메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 431-454

Macrodomains: Structure, Function, Evolution, and Catalytic Activities

Author keywords

ADP ribose; NAD; PARG; PARP family; Posttranslational modifications

Indexed keywords

ADENOSINE DIPHOSPHATE RIBOSE; ALC1 PROTEIN; BACTERIAL PROTEIN; GDAP2 PROTEIN; GLYCOSIDASE; HYDROLASE; MACRODOMAIN 1; MACRODOMAIN 2; MACRODOMAIN PROTEIN; MACRODOMAIN PROTEIN INHIBITOR; MONO(ADP RIBOSYL)HYDROLASE; PARG PROTEIN; POLY(ADP RIBOSYL)GLYCOHYDROLASE; PROTEIN; PROTEIN INHIBITOR; RNA BINDING PROTEIN; TERMINAL ADPR PROTEIN GLYCOHYDROLASE 1; UNCLASSIFIED DRUG; VIRUS PROTEIN; ESCHERICHIA COLI PROTEIN; ISOENZYME; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; PARG PROTEIN, E COLI; REPRESSOR PROTEIN;

EID: 84974663169     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014935     Document Type: Article
Times cited : (166)

References (150)
  • 1
    • 63849128257 scopus 로고    scopus 로고
    • SensingNAD metabolites throughmacro domains
    • Till S, Ladurner AG. 2009. SensingNAD metabolites throughmacro domains. Front. Biosci. 14:3246-58
    • (2009) Front. Biosci. , vol.14 , pp. 3246-3258
    • Till, S.1    Ladurner, A.G.2
  • 2
    • 0026074776 scopus 로고
    • The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase
    • Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, et al. 1991. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567-82
    • (1991) Virology , vol.180 , pp. 567-582
    • Lee, H.J.1    Shieh, C.K.2    Gorbalenya, A.E.3    Koonin, E.V.4    La Monica, N.5
  • 3
    • 0026737922 scopus 로고
    • MacroH2A, a core histone containing a large nonhistone region
    • Pehrson JR, Fried VA. 1992. MacroH2A, a core histone containing a large nonhistone region. Science 257:1398-400
    • (1992) Science , vol.257 , pp. 1398-1400
    • Pehrson, J.R.1    Fried, V.A.2
  • 4
    • 35848961668 scopus 로고    scopus 로고
    • How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers
    • Taverna SD, LiH, Ruthenburg AJ, Allis CD, Patel DJ. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025-40
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 1025-1040
    • Taverna, S.D.1    Li, H.2    Ruthenburg, A.J.3    Allis, C.D.4    Patel, D.J.5
  • 5
    • 69949123856 scopus 로고    scopus 로고
    • Poly (ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1
    • Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, et al. 2009. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325:1240-43
    • (2009) Science , vol.325 , pp. 1240-1243
    • Ahel, D.1    Horejsi, Z.2    Wiechens, N.3    Polo, S.E.4    Garcia-Wilson, E.5
  • 7
    • 69949184069 scopus 로고    scopus 로고
    • New functions for an ancient domain
    • KrausWL. 2009. New functions for an ancient domain. Nat. Struct. Mol. Biol. 16:904-7
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 904-907
    • Kraus, W.L.1
  • 8
    • 79953890881 scopus 로고    scopus 로고
    • Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases
    • Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, et al. 2011. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286:13261-71
    • (2011) J. Biol. Chem. , vol.286 , pp. 13261-13271
    • Chen, D.1    Vollmar, M.2    Rossi, M.N.3    Phillips, C.4    Kraehenbuehl, R.5
  • 9
    • 77954386543 scopus 로고    scopus 로고
    • SARS coronavirus unique domain: Threedomain molecular architecture in solution and RNA binding
    • Johnson MA, Chatterjee A, Neuman BW, Wuthrich K. 2010. SARS coronavirus unique domain: Threedomain molecular architecture in solution and RNA binding. J. Mol. Biol. 400:724-42
    • (2010) J. Mol. Biol. , vol.400 , pp. 724-742
    • Johnson, M.A.1    Chatterjee, A.2    Neuman, B.W.3    Wuthrich, K.4
  • 10
    • 67249150527 scopus 로고    scopus 로고
    • The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes
    • Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, et al. 2009. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLOS Pathog. 5:e1000428
    • (2009) PLOS Pathog. , vol.5 , pp. e1000428
    • Tan, J.1    Vonrhein, C.2    Smart, O.S.3    Bricogne, G.4    Bollati, M.5
  • 11
    • 84879415959 scopus 로고    scopus 로고
    • Macrodomain-containing proteins: Regulating new intracellular functions of mono (ADP-ribosyl)ation
    • Feijs KL, Forst AH, Verheugd P, Luscher B. 2013. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat. Rev. Mol. Cell. Biol. 14:443-51
    • (2013) Nat. Rev. Mol. Cell. Biol. , vol.14 , pp. 443-451
    • Feijs, K.L.1    Forst, A.H.2    Verheugd, P.3    Luscher, B.4
  • 12
    • 79957465554 scopus 로고    scopus 로고
    • The macro domain protein family: Structure, functions, and their potential therapeutic implications
    • Han W, Li X, Fu X. 2011. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727:86-103
    • (2011) Mutat. Res. , vol.727 , pp. 86-103
    • Han, W.1    Li, X.2    Fu, X.3
  • 14
    • 70349804469 scopus 로고    scopus 로고
    • The histone variant macroH2A is an epigenetic regulator of key developmental genes
    • Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, et al. 2009. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16:1074-79
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1074-1079
    • Buschbeck, M.1    Uribesalgo, I.2    Wibowo, I.3    Rue, P.4    Martin, D.5
  • 16
    • 84863148743 scopus 로고    scopus 로고
    • Macro histone H2A1, 2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase
    • Kim W, Chakraborty G, Kim S, Shin J, Park CH, et al. 2012. Macro histone H2A1. 2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J. Biol. Chem. 287:5278-89
    • (2012) J. Biol. Chem. , vol.287 , pp. 5278-5289
    • Kim, W.1    Chakraborty, G.2    Kim, S.3    Shin, J.4    Park, C.H.5
  • 17
    • 67651174841 scopus 로고    scopus 로고
    • Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l ) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival
    • Chen L, HuL, ChanTH, TsaoGS, XieD, et al. 2009. Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l ) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology 50:122-29
    • (2009) Hepatology , vol.50 , pp. 122-129
    • Chen, L.1    Hu, L.2    Chan, T.H.3    Tsao, G.S.4    Xie, D.5
  • 18
    • 57349126243 scopus 로고    scopus 로고
    • Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1-phosphatase, a viral function conserved in the alpha-like supergroup
    • Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V. 2008. Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1-phosphatase, a viral function conserved in the alpha-like supergroup. J. Virol. 82:12325-34
    • (2008) J. Virol. , vol.82 , pp. 12325-12334
    • Eriksson, K.K.1    Cervantes-Barragan, L.2    Ludewig, B.3    Thiel, V.4
  • 20
    • 84916887602 scopus 로고    scopus 로고
    • Distribution of protein poly (ADPribosyl) ation systems across all domains of life
    • Perina D, Mikoc? A, Ahel J, Cetkovic H, Z? aja R, Ahel I. 2014. Distribution of protein poly(ADPribosyl) ation systems across all domains of life. DNA Repair 23:4-16
    • (2014) DNA Repair , vol.23 , pp. 4-16
    • Perina, D.1    Mikoc, A.2    Ahel, J.3    Etkovic H, C.4    Aja R, Z.5    Ahel, I.6
  • 21
    • 84880324619 scopus 로고    scopus 로고
    • Expanding functions of intracellular resident mono-ADPribosylation in cell physiology
    • Feijs KL, Verheugd P, Luscher B. 2013. Expanding functions of intracellular resident mono-ADPribosylation in cell physiology. FEBS J. 280:3519-29
    • (2013) FEBS J. , vol.280 , pp. 3519-3529
    • Feijs, K.L.1    Verheugd, P.2    Luscher, B.3
  • 22
    • 84862758175 scopus 로고    scopus 로고
    • Newinsights into the molecular and cellular functions of poly (ADP-ribose) and PARPs
    • Gibson BA, KrausWL. 2012. Newinsights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell. Biol. 13:411-24
    • (2012) Nat. Rev. Mol. Cell. Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 23
    • 25144496904 scopus 로고    scopus 로고
    • The Sir 2 family of protein deacetylases
    • Denu JM. 2005. The Sir 2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9:431-40
    • (2005) Curr. Opin. Chem. Biol. , vol.9 , pp. 431-440
    • Denu, J.M.1
  • 24
    • 84872268055 scopus 로고    scopus 로고
    • Sirtuins: NAD+-dependent deacetylase mechanism and regulation
    • Sauve AA, Youn DY. 2012. Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr. Opin. Chem. Biol. 16:535-43
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 535-543
    • Sauve, A.A.1    Youn, D.Y.2
  • 25
    • 84937519320 scopus 로고    scopus 로고
    • Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens
    • Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, et al. 2015. Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol. Cell 59:309-20
    • (2015) Mol. Cell , vol.59 , pp. 309-320
    • Rack, J.G.1    Morra, R.2    Barkauskaite, E.3    Kraehenbuehl, R.4    Ariza, A.5
  • 26
    • 41949129135 scopus 로고    scopus 로고
    • Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2
    • Kowieski TM, Lee S, Denu JM. 2008. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283:5317-26
    • (2008) J. Biol. Chem. , vol.283 , pp. 5317-5326
    • Kowieski, T.M.1    Lee, S.2    Denu, J.M.3
  • 27
    • 84937578418 scopus 로고    scopus 로고
    • Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation
    • Barkauskaite E, Jankevicius G, Ahel I. 2015. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58:935-46
    • (2015) Mol. Cell , vol.58 , pp. 935-946
    • Barkauskaite, E.1    Jankevicius, G.2    Ahel, I.3
  • 28
    • 84904697375 scopus 로고    scopus 로고
    • Family-wide analysis of poly (ADP-ribose) polymerase activity
    • Vyas S, Matic I, Uchima L, Rood J, Zaja R, et al. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5:4426
    • (2014) Nat. Commun. , vol.5 , pp. 4426
    • Vyas, S.1    Matic, I.2    Uchima, L.3    Rood, J.4    Zaja, R.5
  • 29
    • 53149094334 scopus 로고    scopus 로고
    • Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation
    • Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, et al. 2008. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32:57-69
    • (2008) Mol. Cell , vol.32 , pp. 57-69
    • Kleine, H.1    Poreba, E.2    Lesniewicz, K.3    Hassa, P.O.4    Hottiger, M.O.5
  • 30
    • 84873524967 scopus 로고    scopus 로고
    • PARP-1 mechanism for couplingDNA damage detection to poly (ADPribose) synthesis
    • LangelierMF, Pascal JM. 2013. PARP-1 mechanism for couplingDNA damage detection to poly(ADPribose) synthesis. Curr. Opin. Struct. Biol. 23:134-43
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 134-143
    • Langelier, M.F.1    Pascal, J.M.2
  • 31
    • 0019887827 scopus 로고
    • The branching and linear portions of poly (adenosine diphosphate ribose) have the same ? (1?2) ribose-ribose linkage
    • Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M, et al. 1981. The branching and linear portions of poly(adenosine diphosphate ribose) have the same ?(1?2) ribose-ribose linkage. J. Biol. Chem. 256:2916-21
    • (1981) J. Biol. Chem. , vol.256 , pp. 2916-2921
    • Miwa, M.1    Ishihara, M.2    Takishima, S.3    Takasuka, N.4    Maeda, M.5
  • 32
    • 0033527694 scopus 로고    scopus 로고
    • A biochemical genomics approach for identifying genes by the activity of their products
    • Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, et al. 1999. A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153-55
    • (1999) Science , vol.286 , pp. 1153-1155
    • Martzen, M.R.1    McCraith, S.M.2    Spinelli, S.L.3    Torres, F.M.4    Fields, S.5
  • 33
    • 13844312497 scopus 로고    scopus 로고
    • A highly specific phosphatase that acts on ADP-ribose 1-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae
    • Shull NP, Spinelli SL, Phizicky EM. 2005. A highly specific phosphatase that acts on ADP-ribose 1-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 33:650-60
    • (2005) Nucleic Acids Res. , vol.33 , pp. 650-660
    • Shull, N.P.1    Spinelli, S.L.2    Phizicky, E.M.3
  • 35
    • 84882412641 scopus 로고    scopus 로고
    • Visualization of poly (ADP-ribose) bound to PARG reveals inherent balance between exo-and endo-glycohydrolase activities
    • Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, et al. 2013. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo-and endo-glycohydrolase activities. Nat. Commun. 4:2164
    • (2013) Nat. Commun. , vol.4 , pp. 2164
    • Barkauskaite, E.1    Brassington, A.2    Tan, E.S.3    Warwicker, J.4    Dunstan, M.S.5
  • 36
    • 0015240269 scopus 로고
    • Splitting of the ribose-ribose linkage of poly (adenosine diphosphate-ribose) by a calf thymus extract
    • Miwa M, Sugimura T. 1971. Splitting of the ribose-ribose linkage of poly(adenosine diphosphate-ribose) by a calf thymus extract. J. Biol. Chem. 246:6362-64
