메뉴 건너뛰기




Volumn 14, Issue 7, 2013, Pages 445-453

Macrodomain-containing proteins: Regulating new intracellular functions of mono(ADP-ribosyl)ation

Author keywords

[No Author keywords available]

Indexed keywords

ARTD 10 PROTEIN; ARTD 8 PROTEIN; MACROD1 PROTEIN; MACROD2 PROTEIN; MEMBRANE PROTEIN; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; UNCLASSIFIED DRUG;

EID: 84879415959     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3601     Document Type: Review
Times cited : (124)

References (96)
  • 1
    • 33749387471 scopus 로고    scopus 로고
    • A family of killer toxins: Exploring the mechanism of ADP-ribosylating toxins
    • DOI 10.1111/j.1742-4658.2006.05442.x
    • Holbourn, K. P., Shone, C. C. & Acharya, K. R. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J. 273, 4579-4593 (2006). (Pubitemid 44506902)
    • (2006) FEBS Journal , vol.273 , Issue.20 , pp. 4579-4593
    • Holbourn, K.P.1    Shone, C.C.2    Acharya, K.R.3
  • 2
    • 0037881920 scopus 로고    scopus 로고
    • Functional aspects of protein mono-ADP-ribosylation
    • DOI 10.1093/emboj/cdg209
    • Corda, D. & Di Girolamo, M. Functional aspects of protein mono-ADP-ribosylation. EMBO J. 22, 1953-1958 (2003). (Pubitemid 36565521)
    • (2003) EMBO Journal , vol.22 , Issue.9 , pp. 1953-1958
    • Corda, D.1    Di Girolamo, M.2
  • 3
    • 32344442045 scopus 로고    scopus 로고
    • Stealth and mimicry by deadly bacterial toxins
    • DOI 10.1016/j.tibs.2005.12.007, PII S0968000405003518
    • Yates, S. P., Jorgensen, R., Andersen, G. R. & Merrill, A. R. Stealth and mimicry by deadly bacterial toxins. Trends Biochem. Sci. 31, 123-133 (2006). (Pubitemid 43221845)
    • (2006) Trends in Biochemical Sciences , vol.31 , Issue.2 , pp. 123-133
    • Yates, S.P.1    Jorgensen, R.2    Andersen, G.R.3    Merrill, A.R.4
  • 4
    • 27644577665 scopus 로고    scopus 로고
    • In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs)
    • Otto, H. et al. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6, 139 (2005).
    • (2005) BMC Genomics , vol.6 , pp. 139
    • Otto, H.1
  • 7
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Rev. Mol. Cell Biol. 13, 411-424 (2012).
    • (2012) Nature Rev. Mol. Cell Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 8
    • 53149094334 scopus 로고    scopus 로고
    • Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation
    • Kleine, H. et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57-69 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 57-69
    • Kleine, H.1
  • 9
    • 67649888368 scopus 로고    scopus 로고
    • Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites
    • Altmeyer, M., Messner, S., Hassa, P. O., Fey, M. & Hottiger, M. O. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37, 3723-3738 (2009).
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3723-3738
    • Altmeyer, M.1    Messner, S.2    Hassa, P.O.3    Fey, M.4    Hottiger, M.O.5
  • 10
    • 48949116207 scopus 로고    scopus 로고
    • Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation
    • Haenni, S. S. et al. Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int. J. Biochem. Cell Biol. 40, 2274-2283 (2008).
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , pp. 2274-2283
    • Haenni, S.S.1
  • 11
    • 78049376054 scopus 로고    scopus 로고
    • PARP1 ADP-ribosylates lysine residues of the core histone tails
    • Messner, S. et al. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38, 6350-6362 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 6350-6362
    • Messner, S.1
  • 12
    • 84875939839 scopus 로고    scopus 로고
    • Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography- tandem mass spectrometry
    • Chapman, J. D., Gagne, J. P., Poirier, G. G. & Goodlett, D. R. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J. Proteome Res. 12, 1868-1880 (2013).
    • (2013) J. Proteome Res. , vol.12 , pp. 1868-1880
    • Chapman, J.D.1    Gagne, J.P.2    Poirier, G.G.3    Goodlett, D.R.4
  • 13
    • 84877634923 scopus 로고    scopus 로고
    • Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
    • Sharifi, R. et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225-1237 (2013).
