메뉴 건너뛰기




Volumn 34, Issue 6, 2013, Pages 1088-1108

Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling

Author keywords

ADP ribosylation; DNA repair; Glycohydrolase; Macro domain; Signaling pathways; Transferase

Indexed keywords

ADENOSINE DIPHOSPHATE RIBOSE; ADENOSINE DIPHOSPHATE RIBOSYL HYDROLASE; DNA; GLYCOSIDASE; HYDROLASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; POLY(ADENOSINE DIPHOSPHATE RIBOSE); POLY(ADENOSINE DIPHOSPHATE RIBOSE)GLYCOHYDROLASE; SIRTUIN; TANKYRASE; UNCLASSIFIED DRUG; ZINC FINGER PROTEIN;

EID: 84886727115     PISSN: 00982997     EISSN: 18729452     Source Type: Journal    
DOI: 10.1016/j.mam.2013.02.002     Document Type: Review
Times cited : (54)

References (130)
  • 5
    • 0038047136 scopus 로고    scopus 로고
    • The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A
    • M.D. Allen, A.M. Buckle, S.C. Cordell, J. Lowe, and M. Bycroft The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A J. Mol. Biol. 330 2003 503 511
    • (2003) J. Mol. Biol. , vol.330 , pp. 503-511
    • Allen, M.D.1    Buckle, A.M.2    Cordell, S.C.3    Lowe, J.4    Bycroft, M.5
  • 6
    • 67649888368 scopus 로고    scopus 로고
    • Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites
    • M. Altmeyer, S. Messner, P.O. Hassa, M. Fey, and M.O. Hottiger Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites Nucleic Acids Res. 37 2009 3723 3738
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3723-3738
    • Altmeyer, M.1    Messner, S.2    Hassa, P.O.3    Fey, M.4    Hottiger, M.O.5
  • 9
    • 0030031666 scopus 로고    scopus 로고
    • Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide
    • C.E. Bell, and D. Eisenberg Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide Biochemistry 35 1996 1137 1149
    • (1996) Biochemistry , vol.35 , pp. 1137-1149
    • Bell, C.E.1    Eisenberg, D.2
  • 10
    • 70149101122 scopus 로고    scopus 로고
    • Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG
    • C.L. Berthold, H. Wang, S. Nordlund, and M. Hogbom Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG Proc. Natl. Acad. Sci. USA 106 2009 14247 14252
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 14247-14252
    • Berthold, C.L.1    Wang, H.2    Nordlund, S.3    Hogbom, M.4
  • 11
    • 77956145378 scopus 로고    scopus 로고
    • Identification of a regulatory segment of poly(ADP-ribose) glycohydrolase
    • D. Botta, and M.K. Jacobson Identification of a regulatory segment of poly(ADP-ribose) glycohydrolase Biochemistry 49 2010 7674 7682
    • (2010) Biochemistry , vol.49 , pp. 7674-7682
    • Botta, D.1    Jacobson, M.K.2
  • 15
    • 0034623934 scopus 로고    scopus 로고
    • Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles
    • N.W. Chi, and H.F. Lodish Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles J. Biol. Chem. 275 2000 38437 38444
    • (2000) J. Biol. Chem. , vol.275 , pp. 38437-38444
    • Chi, N.W.1    Lodish, H.F.2
  • 16
    • 84866534208 scopus 로고    scopus 로고
    • Alternative modes of binding of poly(adp-ribose) polymerase 1 to free DNA and nucleosomes
    • N.J. Clark, M. Kramer, U.M. Muthurajan, and K. Luger Alternative modes of binding of poly(adp-ribose) polymerase 1 to free DNA and nucleosomes J. Biol. Chem. 287 2012 32430 32439
    • (2012) J. Biol. Chem. , vol.287 , pp. 32430-32439
    • Clark, N.J.1    Kramer, M.2    Muthurajan, U.M.3    Luger, K.4
  • 17
    • 0033198919 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions
    • D. D'Amours, S. Desnoyers, I. D'Silva, and G.G. Poirier Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions Biochem. J. 342 1999 249 268