    • (1971) J. Biol. Chem. , vol.246 , pp. 6362-6364
    • Miwa, M.1    Sugimura, T.2
  • 37
    • 80053928939 scopus 로고    scopus 로고
    • Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: Solution structure and catalytic properties
    • Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, et al. 2011. Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J. Biol. Chem. 286:35955-65
    • (2011) J. Biol. Chem. , vol.286 , pp. 35955-35965
    • Peterson, F.C.1    Chen, D.2    Lytle, B.L.3    Rossi, M.N.4    Ahel, I.5
  • 39
    • 84877634923 scopus 로고    scopus 로고
    • Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
    • Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, et al. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32:1225-37
    • (2013) EMBO J. , vol.32 , pp. 1225-1237
    • Sharifi, R.1    Morra, R.2    Appel, C.D.3    Tallis, M.4    Chioza, B.5
  • 40
    • 80053375417 scopus 로고    scopus 로고
    • The structure and catalytic mechanism of a poly (ADP-ribose) glycohydrolase
    • Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, et al. 2011. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616-20
    • (2011) Nature , vol.477 , pp. 616-620
    • Slade, D.1    Dunstan, M.S.2    Barkauskaite, E.3    Weston, R.4    Lafite, P.5
  • 41
    • 33847065453 scopus 로고    scopus 로고
    • Regulation of calcium signalling by adenine-based second messengers
    • Fliegert R, Gasser A, Guse AH. 2007. Regulation of calcium signalling by adenine-based second messengers. Biochem. Soc. Trans. 35:109-14
    • (2007) Biochem. Soc. Trans. , vol.35 , pp. 109-114
    • Fliegert, R.1    Gasser, A.2    Guse, A.H.3
  • 42
    • 57749190795 scopus 로고    scopus 로고
    • Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites
    • Neuvonen M, AholaT. 2009. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385:212-25
    • (2009) J. Mol. Biol. , vol.385 , pp. 212-225
    • Neuvonen, M.1    Ahola, T.2
  • 43
    • 59649087454 scopus 로고    scopus 로고
    • Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold
    • Chatterjee A, Johnson MA, Serrano P, Pedrini B, Joseph JS, et al. 2009. Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J. Virol. 83:1823-36
    • (2009) J. Virol. , vol.83 , pp. 1823-1836
    • Chatterjee, A.1    Johnson, M.A.2    Serrano, P.3    Pedrini, B.4    Joseph, J.S.5
  • 44
    • 0038047136 scopus 로고    scopus 로고
    • The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A
    • Allen MD, Buckle AM, Cordell SC, Lowe J, Bycroft M. 2003. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330:503-11
    • (2003) J. Mol. Biol. , vol.330 , pp. 503-511
    • Allen, M.D.1    Buckle, A.M.2    Cordell, S.C.3    Lowe, J.4    Bycroft, M.5
  • 45
    • 33748665458 scopus 로고    scopus 로고
    • Structural and functional basis for ADP-ribose and poly (ADP-ribose) binding by viral macro domains
    • EgloffMP, Malet H, Putics A, Heinonen M, Dutartre H, et al. 2006. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80:8493-502
    • (2006) J. Virol. , vol.80 , pp. 8493-8502
    • Egloff, M.P.1    Malet, H.2    Putics, A.3    Heinonen, M.4    Dutartre, H.5
  • 47
    • 69549083315 scopus 로고    scopus 로고
    • Poly (ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler
    • Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, et al. 2009. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. PNAS 106:13770-74
    • (2009) PNAS , vol.106 , pp. 13770-13774
    • Gottschalk, A.J.1    Timinszky, G.2    Kong, S.E.3    Jin, J.4    Cai, Y.5
  • 48
    • 84874456032 scopus 로고    scopus 로고
    • Recognition of mono-ADPribosylated ARTD10 substrates by ARTD8 macrodomains
    • Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, et al. 2013. Recognition of mono-ADPribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21:462-75
    • (2013) Structure , vol.21 , pp. 462-475
    • Forst, A.H.1    Karlberg, T.2    Herzog, N.3    Thorsell, A.G.4    Gross, A.5
  • 49
    • 85016372152 scopus 로고    scopus 로고
    • Molecular insights into poly (ADP-ribose) recognition and processing
    • Zaja R, Mikoc A, Barkauskaite E, Ahel I. 2012. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules 3:1-17
    • (2012) Biomolecules , vol.3 , pp. 1-17
    • Zaja, R.1    Mikoc, A.2    Barkauskaite, E.3    Ahel, I.4
  • 50
    • 84897541400 scopus 로고    scopus 로고
    • Poly (ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response
    • Tallis M, Morra R, Barkauskaite E, Ahel I. 2014. Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage responsE. Chromosoma 123:79-90
    • (2014) Chromosoma , vol.123 , pp. 79-90
    • Tallis, M.1    Morra, R.2    Barkauskaite, E.3    Ahel, I.4
  • 51
    • 84908192039 scopus 로고    scopus 로고
    • Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1
    • Hirsch BM, Burgos ES, Schramm VL. 2014. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1. ACS Chem. Biol. 9:2255-62
    • (2014) ACS Chem. Biol. , vol.9 , pp. 2255-2262
    • Hirsch, B.M.1    Burgos, E.S.2    Schramm, V.L.3
  • 53
    • 20544475918 scopus 로고    scopus 로고
    • Identification of three critical acidic residues of poly (ADP-ribose) glycohydrolase involved in catalysis: Determining thePARGcatalytic domain
    • Patel CN, Koh DW, Jacobson MK, Oliveira MA. 2005. Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining thePARGcatalytic domain. Biochem. J. 388:493-500
    • (2005) Biochem. J. , vol.388 , pp. 493-500
    • Patel, C.N.1    Koh, D.W.2    Jacobson, M.K.3    Oliveira, M.A.4
  • 54
    • 84870910810 scopus 로고    scopus 로고
    • Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives
    • Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G, et al. 2012. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLOS ONE 7:e50889
    • (2012) PLOS ONE , vol.7 , pp. e50889
    • Tucker, J.A.1    Bennett, N.2    Brassington, C.3    Durant, S.T.4    Hassall, G.5
  • 55
    • 84861869442 scopus 로고    scopus 로고
    • Structure of mammalian poly (ADPribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element
    • Kim IK, Kiefer JR, Ho CM, Stegeman RA, Classen S, et al. 2012. Structure of mammalian poly(ADPribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat. Struct. Mol. Biol. 19:653-56
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 653-656
    • Kim, I.K.1    Kiefer, J.R.2    Ho, C.M.3    Stegeman, R.A.4    Classen, S.5
  • 57
    • 33845301167 scopus 로고    scopus 로고