    • (2013) EMBO J. , vol.32 , pp. 1225-1237
    • Sharifi, R.1
  • 14
    • 70349935191 scopus 로고    scopus 로고
    • Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: Analysis and implications
    • Tao, Z., Gao, P. & Liu, H. W. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J. Am. Chem. Soc. 131, 14258-14260 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 14258-14260
    • Tao, Z.1    Gao, P.2    Liu, H.W.3
  • 15
    • 84865426155 scopus 로고    scopus 로고
    • New readers and interpretations of poly(ADP-ribosyl) ation
    • Kalisch, T., Ame, J. C., Dantzer, F. & Schreiber, V. New readers and interpretations of poly(ADP-ribosyl) ation. Trends Biochem. Sci. 37, 381-390 (2012).
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 381-390
    • Kalisch, T.1    Ame, J.C.2    Dantzer, F.3    Schreiber, V.4
  • 16
    • 85016372152 scopus 로고    scopus 로고
    • Molecular insights into poly(ADP-ribose) recognition and processing
    • Zaja, R., Mikoc, A., Barkauskaite, E. & Ahel, I. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules 3, 1-17 (2012).
    • (2012) Biomolecules , vol.3 , pp. 1-17
    • Zaja, R.1    Mikoc, A.2    Barkauskaite, E.3    Ahel, I.4
  • 17
    • 0026737922 scopus 로고
    • MacroH2A, a core histone containing a large nonhistone region
    • Pehrson, J. R. & Fried, V. A. MacroH2A, a core histone containing a large nonhistone region. Science 257, 1398-1400 (1992).
    • (1992) Science , vol.257 , pp. 1398-1400
    • Pehrson, J.R.1    Fried, V.A.2
  • 18
    • 77952716489 scopus 로고    scopus 로고
    • Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response
    • Li, G. Y. et al. Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response. Proc. Natl Acad. Sci. USA 107, 9129-9134 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 9129-9134
    • Li, G.Y.1
  • 19
    • 38049064044 scopus 로고    scopus 로고
    • Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins
    • Ahel, I. et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81-85 (2008).
    • (2008) Nature , vol.451 , pp. 81-85
    • Ahel, I.1
  • 20
    • 69949123856 scopus 로고    scopus 로고
    • Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1
    • Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240-1243 (2009).
    • (2009) Science , vol.325 , pp. 1240-1243
    • Ahel, D.1
  • 21
    • 80053375417 scopus 로고    scopus 로고
    • The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
    • Slade, D. et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616-620 (2011).
    • (2011) Nature , vol.477 , pp. 616-620
    • Slade, D.1
  • 22
    • 84861869442 scopus 로고    scopus 로고
    • Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element
    • Kim, I. K. et al. Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nature Struct. Mol. Biol. 19, 653-656 (2012).
    • (2012) Nature Struct. Mol. Biol. , vol.19 , pp. 653-656
    • Kim, I.K.1
  • 23
    • 84863313761 scopus 로고    scopus 로고
    • Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase
    • Dunstan, M. S. et al. Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase. Nature Commun. 3, 878 (2012).
    • (2012) Nature Commun. , vol.3 , pp. 878
    • Dunstan, M.S.1
  • 24
    • 0026507413 scopus 로고
    • Role of poly(ADP-ribose) formation in DNA repair
    • Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356-358 (1992).
    • (1992) Nature , vol.356 , pp. 356-358
    • Satoh, M.S.1    Lindahl, T.2
  • 25
    • 69549083315 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler
    • Gottschalk, A. J. et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl Acad. Sci. USA 106, 13770-13774 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 13770-13774
    • Gottschalk, A.J.1
  • 26
    • 69949133036 scopus 로고    scopus 로고
    • A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation
    • Timinszky, G. et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Struct. Mol. Biol. 16, 923-929 (2009).
    • (2009) Nature Struct. Mol. Biol. , vol.16 , pp. 923-929
    • Timinszky, G.1
  • 27
    • 70349451172 scopus 로고    scopus 로고
    • Learning how to read ADP-ribosylation
    • Kleine, H. & Luscher, B. Learning how to read ADP-ribosylation. Cell 139, 17-19 (2009).