    • (1999) Biochem. J. , vol.342 , pp. 249-268
    • D'Amours, D.1    Desnoyers, S.2    D'Silva, I.3    Poirier, G.G.4
  • 19
    • 63149116496 scopus 로고    scopus 로고
    • Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome
    • N. Dani, A. Stilla, A. Marchegiani, A. Tamburro, S. Till, A.G. Ladurner, D. Corda, and M. Di Girolamo Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome Proc. Natl. Acad. Sci. USA 106 2009 4243 4248
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 4243-4248
    • Dani, N.1    Stilla, A.2    Marchegiani, A.3    Tamburro, A.4    Till, S.5    Ladurner, A.G.6    Corda, D.7    Di Girolamo, M.8
  • 20
    • 7644226406 scopus 로고    scopus 로고
    • Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains
    • M. De Rycker, and C.M. Price Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains Mol. Cell. Biol. 24 2004 9802 9812
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9802-9812
    • De Rycker, M.1    Price, C.M.2
  • 21
    • 0037954529 scopus 로고    scopus 로고
    • Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization
    • M. De Rycker, R.N. Venkatesan, C. Wei, and C.M. Price Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization Biochem. J. 372 2003 87 96
    • (2003) Biochem. J. , vol.372 , pp. 87-96
    • De Rycker, M.1    Venkatesan, R.N.2    Wei, C.3    Price, C.M.4
  • 22
    • 84861231399 scopus 로고    scopus 로고
    • The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art
    • M. De Vos, V. Schreiber, and F. Dantzer The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art Biochem. Pharmacol. 84 2012 137 146
    • (2012) Biochem. Pharmacol. , vol.84 , pp. 137-146
    • De Vos, M.1    Schreiber, V.2    Dantzer, F.3
  • 26
    • 79952008439 scopus 로고    scopus 로고
    • The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger
    • S. Eustermann, H. Videler, J.C. Yang, P.T. Cole, D. Gruszka, D. Veprintsev, and D. Neuhaus The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger J. Mol. Biol. 407 2011 149 170
    • (2011) J. Mol. Biol. , vol.407 , pp. 149-170
    • Eustermann, S.1    Videler, H.2    Yang, J.C.3    Cole, P.T.4    Gruszka, D.5    Veprintsev, D.6    Neuhaus, D.7
  • 27
  • 28
    • 54249118102 scopus 로고    scopus 로고
    • Needle in the haystack: Structure-based toxin discovery
    • R.J. Fieldhouse, and A.R. Merrill Needle in the haystack: structure-based toxin discovery Trends Biochem. Sci. 33 2008 546 556
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 546-556
    • Fieldhouse, R.J.1    Merrill, A.R.2
  • 33
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • B.A. Gibson, and W.L. Kraus New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs Nat. Rev. Mol. Cell Biol. 13 2012 411 424
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 34
    • 0025739985 scopus 로고
    • Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses
    • A.E. Gorbalenya, E.V. Koonin, and M.M. Lai Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses FEBS Lett. 288 1991 201 205
    • (1991) FEBS Lett. , vol.288 , pp. 201-205
    • Gorbalenya, A.E.1    Koonin, E.V.2    Lai, M.M.3
  • 36
    • 83255171058 scopus 로고    scopus 로고
    • Structural basis and sequence rules for substrate recognition by tankyrase explain the basis for cherubism disease
    • S. Guettler, J. LaRose, E. Petsalaki, G. Gish, A. Scotter, T. Pawson, R. Rottapel, and F. Sicheri Structural basis and sequence rules for substrate recognition by tankyrase explain the basis for cherubism disease Cell 147 2011 1340 1354
    • (2011) Cell , vol.147 , pp. 1340-1354