    • Poly (ADP-ribose) (PAR) polymer is a death signal
    • Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, et al. 2006. Poly(ADP-ribose) (PAR) polymer is a death signal. PNAS 103:18308-13
    • (2006) PNAS , vol.103 , pp. 18308-18313
    • Andrabi, S.A.1    Kim, N.S.2    Yu, S.W.3    Wang, H.4    Koh, D.W.5
  • 58
    • 84901594799 scopus 로고    scopus 로고
    • Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts
    • DaughertyMD, Young JM, Kerns JA, Malik HS. 2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet. 10:e1004403
    • (2014) PLOS Genet. , vol.10 , pp. e1004403
    • Daugherty, M.D.1    Young, J.M.2    Kerns, J.A.3    Malik, H.S.4
  • 59
    • 84861134293 scopus 로고    scopus 로고
    • Identification of novel components of NAD-utilizingmetabolic pathways and prediction of their biochemical functions
    • de Souza RF, Aravind L. 2012. Identification of novel components of NAD-utilizingmetabolic pathways and prediction of their biochemical functions. Mol. BioSyst. 8:1661-77
    • (2012) Mol. BioSyst. , vol.8 , pp. 1661-1677
    • De Souza, R.F.1    Aravind, L.2
  • 60
    • 77957743077 scopus 로고    scopus 로고
    • Evolutionary history of the poly (ADP-ribose) polymerase gene family in eukaryotes
    • Citarelli M, Teotia S, Lamb RS. 2010. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol. Biol. 10:308
    • (2010) BMC Evol. Biol. , vol.10 , pp. 308
    • Citarelli, M.1    Teotia, S.2    Lamb, R.S.3
  • 61
    • 84917694641 scopus 로고    scopus 로고
    • Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism
    • Gossmann TI, Ziegler M. 2014. Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism. DNA Repair 23:39-48
    • (2014) DNA Repair , vol.23 , pp. 39-48
    • Gossmann, T.I.1    Ziegler, M.2
  • 62
    • 57749110749 scopus 로고    scopus 로고
    • Molecular mechanism ofDNA deadenylation by the neurological disease protein Aprataxin
    • Rass U, Ahel I, West SC. 2008. Molecular mechanism ofDNA deadenylation by the neurological disease protein Aprataxin. J. Biol. Chem. 283:33994-4001
    • (2008) J. Biol. Chem. , vol.283 , pp. 33994-34001
    • Rass, U.1    Ahel, I.2    West, S.C.3
  • 63
    • 30744470374 scopus 로고    scopus 로고
    • The Nudix hydrolase superfamily
    • McLennan AG. 2006. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63:123-43
    • (2006) Cell. Mol. Life Sci. , vol.63 , pp. 123-143
    • McLennan, A.G.1
  • 64
    • 66449123334 scopus 로고    scopus 로고
    • Hydrolase regulates NAD+ metabolites and modulates cellular redox
    • Tong L, Lee S, Denu JM. 2009. Hydrolase regulates NAD+ metabolites and modulates cellular redox. J. Biol. Chem. 284:11256-66
    • (2009) J. Biol. Chem. , vol.284 , pp. 11256-11266
    • Tong, L.1    Lee, S.2    Denu, J.M.3
  • 66
    • 77953996286 scopus 로고    scopus 로고
    • Approaching the molecular and physiological function of macroH2A variants
    • Buschbeck M, Di Croce L. 2010. Approaching the molecular and physiological function of macroH2A variants. Epigenetics 5:118-23
    • (2010) Epigenetics , vol.5 , pp. 118-123
    • Buschbeck, M.1    Di Croce, L.2
  • 67
    • 0033568076 scopus 로고    scopus 로고
    • Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing
    • Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R. 1999. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 27:3685-89
    • (1999) Nucleic Acids Res. , vol.27 , pp. 3685-3689
    • Rasmussen, T.P.1    Huang, T.2    Mastrangelo, M.A.3    Loring, J.4    Panning, B.5    Jaenisch, R.6
  • 69
    • 84943757396 scopus 로고    scopus 로고
    • Histone variants as emerging regulators of embryonic stem cell identity
    • Turinetto V, Giachino C. 2015. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 10:563-73
    • (2015) Epigenetics , vol.10 , pp. 563-573
    • Turinetto, V.1    Giachino, C.2
  • 70
    • 84861328296 scopus 로고    scopus 로고
    • MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells
    • Creppe C, Janich P, Cantarino N, NogueraM, Valero V, et al. 2012. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol. Cell. Biol. 32:1442-52
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 1442-1452
    • Creppe, C.1    Janich, P.2    Cantarino, N.3    Noguera, M.4    Valero, V.5
  • 71
    • 84930962818 scopus 로고    scopus 로고
    • A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters
    • Yildirim O, Hung JH, Cedeno RJ, Weng Z, Lengner CJ, Rando OJ. 2014. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLOS Genet. 10:e1004515
    • (2014) PLOS Genet. , vol.10 , pp. e1004515
    • Yildirim, O.1    Hung, J.H.2    Cedeno, R.J.3    Weng, Z.4    Lengner, C.J.5    Rando, O.J.6
  • 72
    • 31344480648 scopus 로고    scopus 로고
    • Mechanism of polymerase II transcription repression by the histone variant macroH2A
    • Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, et al. 2006. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol. Cell. Biol. 26:1156-64
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1156-1164
    • Doyen, C.M.1    An, W.2    Angelov, D.3    Bondarenko, V.4    Mietton, F.5
  • 73
    • 84879786192 scopus 로고    scopus 로고
    • MacroH2A-an epigenetic regulator of cancer
    • Cantarino N, Douet J, Buschbeck M. 2013. MacroH2A-an epigenetic regulator of cancer. Cancer Lett. 336:247-52
    • (2013) Cancer Lett. , vol.336 , pp. 247-252
    • Cantarino, N.1    Douet, J.2    Buschbeck, M.3
  • 74
    • 80053570354 scopus 로고    scopus 로고
    • Snf2-family proteins: Chromatin remodellers for any occasion
    • Ryan DP, Owen-Hughes T. 2011. Snf2-family proteins: chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 15:649-56
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 649-656
    • Ryan, D.P.1    Owen-Hughes, T.2
  • 75
    • 77951176116 scopus 로고    scopus 로고
    • CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients
    • Chen L, Chan TH, Yuan YF, Hu L, Huang J, et al. 2010. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J. Clin. Investig. 120:1178-91
    • (2010) J. Clin. Investig. , vol.120 , pp. 1178-1191
    • Chen, L.1    Chan, T.H.2    Yuan, Y.F.3    Hu, L.4    Huang, J.5
  • 76
    • 84886721826 scopus 로고    scopus 로고
    • CHD1L promotes tumor progression and predicts survival in colorectal carcinoma
    • Ji X, Li J, Zhu L, Cai J, Zhang J, et al. 2013. CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J. Surg. Res. 185:84-91
    • (2013) J. Surg. Res. , vol.185 , pp. 84-91