    • (2009) Cell , vol.139 , pp. 17-19
    • Kleine, H.1    Luscher, B.2
  • 28
    • 79953175287 scopus 로고    scopus 로고
    • Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity
    • Huambachano, O., Herrera, F., Rancourt, A. & Satoh, M. S. Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity. J. Biol. Chem. 286, 7149-7160 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 7149-7160
    • Huambachano, O.1    Herrera, F.2    Rancourt, A.3    Satoh, M.S.4
  • 29
    • 36749045682 scopus 로고    scopus 로고
    • Tankyrase function at telomeres, spindle poles, and beyond
    • DOI 10.1016/j.biochi.2007.07.012, PII S0300908407001885, Telomeres and Telomerase: from Basic Research to Clinical Applications
    • Hsiao, S. J. & Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83-92 (2008). (Pubitemid 350216209)
    • (2008) Biochimie , vol.90 , Issue.1 , pp. 83-92
    • Hsiao, S.J.1    Smith, S.2
  • 30
    • 0035338814 scopus 로고    scopus 로고
    • The WWE domain: A common interaction module in protein ubiquitination and ADP ribosylation
    • DOI 10.1016/S0968-0004(01)01787-X, PII S096800040101787X
    • Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273-275 (2001). (Pubitemid 32436369)
    • (2001) Trends in Biochemical Sciences , vol.26 , Issue.5 , pp. 273-275
    • Aravind, L.1
  • 31
    • 79960727271 scopus 로고    scopus 로고
    • Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling
    • Callow, M. G. et al. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS ONE 6, e22595 (2011).
    • (2011) PLoS ONE , vol.6
    • Callow, M.G.1
  • 32
    • 79955617241 scopus 로고    scopus 로고
    • RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling
    • Zhang, Y. et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nature Cell Biol. 13, 623-629 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 623-629
    • Zhang, Y.1
  • 33
    • 67650230896 scopus 로고    scopus 로고
    • Wnt/β-catenin signaling: Components, mechanisms, and diseases
    • MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9-26 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 9-26
    • MacDonald, B.T.1    Tamai, K.2    He, X.3
  • 34
    • 0034731455 scopus 로고    scopus 로고
    • Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins
    • DOI 10.1074/jbc.M006520200
    • Pleschke, J. M., Kleczkowska, H. E., Strohm, M. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40974-40980 (2000). (Pubitemid 32054922)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.52 , pp. 40974-40980
    • Pleschke, J.M.1    Kleczkowska, H.E.2    Strohm, M.3    Althaus, F.R.4
  • 35
    • 58749112769 scopus 로고    scopus 로고
    • Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes
    • Gagne, J. P. et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959-6976 (2008).
    • (2008) Nucleic Acids Res. , vol.36 , pp. 6959-6976
    • Gagne, J.P.1
  • 36
    • 84886721124 scopus 로고    scopus 로고
    • Reprogramming cellular events by poly(ADP-ribose)-binding proteins
    • 23 Dec 2012 doi:10.1016/j.mam.2012.12.005
    • Krietsch, J. et al. Reprogramming cellular events by poly(ADP-ribose)- binding proteins. Mol. Aspects Med. 23 Dec 2012 (doi:10.1016/j.mam.2012.12.005).
    • Mol. Aspects Med
    • Krietsch, J.1
  • 37
    • 84870910810 scopus 로고    scopus 로고
    • Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives
    • Tucker, J. A. et al. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLoS ONE 7, e50889 (2012).
    • (2012) PLoS ONE , vol.7
    • Tucker, J.A.1
  • 38
    • 33644849513 scopus 로고    scopus 로고
    • Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase
    • Oka, S., Kato, J. & Moss, J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705-713 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 705-713
    • Oka, S.1    Kato, J.2    Moss, J.3
  • 40
    • 84876167387 scopus 로고    scopus 로고
    • Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases
    • Rosenthal, F. et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nature Struct. Mol. Biol. 20, 502-507 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 502-507
    • Rosenthal, F.1
  • 41
    • 79957511957 scopus 로고    scopus 로고
    • Progress in the function and regulation of ADP-ribosylation
    • Hottiger, M. O. et al. Progress in the function and regulation of ADP-ribosylation. Sci. Signal. 4, mr5 (2011).