    • Guettler, S.1    Larose, J.2    Petsalaki, E.3    Gish, G.4    Scotter, A.5    Pawson, T.6    Rottapel, R.7    Sicheri, F.8
  • 37
    • 84858383452 scopus 로고    scopus 로고
    • Novel binding mode of a potent and selective tankyrase inhibitor
    • H. Gunaydin, Y. Gu, and X. Huang Novel binding mode of a potent and selective tankyrase inhibitor PLoS One 7 3 2012 e33740
    • (2012) PLoS One , vol.7 , Issue.3 , pp. 33740
    • Gunaydin, H.1    Gu, Y.2    Huang, X.3
  • 39
    • 0032876380 scopus 로고    scopus 로고
    • Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex
    • S. Han, J.A. Craig, C.D. Putnam, N.B. Carozzi, and J.A. Tainer Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex Nat. Struct. Biol. 6 1999 932 936
    • (1999) Nat. Struct. Biol. , vol.6 , pp. 932-936
    • Han, S.1    Craig, J.A.2    Putnam, C.D.3    Carozzi, N.B.4    Tainer, J.A.5
  • 43
    • 0025640847 scopus 로고
    • The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA
    • M. Ikejima, S. Noguchi, R. Yamashita, T. Ogura, T. Sugimura, D.M. Gill, and M. Miwa The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA J. Biol. Chem. 265 1990 21907 21913
    • (1990) J. Biol. Chem. , vol.265 , pp. 21907-21913
    • Ikejima, M.1    Noguchi, S.2    Yamashita, R.3    Ogura, T.4    Sugimura, T.5    Gill, D.M.6    Miwa, M.7
  • 48
    • 76749153013 scopus 로고    scopus 로고
    • Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888
    • T. Karlberg, M. Hammarstrom, P. Schütz, L. Svensson, and H. Schüler Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888 Biochemistry 49 2010 1056 1058
    • (2010) Biochemistry , vol.49 , pp. 1056-1058
    • Karlberg, T.1    Hammarstrom, M.2    Schütz, P.3    Svensson, L.4    Schüler, H.5
  • 50
    • 84863804147 scopus 로고    scopus 로고
    • Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain
    • T. Karlberg, A.G. Thorsell, A. Kallas, and H. Schüler Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain J. Biol. Chem. 287 2012 24077 24081
    • (2012) J. Biol. Chem. , vol.287 , pp. 24077-24081
    • Karlberg, T.1    Thorsell, A.G.2    Kallas, A.3    Schüler, H.4
  • 53
    • 84861869442 scopus 로고    scopus 로고
    • Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element
    • I.K. Kim, J.R. Kiefer, C.M. Ho, R.A. Stegeman, S. Classen, J.A. Tainer, and T. Ellenberger Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element Nat. Struct. Mol. Biol. 19 2012 653 656
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 653-656
    • Kim, I.K.1    Kiefer, J.R.2    Ho, C.M.3    Stegeman, R.A.4    Classen, S.5    Tainer, J.A.6    Ellenberger, T.7
  • 56
    • 70349451172 scopus 로고    scopus 로고
    • Learning how to read ADP-ribosylation
    • H. Kleine, and B. Lüscher Learning how to read ADP-ribosylation Cell 139 1 2009 17 19
    • (2009) Cell , vol.139 , Issue.1 , pp. 17-19
    • Kleine, H.1    Lüscher, B.2
  • 61
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets
    • R. Krishnakumar, and W.L. Kraus The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets Mol. Cell 39 2010 8 24
    • (2010) Mol. Cell , vol.39 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.L.2
  • 62
    • 14144253106 scopus 로고    scopus 로고
    • Structure and mechanism of ADP-ribose-1″-monophosphatase (Appr-1″-pase), a ubiquitous cellular processing enzyme
    • D. Kumaran, S. Eswaramoorthy, F.W. Studier, and S. Swaminathan Structure and mechanism of ADP-ribose-1″-monophosphatase (Appr-1″-pase), a ubiquitous cellular processing enzyme Protein Sci. 14 2005 719 726
    • (2005) Protein Sci. , vol.14 , pp. 719-726
    • Kumaran, D.1    Eswaramoorthy, S.2    Studier, F.W.3    Swaminathan, S.4
  • 64
