Biology of the Cell , vol.19 , pp. 4352-4365
    • Ivan, V.1    De Voer, G.2    Xanthakis, D.3    Spoorendonk, K.M.4    Kondylis, V.5    Rabouille, C.6
  • 21
    • 84869094697 scopus 로고    scopus 로고
    • PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1a-mediated unfolded protein response
    • Jwa M, Chang P. 2012. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1a-mediated unfolded protein response. Nature Cell Biology 14:1223–1230. doi: 10.1038/ncb2593 PMID: 23103912
    • (2012) Nature Cell Biology , vol.14 , pp. 1223-1230
    • Jwa, M.1    Chang, P.2
  • 23
    • 0042672956 scopus 로고    scopus 로고
    • A novel role for dp115 in the organization of tER sites in Drosophila
    • Kondylis V, Rabouille C. 2003. A novel role for dp115 in the organization of tER sites in Drosophila. Journal of Cell Biology 162:185–198. doi: 10.1083/jcb.200301136 PMID: 12876273
    • (2003) Journal of Cell Biology , vol.162 , pp. 185-198
    • Kondylis, V.1    Rabouille, C.2
  • 24
    • 34249316147 scopus 로고    scopus 로고
    • The golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE
    • Kondylis V, van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. 2007. The golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Developmental Cell 12:901–915. doi: 10.1016/j.devcel.2007.03.008 PMID: 17543863
    • (2007) Developmental Cell , vol.12 , pp. 901-915
    • Kondylis, V.1    Van Nispen Tot Herpers, H.E.2    Friggi-Grelin Rabouille, B.F.C.3
  • 25
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets
    • Krishnakumar R, Kraus WL. 2010. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Molecular Cell 39:8–24. doi: 10.1016/j.molcel.2010.06.017 PMID: 20603072
    • (2010) Molecular Cell , vol.39 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.L.2
  • 27
    • 84902322535 scopus 로고    scopus 로고
    • Poly(ADP-ribose): An organizer of cellular architecture
    • Leung AK. 2014. Poly(ADP-ribose): an organizer of cellular architecture. Journal of Cell Biology 205:613–619. doi: 10.1083/jcb.201402114 PMID: 24914234
    • (2014) Journal of Cell Biology , vol.205 , pp. 613-619
    • Leung, A.K.1
  • 28
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. 2011. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Molecular Cell 42:489–499. doi: 10.1016/j.molcel.2011.04.015 PMID: 21596313
    • (2011) Molecular Cell , vol.42 , pp. 489-499
    • Leung, A.K.1    Vyas, S.2    Rood, J.E.3    Bhutkar, A.4    Sharp, P.A.5    Chang, P.6
  • 29
    • 84883463229 scopus 로고    scopus 로고
    • COPII - A flexible vesicle formation system
    • Miller EA, Schekman R. 2013. COPII - a flexible vesicle formation system. Current Opinion in Cell Biology 25: 420–427. doi: 10.1016/j.ceb.2013.04.005 PMID: 23702145
    • (2013) Current Opinion in Cell Biology , vol.25 , pp. 420-427
    • Miller, E.A.1    Schekman, R.2
  • 32
    • 84878560423 scopus 로고    scopus 로고
    • Formation and dissociation of proteasome storage granules are regulated by cytosolic pH
    • Peters LZ, Hazan R, Breker M, Schuldiner M, Ben-Aroya S. 2013. Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. Journal of Cell Biology 201:663–671. doi: 10.1083/jcb.201211146 PMID: 23690178
    • (2013) Journal of Cell Biology , vol.201 , pp. 663-671
    • Peters, L.Z.1    Hazan, R.2    Breker, M.3    Schuldiner, M.4    Ben-Aroya, S.5
  • 34
    • 84974663169 scopus 로고    scopus 로고
    • Macrodomains: Structure, function, evolution, and catalytic activities
    • Rack JG, Perina D, Ahel I. 2016. Macrodomains: structure, function, evolution, and catalytic activities. Annual Review of Biochemistry 85:431–454. doi: 10.1146/annurev-biochem-060815-014935 PMID: 26844395
    • (2016) Annual Review of Biochemistry , vol.85 , pp. 431-454
    • Rack, J.G.1    Perina, D.2    Ahel, I.3
  • 36
    • 84921755554 scopus 로고    scopus 로고
    • SEC16 in COPII coat dynamics at ER exit sites
    • Sprangers J, Rabouille C. 2015. SEC16 in COPII coat dynamics at ER exit sites. Biochemical Society Transactions 43:97–103. doi: 10.1042/BST20140283 PMID: 25619252
    • (2015) Biochemical Society Transactions , vol.43 , pp. 97-103
    • Sprangers, J.1    Rabouille, C.2
  • 38
    • 34247323554 scopus 로고    scopus 로고
    • Immunogold labeling of cryosections from high-pressure frozen cells
    • van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW. 2007. Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485. doi: 10.1111/j.1600-0854.2007.00552.x PMID: 17451551
    • (2007) Traffic , vol.8 , pp. 471-485
    • Van Donselaar, E.1    Posthuma, G.2    Zeuschner, D.3    Humbel, B.M.4    Slot, J.W.5
  • 40
    • 84921416774 scopus 로고    scopus 로고
    • Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl) ated proteins
    • Vivelo CA, Leung AK. 2015. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl) ated proteins. Proteomics 15:203–217. doi: 10.1002/pmic.201400217 PMID: 25263235
    • (2015) Proteomics , vol.15 , pp. 203-217
    • Vivelo, C.A.1    Leung, A.K.2
  • 42
    • 84936159158 scopus 로고    scopus 로고
    • A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation
    • 04132
    • Zacharogianni M, Aguilera-Gomez A, Veenendaal T, Smout J, Rabouille C. 2014. A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation. eLife 3:04132. doi: 10.7554/eLife.04132 PMID: 25386913
    • (2014) Elife , vol.3
    • Zacharogianni, M.1    Aguilera-Gomez, A.2    Veenendaal, T.3    Smout, J.4    Rabouille, C.5
  • 43
    • 80052741559 scopus 로고    scopus 로고
    • ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association
    • Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C. 2011. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. The EMBO Journal 30:3684–3700. doi: 10.1038/emboj.2011.253 PMID: 21847093
    • (2011) The EMBO Journal , vol.30 , pp. 3684-3700
    • Zacharogianni, M.1    Kondylis, V.2    Tang, Y.3    Farhan, H.4    Xanthakis, D.5    Fuchs, F.6    Boutros, M.7    Rabouille, C.8
  • 44
    • 84888214408 scopus 로고    scopus 로고
    • Trafficking along the secretory pathway in Drosophila cell line and tissues: A light and electron microscopy approach
    • Zacharogianni M, Rabouille C. 2013. Trafficking along the secretory pathway in Drosophila cell line and tissues: a light and electron microscopy approach. Methods in Cell Biology 118:35–49. doi: 10.1016/B978-0-12-417164-0.00003-3 PMID: 24295299
    • (2013) Methods in Cell Biology , vol.118 , pp. 35-49
    • Zacharogianni, M.1    Rabouille, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.