    • (2011) Sci. Signal. , vol.4
    • Hottiger, M.O.1
  • 43
    • 84870512471 scopus 로고    scopus 로고
    • Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62
    • Kleine, H. et al. Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Commun. Signal. 10, 28 (2012).
    • (2012) Cell Commun. Signal. , vol.10 , pp. 28
    • Kleine, H.1
  • 44
    • 84877724803 scopus 로고    scopus 로고
    • Regulation of NF-κB signaling by the mono-ADP-ribosyltransferase ARTD10
    • Verheugd, P. et al. Regulation of NF-κB signaling by the mono-ADP-ribosyltransferase ARTD10. Nature Commun. 4, 1683 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1683
    • Verheugd, P.1
  • 45
    • 84863338304 scopus 로고    scopus 로고
    • Ubiquitination in signaling to and activation of IKK
    • Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95-106 (2012).
    • (2012) Immunol. Rev. , vol.246 , pp. 95-106
    • Chen, Z.J.1
  • 46
    • 84874486452 scopus 로고    scopus 로고
    • Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro-apoptotic function
    • Herzog, N. et al. Caspase-dependent cleavage of the mono-ADP- ribosyltransferase ARTD10 interferes with its pro-apoptotic function. FEBS J. 280, 13 (2013).
    • (2013) FEBS J. , vol.280 , pp. 13
    • Herzog, N.1
  • 47
    • 84876170804 scopus 로고    scopus 로고
    • ARTD10 substrate identification on protein microarrays: Regulation of GSK3β by mono-ADP-ribosylation
    • Feijs, K. L. et al. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Cell Commun. Signal. 11, 5 (2013).
    • (2013) Cell Commun. Signal. , vol.11 , pp. 5
    • Feijs, K.L.1
  • 48
    • 77649129121 scopus 로고    scopus 로고
    • GSK3: A multifaceted kinase in Wnt signaling
    • Wu, D. & Pan, W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161-168 (2010).
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 161-168
    • Wu, D.1    Pan, W.2
  • 49
    • 33645243011 scopus 로고    scopus 로고
    • Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor
    • Goenka, S. & Boothby, M. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc. Natl Acad. Sci. USA 103, 4210-4215 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 4210-4215
    • Goenka, S.1    Boothby, M.2
  • 50
    • 78751543911 scopus 로고    scopus 로고
    • PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation
    • Mehrotra, P. et al. PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J. Biol. Chem. 286, 1767-1776 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 1767-1776
    • Mehrotra, P.1
  • 51
    • 34547112062 scopus 로고    scopus 로고
    • Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription
    • DOI 10.1074/jbc.M611283200
    • Goenka, S., Cho, S. H. & Boothby, M. Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J. Biol. Chem. 282, 18732-18739 (2007). (Pubitemid 47100134)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.26 , pp. 18732-18739
    • Goenka, S.1    Sung, H.C.2    Boothby, M.3
  • 52
    • 0037119969 scopus 로고    scopus 로고
    • Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II
    • Yang, J. et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21, 4950-4958 (2002).
    • (2002) EMBO J. , vol.21 , pp. 4950-4958
    • Yang, J.1
  • 53
    • 84873410910 scopus 로고    scopus 로고
    • H2 differentiation and allergic airway disease
    • H2 differentiation and allergic airway disease. J. Allergy Clin. Immunol. 131, 521-531.e12 (2013).
    • (2013) J. Allergy Clin. Immunol. , vol.131
    • Mehrotra, P.1
  • 54
    • 84873694897 scopus 로고    scopus 로고
    • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation
    • Macpherson, L. et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 41, 1604-1621 (2012).
    • (2012) Nucleic Acids Res. , vol.41 , pp. 1604-1621
    • MacPherson, L.1
  • 55
    • 84869094697 scopus 로고    scopus 로고
    • PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK-and IRE1α-mediated unfolded protein response
    • Jwa, M. & Chang, P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK-and IRE1α-mediated unfolded protein response. Nature Cell Biol. 14, 1223-1230 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 1223-1230
    • Jwa, M.1    Chang, P.2
  • 56
    • 84862233980 scopus 로고    scopus 로고
    • PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ss1
    • Di Paola, S., Micaroni, M., Di Tullio, G., Buccione, R. & Di Girolamo, M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ss1. PLoS ONE 7, e37352 (2012).