    • 41549108573 scopus 로고    scopus 로고
    • A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation
    • M.F. Langelier, K.M. Servent, E.E. Rogers, and J.M. Pascal A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation J. Biol. Chem. 283 2008 4105 4114
    • (2008) J. Biol. Chem. , vol.283 , pp. 4105-4114
    • Langelier, M.F.1    Servent, K.M.2    Rogers, E.E.3    Pascal, J.M.4
  • 65
    • 77953305213 scopus 로고    scopus 로고
    • The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction
    • M.F. Langelier, D.D. Ruhl, J.L. Planck, W.L. Kraus, and J.M. Pascal The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction J. Biol. Chem. 285 2010 18877 18887
    • (2010) J. Biol. Chem. , vol.285 , pp. 18877-18887
    • Langelier, M.F.1    Ruhl, D.D.2    Planck, J.L.3    Kraus, W.L.4    Pascal, J.M.5
  • 66
    • 84860806404 scopus 로고    scopus 로고
    • Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1
    • M.F. Langelier, J.L. Planck, S. Roy, and J.M. Pascal Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 Science 336 2012 728 732
    • (2012) Science , vol.336 , pp. 728-732
    • Langelier, M.F.1    Planck, J.L.2    Roy, S.3    Pascal, J.M.4
  • 67
    • 79953176276 scopus 로고    scopus 로고
    • Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: Structural and functional insights into DNA-dependent PARP-1 activity
    • M.F. Langelier, J.L. Planck, S. Roy, and J.M. Pascal Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity J. Biol. Chem. 286 2011 10690 10701
    • (2011) J. Biol. Chem. , vol.286 , pp. 10690-10701
    • Langelier, M.F.1    Planck, J.L.2    Roy, S.3    Pascal, J.M.4
  • 68
    • 84873524967 scopus 로고    scopus 로고
    • PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis
    • M.F. Langelier, and J.M. Pascal PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis Curr. Opin. Struct. Biol. 23 2013 134 143
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 134-143
    • Langelier, M.F.1    Pascal, J.M.2
  • 72
    • 67649470390 scopus 로고    scopus 로고
    • Crystal structure of dinitrogenase reductase-activating glycohydrolase (DraG) reveals conservation in the ADP-ribosylhydrolase fold and specific features in the ADP-ribose-binding pocket
    • X.D. Li, L.F. Huergo, A. Gasperina, F.O. Pedrosa, M. Merrick, and F.K. Winkler Crystal structure of dinitrogenase reductase-activating glycohydrolase (DraG) reveals conservation in the ADP-ribosylhydrolase fold and specific features in the ADP-ribose-binding pocket J. Mol. Biol. 390 2009 737 746
    • (2009) J. Mol. Biol. , vol.390 , pp. 737-746
    • Li, X.D.1    Huergo, L.F.2    Gasperina, A.3    Pedrosa, F.O.4    Merrick, M.5    Winkler, F.K.6
  • 73
    • 77952716489 scopus 로고    scopus 로고
    • Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response
    • G.Y. Li, R.D. McCulloch, A.L. Fenton, M. Cheung, L. Meng, M. Ikura, and C.A. Koch Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response Proc. Natl. Acad. Sci. USA 107 2010 9129 9134
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9129-9134
    • Li, G.Y.1    McCulloch, R.D.2    Fenton, A.L.3    Cheung, M.4    Meng, L.5    Ikura, M.6    Koch, C.A.7
  • 74
    • 73649110221 scopus 로고    scopus 로고
    • Structural and biophysical studies of human PARP-1 in complex with damaged DNA
    • W. Lilyestrom, M.J. Van der Woerd, N. Clark, and K. Luger Structural and biophysical studies of human PARP-1 in complex with damaged DNA J. Mol. Biol. 395 2010 983 994
    • (2010) J. Mol. Biol. , vol.395 , pp. 983-994
    • Lilyestrom, W.1    Van Der Woerd, M.J.2    Clark, N.3    Luger, K.4
  • 78
    • 33746855102 scopus 로고    scopus 로고