    • Ji, X.1    Li, J.2    Zhu, L.3    Cai, J.4    Zhang, J.5
  • 77
    • 84965049951 scopus 로고    scopus 로고
    • The chromatin remodeling factor Chd1l is required in the preimplantation embryo
    • Snider AC, Leong D, Wang QT, Wysocka J, Yao MW, Scott MP. 2013. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol. Open 2:121-31
    • (2013) Biol. Open , vol.2 , pp. 121-131
    • Snider, A.C.1    Leong, D.2    Wang, Q.T.3    Wysocka, J.4    Yao, M.W.5    Scott, M.P.6
  • 78
    • 84871605560 scopus 로고    scopus 로고
    • Activation of the SNF2 family ATPase ALC1 by poly (ADP-ribose) in a stable ALC1PARP1nucleosome intermediate
    • Gottschalk AJ, Trivedi RD, Conaway JW, Conaway RC. 2012. Activation of the SNF2 family ATPase ALC1 by poly(ADP-ribose) in a stable ALC1PARP1nucleosome intermediate. J. Biol. Chem. 287:43527-32
    • (2012) J. Biol. Chem. , vol.287 , pp. 43527-43532
    • Gottschalk, A.J.1    Trivedi, R.D.2    Conaway, J.W.3    Conaway, R.C.4
  • 79
    • 84890506946 scopus 로고    scopus 로고
    • CHD1L: A novel oncogene
    • ChengW, Su Y, Xu F. 2013. CHD1L: A novel oncogene. Mol. Cancer 12:170
    • (2013) Mol. Cancer , vol.12 , pp. 170
    • Cheng, W.1    Su, Y.2    Xu, F.3
  • 80
    • 69249208771 scopus 로고    scopus 로고
    • Transgenic CHD1L expression in mouse induces spontaneous tumors
    • Chen M, Huang JD, Hu L, Zheng BJ, Chen L, et al. 2009. Transgenic CHD1L expression in mouse induces spontaneous tumors. PLOS ONE 4:e6727
    • (2009) PLOS ONE , vol.4 , pp. e6727
    • Chen, M.1    Huang, J.D.2    Hu, L.3    Zheng, B.J.4    Chen, L.5
  • 82
    • 26644446700 scopus 로고    scopus 로고
    • B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity
    • Aguiar RC, Takeyama K, He C, Kreinbrink K, Shipp MA. 2005. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280:33756-65
    • (2005) J. Biol. Chem. , vol.280 , pp. 33756-33765
    • Aguiar, R.C.1    Takeyama, K.2    He, C.3    Kreinbrink, K.4    Shipp, M.A.5
  • 83
    • 0034672418 scopus 로고    scopus 로고
    • BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration
    • Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA. 2000. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96:4328-34
    • (2000) Blood , vol.96 , pp. 4328-4334
    • Aguiar, R.C.1    Yakushijin, Y.2    Kharbanda, S.3    Salgia, R.4    Fletcher, J.A.5    Shipp, M.A.6
  • 84
    • 33745848147 scopus 로고    scopus 로고
    • BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate
    • Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RC, Shipp MA. 2006. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 26:5348-59
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5348-5359
    • Juszczynski, P.1    Kutok, J.L.2    Li, C.3    Mitra, J.4    Aguiar, R.C.5    Shipp, M.A.6
  • 85
    • 38149118871 scopus 로고    scopus 로고
    • The macroPARP genes parp-9 and parp-14 are developmentally and differentially regulated in mouse tissues
    • Hakmé A, Huber A, Dollé P, Schreiber V. 2008. The macroPARP genes parp-9 and parp-14 are developmentally and differentially regulated in mouse tissues. Dev. Dyn. 237:209-15
    • (2008) Dev. Dyn. , vol.237 , pp. 209-215
    • Hakmé, A.1    Huber, A.2    Dollé, P.3    Schreiber, V.4
  • 86
    • 84873855937 scopus 로고    scopus 로고
    • BAL1 and its partner E3 ligase, BBAP, link Poly (ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8
    • Yan Q, Xu R, Zhu L, Cheng X, Wang Z, et al. 2013. BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol. Cell. Biol. 33:845-57
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 845-857
    • Yan, Q.1    Xu, R.2    Zhu, L.3    Cheng, X.4    Wang, Z.5
  • 87
    • 84878644504 scopus 로고    scopus 로고
    • BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFN STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma
    • Camicia R, Bachmann SB, Winkler HC, Beer M, Tinguely M, et al. 2013. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFN STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma. J. Cell Sci. 126:1969-80
    • (2013) J. Cell Sci. , vol.126 , pp. 1969-1980
    • Camicia, R.1    Bachmann, S.B.2    Winkler, H.C.3    Beer, M.4    Tinguely, M.5
  • 88
    • 84902599616 scopus 로고    scopus 로고
    • Key tumor suppressor genes inactivated by "greater promoter"methylation and somaticmutations in head and neck cancer
    • Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, et al. 2014. Key tumor suppressor genes inactivated by "greater promoter"methylation and somaticmutations in head and neck cancer. Epigenetics 9:1031-46
    • (2014) Epigenetics , vol.9 , pp. 1031-1046
    • Guerrero-Preston, R.1    Michailidi, C.2    Marchionni, L.3    Pickering, C.R.4    Frederick, M.J.5
  • 90
    • 77953289374 scopus 로고    scopus 로고
    • Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
    • Tong L, Denu JM. 2010. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804:1617-25
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1617-1625
    • Tong, L.1    Denu, J.M.2
  • 91
    • 35948993495 scopus 로고    scopus 로고
    • Estrogenically regulated LRP16 interacts with estrogen receptor ?and enhances the receptor's transcriptional activity
    • Han WD, Zhao YL, Meng YG, Zang L, Wu ZQ, et al. 2007. Estrogenically regulated LRP16 interacts with estrogen receptor ?and enhances the receptor's transcriptional activity. Endocr. Relat. Cancer 14:741-53
    • (2007) Endocr. Relat. Cancer , vol.14 , pp. 741-753
    • Han, W.D.1    Zhao, Y.L.2    Meng, Y.G.3    Zang, L.4    Wu, Z.Q.5
  • 92
    • 65549148622 scopus 로고    scopus 로고
    • The single-macro domain protein LRP16 is an essential cofactor of androgen receptor
    • Yang J, Zhao YL, Wu ZQ, Si YL, Meng YG, et al. 2009. The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr. Relat. Cancer 16:139-53
    • (2009) Endocr. Relat. Cancer , vol.16 , pp. 139-153
    • Yang, J.1    Zhao, Y.L.2    Wu, Z.Q.3    Si, Y.L.4    Meng, Y.G.5
  • 93
    • 84917743746 scopus 로고    scopus 로고
    • MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers
    • Mohseni M, Cidado J, Croessmann S, Cravero K, Cimino-Mathews A, et al. 2014. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. PNAS 111:17606-11
    • (2014) PNAS , vol.111 , pp. 17606-17611
    • Mohseni, M.1    Cidado, J.2    Croessmann, S.3    Cravero, K.4    Cimino-Mathews, A.5
  • 94
    • 84879256573 scopus 로고    scopus 로고