    • (2012) PLoS ONE , vol.7
    • Di Paola, S.1    Micaroni, M.2    Di Tullio, G.3    Buccione, R.4    Di Girolamo, M.5
  • 57
    • 84856111924 scopus 로고    scopus 로고
    • The unfolded protein response: Controlling cell fate decisions under ER stress and beyond
    • Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Rev. Mol. Cell Biol. 13, 89-102 (2012).
    • (2012) Nature Rev. Mol. Cell Biol. , vol.13 , pp. 89-102
    • Hetz, C.1
  • 58
    • 84863804147 scopus 로고    scopus 로고
    • Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain
    • Karlberg, T., Thorsell, A. G., Kallas, A. & Schuler, H. Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain. J. Biol. Chem. 287, 24077-24081 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 24077-24081
    • Karlberg, T.1    Thorsell, A.G.2    Kallas, A.3    Schuler, H.4
  • 59
    • 0036529621 scopus 로고    scopus 로고
    • Comparative genomics and evolution of proteins involved in RNA metabolism
    • Anantharaman, V., Koonin, E. V. & Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30, 1427-1464 (2002). (Pubitemid 34679722)
    • (2002) Nucleic Acids Research , vol.30 , Issue.7 , pp. 1427-1464
    • Anantharaman, V.1    Koonin, E.V.2    Aravind, L.3
  • 60
    • 63849128257 scopus 로고    scopus 로고
    • Sensing NAD metabolites through macro domains
    • Till, S. & Ladurner, A. G. Sensing NAD metabolites through macro domains. Front. Biosci. 14, 3246-3258 (2009).
    • (2009) Front. Biosci. , vol.14 , pp. 3246-3258
    • Till, S.1    Ladurner, A.G.2
  • 61
    • 79957465554 scopus 로고    scopus 로고
    • The macro domain protein family: Structure, functions, and their potential therapeutic implications
    • Han, W., Li, X. & Fu, X. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727, 86-103 (2011).
    • (2011) Mutat. Res. , vol.727 , pp. 86-103
    • Han, W.1    Li, X.2    Fu, X.3
  • 63
    • 79953890881 scopus 로고    scopus 로고
    • Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases
    • Chen, D. et al. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286, 13261-13271 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 13261-13271
    • Chen, D.1
  • 64
    • 80053928939 scopus 로고    scopus 로고
    • Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: Solution structure and catalytic properties
    • Peterson, F. C. et al. Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J. Biol. Chem. 286, 35955-35965 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 35955-35965
    • Peterson, F.C.1
  • 65
    • 77953289374 scopus 로고    scopus 로고
    • Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
    • Tong, L. & Denu, J. M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804, 1617-1625 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1617-1625
    • Tong, L.1    Denu, J.M.2
  • 66
    • 57749190795 scopus 로고    scopus 로고
    • Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites
    • Neuvonen, M. & Ahola, T. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385, 212-225 (2009).
    • (2009) J. Mol. Biol. , vol.385 , pp. 212-225
    • Neuvonen, M.1    Ahola, T.2
  • 67
    • 33748665458 scopus 로고    scopus 로고
    • Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains
    • Egloff, M. P. et al. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80, 8493-8502 (2006).
    • (2006) J. Virol. , vol.80 , pp. 8493-8502
    • Egloff, M.P.1
  • 69
    • 13844312497 scopus 로고    scopus 로고
    • A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae
    • DOI 10.1093/nar/gki211
    • Shull, N. P., Spinelli, S. L. & Phizicky, E. M. A highly specific phosphatase that acts on ADP-ribose 1-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 33, 650-660 (2005). (Pubitemid 40360995)
    • (2005) Nucleic Acids Research , vol.33 , Issue.2 , pp. 650-660
    • Shull, N.P.1    Spinelli, S.L.2    Phizicky, E.M.3
  • 70
    • 26444559529 scopus 로고    scopus 로고
    • ADP-ribose-1″-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture
    • DOI 10.1128/JVI.79.20.12721-12731.2005
    • Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A. E. & Ziebuhr, J. ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79, 12721-12731 (2005). (Pubitemid 41433192)
    • (2005) Journal of Virology , vol.79 , Issue.20 , pp. 12721-12731
    • Putics, A.1    Filipowicz, W.2    Hall, J.3    Gorbalenya, A.E.4    Ziebuhr, J.5
  • 71
    • 84869111403 scopus 로고    scopus 로고
    • PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
    • Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 199, 235-249 (2012).