    • A steric antagonism of actin polymerization by a salmonella virulence protein
    • S.M. Margarit, W. Davidson, L. Frego, and C.E. Stebbins A steric antagonism of actin polymerization by a salmonella virulence protein Structure 14 2006 1219 1229
    • (2006) Structure , vol.14 , pp. 1219-1229
    • Margarit, S.M.1    Davidson, W.2    Frego, L.3    Stebbins, C.E.4
  • 80
    • 84863410134 scopus 로고    scopus 로고
    • Crystal structure of a tankyrase-axin complex and its implications for axin turnover and tankyrase substrate recruitment
    • S. Morrone, Z. Cheng, R.T. Moon, F. Cong, and W. Xu Crystal structure of a tankyrase-axin complex and its implications for axin turnover and tankyrase substrate recruitment Proc. Natl. Acad. Sci. USA 109 2012 1500 1505
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 1500-1505
    • Morrone, S.1    Cheng, Z.2    Moon, R.T.3    Cong, F.4    Xu, W.5
  • 81
    • 79960206370 scopus 로고    scopus 로고
    • PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms
    • O. Mortusewicz, E. Fouquerel, J.C. Ame, H. Leonhardt, and V. Schreiber PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms Nucleic Acids Res. 39 2011 5045 5056
    • (2011) Nucleic Acids Res. , vol.39 , pp. 5045-5056
    • Mortusewicz, O.1    Fouquerel, E.2    Ame, J.C.3    Leonhardt, H.4    Schreiber, V.5
  • 82
    • 0030990777 scopus 로고    scopus 로고
    • ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles
    • J. Moss, A. Zolkiewska, and I. Okazaki ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles Adv. Exp. Med. Biol. 419 1997 25 33
    • (1997) Adv. Exp. Med. Biol. , vol.419 , pp. 25-33
    • Moss, J.1    Zolkiewska, A.2    Okazaki, I.3
  • 86
    • 84856879500 scopus 로고    scopus 로고
    • Structural basis of selective inhibition of human tankyrases
    • M. Narwal, H. Venkannagari, and L. Lehtio Structural basis of selective inhibition of human tankyrases J. Med. Chem. 55 2012 1360 1367
    • (2012) J. Med. Chem. , vol.55 , pp. 1360-1367
    • Narwal, M.1    Venkannagari, H.2    Lehtio, L.3
  • 87
    • 57749190795 scopus 로고    scopus 로고
    • Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites
    • M. Neuvonen, and T. Ahola Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites J. Mol. Biol. 385 2009 212 225
    • (2009) J. Mol. Biol. , vol.385 , pp. 212-225
    • Neuvonen, M.1    Ahola, T.2
  • 88
    • 84860844237 scopus 로고    scopus 로고
    • ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose)
    • M. Niere, M. Mashimo, L. Agledal, C. Dölle, A. Kasamatsu, J. Kato, J. Moss, and M. Ziegler ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose) J. Biol. Chem. 287 2012 16088 16102
    • (2012) J. Biol. Chem. , vol.287 , pp. 16088-16102
    • Niere, M.1    Mashimo, M.2    Agledal, L.3    Dölle, C.4    Kasamatsu, A.5    Kato, J.6    Moss, J.7    Ziegler, M.8
  • 90
    • 23644438026 scopus 로고    scopus 로고
    • Structural basis for the activation of cholera toxin by human ARF6-GTP
    • C.J. O'Neal, M.G. Jobling, R.K. Holmes, and W.G. Hol Structural basis for the activation of cholera toxin by human ARF6-GTP Science 309 2005 1093 1096
    • (2005) Science , vol.309 , pp. 1093-1096
    • O'Neal, C.J.1    Jobling, M.G.2    Holmes, R.K.3    Hol, W.G.4
  • 91
    • 78649874455 scopus 로고    scopus 로고
    • Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains (CHFR)
    • J. Oberoi, M.W. Richards, S. Crumpler, N. Brown, J. Blagg, and R. Bayliss Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains (CHFR) J. Biol. Chem. 285 2010 39348 39358
    • (2010) J. Biol. Chem. , vol.285 , pp. 39348-39358