    • Two distinct categories of focal deletions in cancer genomes
    • Rajaram M, Zhang J, Wang T, Li J, Kuscu C, et al. 2013. Two distinct categories of focal deletions in cancer genomes. PLOS ONE 8:e66264
    • (2013) PLOS ONE , vol.8 , pp. e66264
    • Rajaram, M.1    Zhang, J.2    Wang, T.3    Li, J.4    Kuscu, C.5
  • 95
    • 84937526821 scopus 로고    scopus 로고
    • Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity
    • Yao F, Kausalya JP, Sia YY, Teo AS, Lee WH, et al. 2015. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 12:272-85
    • (2015) Cell Rep. , vol.12 , pp. 272-285
    • Yao, F.1    Kausalya, J.P.2    Sia, Y.Y.3    Teo, A.S.4    Lee, W.H.5
  • 96
    • 2942707644 scopus 로고    scopus 로고
    • Human poly (ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments
    • Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. 2004. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297:521-32
    • (2004) Exp. Cell Res. , vol.297 , pp. 521-532
    • Meyer-Ficca, M.L.1    Meyer, R.G.2    Coyle, D.L.3    Jacobson, E.L.4    Jacobson, M.K.5
  • 97
    • 84860844237 scopus 로고    scopus 로고
    • ADP-ribosylhydrolase 3 (ARH3), not poly (ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly (ADP-ribose)
    • Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A, et al. 2012. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J. Biol. Chem. 287:16088-102
    • (2012) J. Biol. Chem. , vol.287 , pp. 16088-16102
    • Niere, M.1    Mashimo, M.2    Agledal, L.3    Dölle, C.4    Kasamatsu, A.5
  • 98
    • 84879566553 scopus 로고    scopus 로고
    • Roles of poly (ADP-ribose) glycohydrolase in DNA damage and apoptosis
    • Feng X, Koh DW. 2013. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int. Rev. Cell Mol. Biol. 304:227-81
    • (2013) Int. Rev. Cell Mol. Biol. , vol.304 , pp. 227-281
    • Feng, X.1    Koh, D.W.2
  • 99
    • 84942250684 scopus 로고    scopus 로고
    • The human NAD metabolome: Functions, metabolism and compartmentalization
    • Nikiforov A, Kulikova V, Ziegler M. 2015. The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50:284-97
    • (2015) Crit. Rev. Biochem. Mol. Biol. , vol.50 , pp. 284-297
    • Nikiforov, A.1    Kulikova, V.2    Ziegler, M.3
  • 100
    • 0347719407 scopus 로고    scopus 로고
    • Loss of poly (ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster
    • Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, et al. 2004. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. PNAS 101:82-86
    • (2004) PNAS , vol.101 , pp. 82-86
    • Hanai, S.1    Kanai, M.2    Ohashi, S.3    Okamoto, K.4    Yamada, M.5
  • 101
    • 19944418213 scopus 로고    scopus 로고
    • Failure to degrade poly (ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality
    • KohDW, Lawler AM, Poitras MF, SasakiM, Wattler S, et al. 2004. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 101:17699-704
    • (2004) PNAS , vol.101 , pp. 17699-17704
    • Koh, D.W.1    Lawler, A.M.2    Poitras, M.F.3    Sasaki, M.4    Wattler, S.5
  • 102
  • 103
    • 79960206370 scopus 로고    scopus 로고
    • PARG is recruited to DNA damage sites through poly (ADP-ribose)-and PCNA-dependent mechanisms
    • Mortusewicz O, Fouquerel E, Ame JC, Leonhardt H, Schreiber V. 2011. PARG is recruited to DNA damage sites through poly(ADP-ribose)-and PCNA-dependent mechanisms. Nucleic Acids Res. 39:5045-56
    • (2011) Nucleic Acids Res. , vol.39 , pp. 5045-5056
    • Mortusewicz, O.1    Fouquerel, E.2    Ame, J.C.3    Leonhardt, H.4    Schreiber, V.5
  • 104
    • 3543031621 scopus 로고    scopus 로고
    • Depletion of the 110-kilodalton isoform of poly (ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice
    • Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, et al. 2004. Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol. Cell. Biol. 24:7163-78
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7163-7178
    • Cortes, U.1    Tong, W.M.2    Coyle, D.L.3    Meyer-Ficca, M.L.4    Meyer, R.G.5
  • 105
    • 84886723521 scopus 로고    scopus 로고
    • Poly (ADP-ribose): PARadigms and PARadoxes
    • Burkle A, Virag L. 2013. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34:1046-65
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1046-1065
    • Burkle, A.1    Virag, L.2
  • 106
    • 20144388979 scopus 로고    scopus 로고
    • PARGactivitymediates intestinal injury induced by splanchnic artery occlusion and reperfusion
    • Cuzzocrea S, Di PaolaR, MazzonE, CortesU, GenoveseT, et al. 2005. PARGactivitymediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J. 19:558-66
    • (2005) FASEB J. , vol.19 , pp. 558-566
    • Cuzzocrea, S.1    Di Paola, R.2    Mazzon, E.3    Cortes, U.4    Genovese, T.5
  • 107
    • 19444366619 scopus 로고    scopus 로고
    • Role of poly (ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion
    • Cuzzocrea S, Wang ZQ. 2005. Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacol. Res. 52:100-8
    • (2005) Pharmacol. Res. , vol.52 , pp. 100-108
    • Cuzzocrea, S.1    Wang, Z.Q.2
  • 108
    • 2942558562 scopus 로고    scopus 로고
    • Treatment with a novel poly (ADPribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice
    • Genovese T, Di Paola R, Catalano P, Li JH, Xu W, et al. 2004. Treatment with a novel poly(ADPribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in micE. Crit. Care Med. 32:1365-74
    • (2004) Crit. Care Med. , vol.32 , pp. 1365-1374
    • Genovese, T.1    Di Paola, R.2    Catalano, P.3    Li, J.H.4    Xu, W.5
  • 109
    • 19444363413 scopus 로고    scopus 로고
    • Mice lacking the 110-kD isoform of poly (ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury
    • PatelNS, Cortes U, Di Poala R, Mazzon E, Mota-FilipeH, et al. 2005. Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 16:712-19
    • (2005) J. Am. Soc. Nephrol. , vol.16 , pp. 712-719
    • Patel, N.S.1    Cortes, U.2    Di Poala, R.3    Mazzon, E.4    Mota-Filipe, H.5
  • 110
    • 0034814670 scopus 로고    scopus 로고
    • Physiology and pathophysiology of poly (ADP-ribosyl)ation
    • Burkle A. 2001. Physiology and pathophysiology of poly(ADP-ribosyl)ation. BioEssays 23:795-806
    • (2001) BioEssays , vol.23 , pp. 795-806
    • Burkle, A.1
  • 111
    • 0036499892 scopus 로고    scopus 로고
    • Poly (ADP-ribose) polymerase: Killer or conspirator? the 'suicide hypothesis' revisited