    • (2012) J. Cell Biol. , vol.199 , pp. 235-249
    • Pines, A.1
  • 72
    • 0034672418 scopus 로고    scopus 로고
    • BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration
    • Aguiar, R. C. et al. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96, 4328-4334 (2000).
    • (2000) Blood , vol.96 , pp. 4328-4334
    • Aguiar, R.C.1
  • 74
    • 84873855937 scopus 로고    scopus 로고
    • BAL1 and its partner E3 ligase, BBAP, link PARP activation, ubiquitylation and double-strand DNA repair independent of ATM, MDC1 and RNF8
    • Yan, Q. et al. BAL1 and its partner E3 ligase, BBAP, link PARP activation, ubiquitylation and double-strand DNA repair independent of ATM, MDC1 and RNF8. Mol Cell. Biol. 33, 845-857 (2013).
    • (2013) Mol Cell. Biol. , vol.33 , pp. 845-857
    • Yan, Q.1
  • 75
    • 26644446700 scopus 로고    scopus 로고
    • B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity
    • DOI 10.1074/jbc.M505408200
    • Aguiar, R. C., Takeyama, K., He, C., Kreinbrink, K. & Shipp, M. A. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280, 33756-33765 (2005). (Pubitemid 41443094)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.40 , pp. 33756-33765
    • Aguiar, R.C.T.1    Takeyama, K.2    He, C.3    Kreinbrink, K.4    Shipp, M.A.5
  • 76
    • 84876186940 scopus 로고    scopus 로고
    • A family of macrodomain proteins reverses cellular mono-ADP-ribosylation
    • Jankevicius, G. et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nature Struct. Mol. Biol. 20, 508-514 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 508-514
    • Jankevicius, G.1
  • 77
    • 84870539372 scopus 로고    scopus 로고
    • Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress
    • Gagne, J. P. et al. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res. 40, 7788-7805 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 7788-7805
    • Gagne, J.P.1
  • 78
    • 63149116496 scopus 로고    scopus 로고
    • Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome
    • Dani, N. et al. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc. Natl Acad. Sci. USA 106, 4243-4248 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 4243-4248
    • Dani, N.1
  • 79
    • 84874456032 scopus 로고    scopus 로고
    • Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains
    • Forst, A. H. et al. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21, 462-475 (2013).
    • (2013) Structure , vol.21 , pp. 462-475
    • Forst, A.H.1
  • 80
    • 84859181036 scopus 로고    scopus 로고
    • Histone recognition and large-scale structural analysis of the human bromodomain family
    • Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231 (2012).
    • (2012) Cell , vol.149 , pp. 214-231
    • Filippakopoulos, P.1
  • 81
    • 33750940806 scopus 로고    scopus 로고
    • The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases
    • DOI 10.1073/pnas.0607911103
    • Ono, T., Kasamatsu, A., Oka, S. & Moss, J. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc. Natl Acad. Sci. USA 103, 16687-16691 (2006). (Pubitemid 44737314)
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.103 , Issue.45 , pp. 16687-16691
    • Ono, T.1    Kasamatsu, A.2    Oka, S.3    Moss, J.4
  • 82
    • 0023055764 scopus 로고
    • Amino acid specific ADP-ribosylation: Substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes
    • Moss, J., Oppenheimer, N. J., West, R. E. Jr & Stanley, S. J. Amino acid specific ADP-ribosylation: substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 25, 5408-5414 (1986).
    • (1986) Biochemistry , vol.25 , pp. 5408-5414
    • Moss, J.1    Oppenheimer, N.J.2    West Jr., R.E.3    Stanley, S.J.4
  • 83
    • 79953840957 scopus 로고    scopus 로고
    • Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos)
    • Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20 (2011).