    • Oberoi, J.1    Richards, M.W.2    Crumpler, S.3    Brown, N.4    Blagg, J.5    Bayliss, R.6
  • 92
    • 33644849513 scopus 로고    scopus 로고
    • Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase
    • S. Oka, J. Kato, and J. Moss Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase J. Biol. Chem. 281 2006 705 713
    • (2006) J. Biol. Chem. , vol.281 , pp. 705-713
    • Oka, S.1    Kato, J.2    Moss, J.3
  • 93
    • 1342286058 scopus 로고    scopus 로고
    • Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2
    • A.W. Oliver, J.C. Ame, S.M. Roe, V. Good, G. de Murcia, and L.H. Pearl Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2 Nucleic Acids Res. 32 2004 456 464
    • (2004) Nucleic Acids Res. , vol.32 , pp. 456-464
    • Oliver, A.W.1    Ame, J.C.2    Roe, S.M.3    Good, V.4    De Murcia, G.5    Pearl, L.H.6
  • 94
    • 33750940806 scopus 로고    scopus 로고
    • The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases
    • T. Ono, A. Kasamatsu, S. Oka, and J. Moss The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases Proc. Natl. Acad. Sci. USA 103 2006 16687 16691
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 16687-16691
    • Ono, T.1    Kasamatsu, A.2    Oka, S.3    Moss, J.4
  • 95
    • 27644577665 scopus 로고    scopus 로고
    • In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs)
    • H. Otto, P.A. Reche, F. Bazan, K. Dittmar, F. Haag, and F. Koch-Nolte In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs) BMC Genomics 6 2005 139
    • (2005) BMC Genomics , vol.6 , pp. 139
    • Otto, H.1    Reche, P.A.2    Bazan, F.3    Dittmar, K.4    Haag, F.5    Koch-Nolte, F.6
  • 97
    • 20544475918 scopus 로고    scopus 로고
    • Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: Determining the PARG catalytic domain
    • C.N. Patel, D.W. Koh, M.K. Jacobson, and M.A. Oliveira Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain Biochem. J. 388 2005 493 500
    • (2005) Biochem. J. , vol.388 , pp. 493-500
    • Patel, C.N.1    Koh, D.W.2    Jacobson, M.K.3    Oliveira, M.A.4
  • 98
    • 27144457720 scopus 로고    scopus 로고
    • Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme
    • A. Pautsch, M. Vogelsgesang, J. Trankle, C. Herrmann, and K. Aktories Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme EMBO J. 24 2005 3670 3680
    • (2005) EMBO J. , vol.24 , pp. 3670-3680
    • Pautsch, A.1    Vogelsgesang, M.2    Trankle, J.3    Herrmann, C.4    Aktories, K.5
  • 99
    • 0026737922 scopus 로고
    • MacroH2A, a core histone containing a large nonhistone region
    • J.R. Pehrson, and V.A. Fried MacroH2A, a core histone containing a large nonhistone region Science 257 1992 1398 1400
    • (1992) Science , vol.257 , pp. 1398-1400
    • Pehrson, J.R.1    Fried, V.A.2
  • 100
    • 80053928939 scopus 로고    scopus 로고
    • Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: Solution structure and catalytic properties
    • F.C. Peterson, D. Chen, B.L. Lytle, M.N. Rossi, I. Ahel, J.M. Denu, and B.F. Volkman Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties J. Biol. Chem. 286 2011 35955 35965
    • (2011) J. Biol. Chem. , vol.286 , pp. 35955-35965
    • Peterson, F.C.1    Chen, D.2    Lytle, B.L.3    Rossi, M.N.4    Ahel, I.5    Denu, J.M.6    Volkman, B.F.7
  • 101
    • 0142063409 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-1 dimerizes at a 5′ recessed DNA end in vitro: A fluorescence study
    • E. Pion, E. Bombarda, P. Stiegler, G.M. Ullmann, Y. Mely, G. de Murcia, and D. Gerard Poly(ADP-ribose) polymerase-1 dimerizes at a 5′ recessed DNA end in vitro: a fluorescence study Biochemistry 42 2003 12409 12417