    • Chiarugi A. 2002. Poly(ADP-ribose) polymerase: Killer or conspirator? The 'suicide hypothesis' revisited. Trends Pharmacol. Sci. 23:122-29
    • (2002) Trends Pharmacol. Sci. , vol.23 , pp. 122-129
    • Chiarugi, A.1
  • 112
    • 0033598713 scopus 로고    scopus 로고
    • Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion
    • Ha HC, Snyder SH. 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978-82
    • (1999) PNAS , vol.96 , pp. 13978-13982
    • Ha, H.C.1    Snyder, S.H.2
  • 113
    • 4644307600 scopus 로고    scopus 로고
    • TRPM2 channel opening in response to oxidative stress is dependent on activation of poly (ADP-ribose) polymerase
    • Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, et al. 2004. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143:186-92
    • (2004) Br. J. Pharmacol. , vol.143 , pp. 186-192
    • Fonfria, E.1    Marshall, I.C.2    Benham, C.D.3    Boyfield, I.4    Brown, J.D.5
  • 114
    • 75849118659 scopus 로고    scopus 로고
    • Visualization of subcellular NAD pools and intraorganellar protein localization by poly-ADP-ribose formation
    • Dolle C, Niere M, Lohndal E, Ziegler M. 2010. Visualization of subcellular NAD pools and intraorganellar protein localization by poly-ADP-ribose formation. Cell. Mol. Life Sci. 67:433-43
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 433-443
    • Dolle, C.1    Niere, M.2    Lohndal, E.3    Ziegler, M.4
  • 115
    • 0035978751 scopus 로고    scopus 로고
    • ADP-ribose gating of the calciumpermeable LTRPC2 channel revealed by Nudix motif homology
    • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. 2001. ADP-ribose gating of the calciumpermeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595-99
    • (2001) Nature , vol.411 , pp. 595-599
    • Perraud, A.L.1    Fleig, A.2    Dunn, C.A.3    Bagley, L.A.4    Launay, P.5
  • 116
    • 84947792686 scopus 로고    scopus 로고
    • Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2-phosphate
    • Tóth B, Iordanov I, Csanády L. 2015. Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2-phosphate. J. Gen. Physiol. 145:419-30
    • (2015) J. Gen. Physiol. , vol.145 , pp. 419-430
    • Oth B, T.1    Iordanov, I.2    Csanády, L.3
  • 117
    • 67650526046 scopus 로고    scopus 로고
    • Poly (ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure
    • Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E, et al. 2009. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J. Biol. Chem. 284:17668-76
    • (2009) J. Biol. Chem. , vol.284 , pp. 17668-17676
    • Formentini, L.1    Macchiarulo, A.2    Cipriani, G.3    Camaioni, E.4    Rapizzi, E.5
  • 118
    • 0037203939 scopus 로고    scopus 로고
    • Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5-diphosphoribose (ADP-ribose)
    • Lin S, Gasmi L, Xie Y, Ying K, Gu S, et al. 2002. Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5-diphosphoribose (ADP-ribose). Biochim. Biophys. Acta 1594:127-35
    • (2002) Biochim. Biophys. Acta , vol.1594 , pp. 127-135
    • Lin, S.1    Gasmi, L.2    Xie, Y.3    Ying, K.4    Gu, S.5
  • 119
    • 84880332128 scopus 로고    scopus 로고
    • ADP-ribosylation, a mechanism regulating nitrogenase activity
    • Nordlund S, Hogbom M. 2013. ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J. 280:3484-90
    • (2013) FEBS J. , vol.280 , pp. 3484-3490
    • Nordlund, S.1    Hogbom, M.2
  • 120
    • 0028116726 scopus 로고
    • Endogenous ADP-ribosylation during development of the prokaryote Myxococcus xanthus
    • Eastman D, Dworkin M. 1994. Endogenous ADP-ribosylation during development of the prokaryote Myxococcus xanthus. Microbiology 140(Pt 11):3167-76
    • (1994) Microbiology , vol.140 , pp. 3167-3176
    • Eastman, D.1    Dworkin, M.2
  • 121
    • 71049184750 scopus 로고    scopus 로고
    • Analysis and identification of ADPribosylated proteins of Streptomyces coelicolor M145
    • Penyige A, Keseru J, Fazakas F, Schmelczer I, Szirak K, et al. 2009. Analysis and identification of ADPribosylated proteins of Streptomyces coelicolor M145. J. Microbiol. 47:549-56
    • (2009) J. Microbiol. , vol.47 , pp. 549-556
    • Penyige, A.1    Keseru, J.2    Fazakas, F.3    Schmelczer, I.4    Szirak, K.5
  • 123
    • 70350463600 scopus 로고    scopus 로고
    • Amultifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections
    • Enjalbert B, Rachini A, VediyappanG, Pietrella D, SpaccapeloR, et al. 2009. Amultifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect. Immun. 77:4847-58
    • (2009) Infect. Immun. , vol.77 , pp. 4847-4858
    • Enjalbert, B.1    Rachini, A.2    Vediyappan, G.3    Pietrella, D.4    Spaccapelo, R.5
  • 124
    • 84905651918 scopus 로고    scopus 로고
    • Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells
    • Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, et al. 2014. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front. Microbiol. 5:392
    • (2014) Front. Microbiol. , vol.5 , pp. 392
    • Surmann, K.1    Michalik, S.2    Hildebrandt, P.3    Gierok, P.4    Depke, M.5
  • 125
    • 84876095374 scopus 로고    scopus 로고
    • Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning
    • Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:136-48
    • (2013) Mol. Cell , vol.50 , pp. 136-148
    • Sberro, H.1    Leavitt, A.2    Kiro, R.3    Koh, E.4    Peleg, Y.5
  • 127
    • 79960372663 scopus 로고    scopus 로고
    • The ADP-ribose-1-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses
    • Kuri T, Eriksson KK, Putics A, Zust R, Snijder EJ, et al. 2011. The ADP-ribose-1-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses. J. Gen. Virol. 92:1899-905
    • (2011) J. Gen. Virol. , vol.92 , pp. 1899-1905
    • Kuri, T.1    Eriksson, K.K.2    Putics, A.3    Zust, R.4    Snijder, E.J.5
  • 128
    • 70349293672 scopus 로고    scopus 로고
    • Evolution of teleost fish retroviruses: Characterization of new retroviruses with cellular genes
    • Basta HA, Cleveland SB, Clinton RA, Dimitrov AG, McClure MA. 2009. Evolution of teleost fish retroviruses: characterization of new retroviruses with cellular genes. J. Virol. 83:10152-62
    • (2009) J. Virol. , vol.83 , pp. 10152-10162
    • Basta, H.A.1    Cleveland, S.B.2    Clinton, R.A.3    Dimitrov, A.G.4    McClure, M.A.5
  • 129
    • 67449102614 scopus 로고    scopus 로고
    • The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket
    • Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N, et al. 2009. The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J. Virol. 83:6534-45