    • (2011) Sci. Signal. , vol.4
    • Wang, Y.1
  • 84
    • 0021339864 scopus 로고
    • Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins
    • Williams, J. C., Chambers, J. P. & Liehr, J. G. Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins. J. Biol. Chem. 259, 1037-1042 (1984). (Pubitemid 14196428)
    • (1984) Journal of Biological Chemistry , vol.259 , Issue.2 , pp. 1037-1042
    • Williams, J.C.1    Chambers, J.P.2    Liehr, J.G.3
  • 85
    • 0021276381 scopus 로고
    • Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate
    • Williams, J. C. et al. Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N. Engl. J. Med. 311, 152-155 (1984). (Pubitemid 14092905)
    • (1984) New England Journal of Medicine , vol.311 , Issue.3 , pp. 152-155
    • Williams, J.C.1    Butler, I.J.2    Rosenberg, H.S.3
  • 86
    • 0038047136 scopus 로고    scopus 로고
    • The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A
    • DOI 10.1016/S0022-2836(03)00473-X
    • Allen, M. D., Buckle, A. M., Cordell, S. C., Lowe, J. & Bycroft, M. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330, 503-511 (2003). (Pubitemid 36808684)
    • (2003) Journal of Molecular Biology , vol.330 , Issue.3 , pp. 503-511
    • Allen, M.D.1    Buckle, A.M.2    Cordell, S.C.3    Lowe, J.4    Bycroft, M.5
  • 88
    • 20544475918 scopus 로고    scopus 로고
    • Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: Determining the PARG catalytic domain
    • DOI 10.1042/BJ20040942
    • Patel, C. N., Koh, D. W., Jacobson, M. K. & Oliveira, M. A. Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain. Biochem. J. 388, 493-500 (2005). (Pubitemid 40839926)
    • (2005) Biochemical Journal , vol.388 , Issue.2 , pp. 493-500
    • Patel, C.N.1    Koh, D.W.2    Jacobson, M.K.3    Oliveira, M.A.4
  • 89
    • 63849298103 scopus 로고    scopus 로고
    • PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells
    • Cho, S. H. et al. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113, 2416-2425 (2009).
    • (2009) Blood , vol.113 , pp. 2416-2425
    • Cho, S.H.1
  • 90
    • 39549087444 scopus 로고    scopus 로고
    • Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma
    • Ma, N. F. et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47, 503-510 (2008).
    • (2008) Hepatology , vol.47 , pp. 503-510
    • Ma, N.F.1
  • 91
    • 84861852442 scopus 로고    scopus 로고
    • CHD1L: A new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT)
    • Brockschmidt, A. et al. CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT). Nephrol. Dial. Transplant. 27, 2355-2364 (2012).
    • (2012) Nephrol. Dial. Transplant. , vol.27 , pp. 2355-2364
    • Brockschmidt, A.1
  • 92
    • 78650816688 scopus 로고    scopus 로고
    • The histone variant macroH2A suppresses melanoma progression through regulation of CDK8
    • Kapoor, A. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105-1109 (2010).
    • (2010) Nature , vol.468 , pp. 1105-1109
    • Kapoor, A.1
  • 93
    • 70349453738 scopus 로고    scopus 로고
    • Histone macroH2A isoforms predict the risk of lung cancer recurrence
    • Sporn, J. C. et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28, 3423-3428 (2009).
    • (2009) Oncogene , vol.28 , pp. 3423-3428
    • Sporn, J.C.1
  • 94
    • 67349175974 scopus 로고    scopus 로고
    • The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice
    • Park, E. & Griffin, D. E. The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388, 305-314 (2009).
    • (2009) Virology , vol.388 , pp. 305-314
    • Park, E.1    Griffin, D.E.2
  • 95
    • 68249117637 scopus 로고    scopus 로고
    • Viral manipulation of DNA repair and cell cycle checkpoints
    • Chaurushiya, M. S. & Weitzman, M. D. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst.) 8, 1166-1176 (2009).
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1166-1176
    • Chaurushiya, M.S.1    Weitzman, M.D.2
  • 96
    • 33644984966 scopus 로고    scopus 로고
    • Dynamic relocation of poly(ADP-ribose) glycohydrolase isoforms during radiation-induced DNA damage
    • Haince, J. F., Ouellet, M. E., McDonald, D., Hendzel, M. J. & Poirier, G. G. Dynamic relocation of poly(ADP-ribose) glycohydrolase isoforms during radiation-induced DNA damage. Biochim. Biophys. Acta 1763, 226-237 (2006).
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 226-237
    • Haince, J.F.1    Ouellet, M.E.2    McDonald, D.3    Hendzel, M.J.4    Poirier, G.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.