    • (2003) Biochemistry , vol.42 , pp. 12409-12417
    • Pion, E.1    Bombarda, E.2    Stiegler, P.3    Ullmann, G.M.4    Mely, Y.5    De Murcia, G.6    Gerard, D.7
  • 102
    • 0034731455 scopus 로고    scopus 로고
    • Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins
    • J.M. Pleschke, H.E. Kleczkowska, M. Strohm, and F.R. Althaus Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins J. Biol. Chem. 275 2000 40974 40980
    • (2000) J. Biol. Chem. , vol.275 , pp. 40974-40980
    • Pleschke, J.M.1    Kleczkowska, H.E.2    Strohm, M.3    Althaus, F.R.4
  • 103
    • 0042324506 scopus 로고    scopus 로고
    • Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat
    • H. Ritter, F. Koch-Nolte, V.E. Marquez, and G.E. Schulz Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat Biochemistry 42 2003 10155 10162
    • (2003) Biochemistry , vol.42 , pp. 10155-10162
    • Ritter, H.1    Koch-Nolte, F.2    Marquez, V.E.3    Schulz, G.E.4
  • 104
    • 84876167387 scopus 로고    scopus 로고
    • Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct
    • in press
    • Rosenthal, F., Feijs, K.L.H., Frugier, E., Bonalli, M., Forst, A.H., Imhof, R., Winkler, H.C., Fischer, D., Caflisch, A., Hassa, P.O., Lüscher, B., Hottiger, M.O., 2013. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol., in press. http://dx.doi.org/10.1038/nsmb.2521.
    • (2013) Mol. Biol.
    • Rosenthal, F.1
  • 105
    • 0032539957 scopus 로고    scopus 로고
    • + binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling
    • + binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling Biochemistry 37 1998 3893 3900
    • (1998) Biochemistry , vol.37 , pp. 3893-3900
    • Ruf, A.1    De Murcia, G.2    Schulz, G.E.3
  • 108
    • 77953291365 scopus 로고    scopus 로고
    • Sirtuin chemical mechanisms
    • A.A. Sauve Sirtuin chemical mechanisms Biochim. Biophys. Acta 1804 2010 1591 1603
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1591-1603
    • Sauve, A.A.1
  • 109
    • 13944258164 scopus 로고    scopus 로고
    • Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition
    • A.A. Sauve, R.D. Moir, V.L. Schramm, and I.M. Willis Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition Mol. Cell 17 4 2005 595 601
    • (2005) Mol. Cell , vol.17 , Issue.4 , pp. 595-601
    • Sauve, A.A.1    Moir, R.D.2    Schramm, V.L.3    Willis, I.M.4
  • 110
    • 84872268055 scopus 로고    scopus 로고
    • Sirtuins: NAD+ -dependent deacetylase mechanism and regulation
    • A.A. Sauve, and D.Y. Youn Sirtuins: NAD+ -dependent deacetylase mechanism and regulation Curr. Opin. Chem. Biol. 16 2012 535 543
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 535-543
    • Sauve, A.A.1    Youn, D.Y.2
  • 111
    • 0036472339 scopus 로고    scopus 로고
    • Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase)
    • J.I. Sbodio, H.F. Lodish, and N.W. Chi Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase) Biochem. J. 361 2002 451 459
    • (2002) Biochem. J. , vol.361 , pp. 451-459
    • Sbodio, J.I.1    Lodish, H.F.2    Chi, N.W.3
  • 113
    • 1342304047 scopus 로고    scopus 로고
    • Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation
    • H. Seimiya, Y. Muramatsu, S. Smith, and T. Tsuruo Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation Mol. Cell. Biol. 24 2004 1944 1955
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1944-1955
    • Seimiya, H.1    Muramatsu, Y.2    Smith, S.3    Tsuruo, T.4
  • 114
    • 0037134452 scopus 로고    scopus 로고
    • The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182)
    • H. Seimiya, and S. Smith The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182) J. Biol. Chem. 277 2002 14116 14126
    • (2002) J. Biol. Chem. , vol.277 , pp. 14116-14126
    • Seimiya, H.1    Smith, S.2
  • 116
    • 0032553473 scopus 로고    scopus 로고
    • Tankyrase, a poly(ADP-ribose) polymerase at human telomeres
    • S. Smith, I. Giriat, A. Schmitt, and T. de Lange Tankyrase, a poly(ADP-ribose) polymerase at human telomeres Science 282 1998 1484 1487
    • (1998) Science , vol.282 , pp. 1484-1487
    • Smith, S.1    Giriat, I.2    Schmitt, A.3    De Lange, T.4
  • 117
    • 0034687248 scopus 로고    scopus 로고
    • Tankyrase promotes telomere elongation in human cells
    • S. Smith, and T. de Lange Tankyrase promotes telomere elongation in human cells Curr. Biol. 10 2000 1299 1302
    • (2000) Curr. Biol. , vol.10 , pp. 1299-1302
    • Smith, S.1    De Lange, T.2
  • 118
    • 70350351266 scopus 로고    scopus 로고
    • Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile
    • A. Sundriyal, A.K. Roberts, C.C. Shone, and K.R. Acharya Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile J. Biol. Chem. 284 2009 28713 28719
    • (2009) J. Biol. Chem. , vol.284 , pp. 28713-28719
    • Sundriyal, A.1    Roberts, A.K.2    Shone, C.C.3    Acharya, K.R.4
  • 120
    • 44349083744 scopus 로고    scopus 로고
    • Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif
    • Z. Tao, P. Gao, D.W. Hoffman, and H.W. Liu Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif Biochemistry 47 2008 5804 5813
    • (2008) Biochemistry , vol.47 , pp. 5804-5813
    • Tao, Z.1    Gao, P.2    Hoffman, D.W.3    Liu, H.W.4
  • 121
    • 70349935191 scopus 로고    scopus 로고
    • Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: Analysis and implications
    • Z. Tao, P. Gao, and H.W. Liu Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications J. Am. Chem. Soc. 131 2009 14258 14260
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 14258-14260
    • Tao, Z.1    Gao, P.2    Liu, H.W.3
  • 122
    • 63849128257 scopus 로고    scopus 로고
    • Sensing NAD metabolites through macro domains
    • S. Till, and A.G. Ladurner Sensing NAD metabolites through macro domains Front. Biosci. 14 2009 3246 3258
    • (2009) Front. Biosci. , vol.14 , pp. 3246-3258
    • Till, S.1    Ladurner, A.G.2
  • 125
    • 84870359488 scopus 로고    scopus 로고
    • Certhrax Toxin, an Anthrax-related ADP-ribosyltransferase from Bacillus cereus
    • D. Visschedyk, A. Rochon, W. Tempel, S. Dimov, H.W. Park, and A.R. Merrill Certhrax Toxin, an Anthrax-related ADP-ribosyltransferase from Bacillus cereus J. Biol. Chem. 287 2012 41089 41102
    • (2012) J. Biol. Chem. , vol.287 , pp. 41089-41102
    • Visschedyk, D.1    Rochon, A.2    Tempel, W.3    Dimov, S.4    Park, H.W.5    Merrill, A.R.6
  • 127
  • 128
    • 84863010981 scopus 로고    scopus 로고
    • Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination
    • Z. Wang, G.A. Michaud, Z. Cheng, Y. Zhang, T.R. Hinds, E. Fan, F. Cong, and W. Xu Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination Genes Dev. 26 2012 235 240
    • (2012) Genes Dev. , vol.26 , pp. 235-240
    • Wang, Z.1    Michaud, G.A.2    Cheng, Z.3    Zhang, Y.4    Hinds, T.R.5    Fan, E.6    Cong, F.7    Xu, W.8
  • 130
    • 27644497889 scopus 로고    scopus 로고
    • Structure and notch receptor binding of the tandem WWE domain of Deltex
    • M.E. Zweifel, D.J. Leahy, and D. Barrick Structure and notch receptor binding of the tandem WWE domain of Deltex Structure 13 2005 1599 1611
    • (2005) Structure , vol.13 , pp. 1599-1611
    • Zweifel, M.E.1    Leahy, D.J.2    Barrick, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.