    • (2009) J. Virol. , vol.83 , pp. 6534-6545
    • Malet, H.1    Coutard, B.2    Jamal, S.3    Dutartre, H.4    Papageorgiou, N.5
  • 131
    • 84934438587 scopus 로고    scopus 로고
    • ADP-ribose-1- phosphatase activities of the human coronavirus 229E and SARS coronavirus X domains
    • Putics A, Slaby J, Filipowicz W, Gorbalenya AE, Ziebuhr J. 2006. ADP-ribose-1- phosphatase activities of the human coronavirus 229E and SARS coronavirus X domains. Adv. Exp. Med. Biol. 581:93-96
    • (2006) Adv. Exp. Med. Biol. , vol.581 , pp. 93-96
    • Putics, A.1    Slaby, J.2    Filipowicz, W.3    Gorbalenya, A.E.4    Ziebuhr, J.5
  • 133
    • 0027935902 scopus 로고
    • Genetic analysis of the nsP3 region of Sindbis virus: Evidence for roles in minus-strand and subgenomic RNA synthesis
    • LaStarza MW, Lemm JA, Rice CM. 1994. Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J. Virol. 68:5781-91
    • (1994) J. Virol. , vol.68 , pp. 5781-5791
    • LaStarza, M.W.1    Lemm, J.A.2    Rice, C.M.3
  • 134
    • 43949136115 scopus 로고    scopus 로고
    • Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3
    • Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, et al. 2008. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 82:5279-94
    • (2008) J. Virol. , vol.82 , pp. 5279-5294
    • Neuman, B.W.1    Joseph, J.S.2    Saikatendu, K.S.3    Serrano, P.4    Chatterjee, A.5
  • 135
    • 81755182978 scopus 로고    scopus 로고
    • SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication
    • Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. 2011. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLOS Pathog. 7:e1002383
    • (2011) PLOS Pathog. , vol.7 , pp. e1002383
    • Neuvonen, M.1    Kazlauskas, A.2    Martikainen, M.3    Hinkkanen, A.4    Ahola, T.5    Saksela, K.6
  • 136
    • 67349175974 scopus 로고    scopus 로고
    • The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice
    • Park E, Griffin DE. 2009. The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388:305-14
    • (2009) Virology , vol.388 , pp. 305-314
    • Park, E.1    Griffin, D.E.2
  • 137
    • 26444559529 scopus 로고    scopus 로고
    • ADP-ribose-1-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture
    • Putics A, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J. 2005. ADP-ribose-1-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79:12721-31
    • (2005) J. Virol. , vol.79 , pp. 12721-12731
    • Putics, A.1    Filipowicz, W.2    Hall, J.3    Gorbalenya, A.E.4    Ziebuhr, J.5
  • 139
    • 84893442958 scopus 로고    scopus 로고
    • Interferon-stimulated poly (ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication
    • Atasheva S, Frolova EI, Frolov I. 2014. Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J. Virol. 88:2116-30
    • (2014) J. Virol. , vol.88 , pp. 2116-2130
    • Atasheva, S.1    Frolova, E.I.2    Frolov, I.3
  • 140
    • 0033905185 scopus 로고    scopus 로고
    • Protection or damage: A dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection?
    • Bertoletti A, Maini MK. 2000. Protection or damage: A dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr. Opin. Microbiol. 3:387-92
    • (2000) Curr. Opin. Microbiol. , vol.3 , pp. 387-392
    • Bertoletti, A.1    Maini, M.K.2
  • 141
    • 34247853383 scopus 로고    scopus 로고
    • Pathology and pathogenesis of severe acute respiratory syndrome
    • Gu J, Korteweg C. 2007. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 170:1136-47
    • (2007) Am. J. Pathol. , vol.170 , pp. 1136-1147
    • Gu, J.1    Korteweg, C.2
  • 142
    • 84947236129 scopus 로고    scopus 로고
    • A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replicationtranscription complex
    • Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. 2015. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replicationtranscription complex. Virology 484:313-22
    • (2015) Virology , vol.484 , pp. 313-322
    • Kusov, Y.1    Tan, J.2    Alvarez, E.3    Enjuanes, L.4    Hilgenfeld, R.5
  • 143
    • 84857945772 scopus 로고    scopus 로고
    • Inhibition of poly (ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells
    • Fathers C, Drayton RM, Solovieva S, Bryant HE. 2012. Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle 11:990-97
    • (2012) Cell Cycle , vol.11 , pp. 990-997
    • Fathers, C.1    Drayton, R.M.2    Solovieva, S.3    Bryant, H.E.4
  • 144
    • 84937606000 scopus 로고    scopus 로고
    • Chromatin to clinic: The molecular rationale for PARP1 inhibitor function
    • Feng FY, de Bono JS, Rubin MA, Knudsen KE. 2015. Chromatin to clinic: The molecular rationale for PARP1 inhibitor function. Mol. Cell 58:925-34
    • (2015) Mol. Cell , vol.58 , pp. 925-934
    • Feng, F.Y.1    De Bono, J.S.2    Rubin, M.A.3    Knudsen, K.E.4
  • 145
    • 63849177643 scopus 로고    scopus 로고
    • Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential
    • MinW, Wang ZQ. 2009. Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front. Biosci. 14:1619-26
    • (2009) Front. Biosci. , vol.14 , pp. 1619-1626
    • Min, W.1    Wang, Z.Q.2
  • 147
    • 84905908239 scopus 로고    scopus 로고
    • Design and synthesis of phenolic hydrazide hydrazones as potent poly (ADP-ribose) glycohydrolase (PARG) inhibitors
    • Islam R, Koizumi F, Kodera Y, Inoue K, OkawaraT, MasutaniM. 2014. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg. Med. Chem. Lett. 24:3802-6
    • (2014) Bioorg. Med. Chem. Lett. , vol.24 , pp. 3802-3806
    • Islam, R.1    Koizumi, F.2    Kodera, Y.3    Inoue, K.4    Okawara, T.5    Masutani, M.6
  • 148
    • 0019630772 scopus 로고
    • Histone-dependent ADP-ribosylation of low molecular nucleotide by poly (ADP-ribose) polymerase
    • Tanaka Y, Matsunami N, Itaya A, Yoshihara K. 1981. Histone-dependent ADP-ribosylation of low molecular nucleotide by poly(ADP-ribose) polymerase. J. Biochem. 90:1131-39
    • (1981) J. Biochem. , vol.90 , pp. 1131-1139
    • Tanaka, Y.1    Matsunami, N.2    Itaya, A.3    Yoshihara, K.4
  • 149
    • 0023008214 scopus 로고
    • Accumulation of dinucleoside polyphosphates in Saccharomyces cerevisiae under stress conditions. High levels are associated with cell death
    • Baltzinger M, Ebel JP, Remy P. 1986. Accumulation of dinucleoside polyphosphates in Saccharomyces cerevisiae under stress conditions. High levels are associated with cell death. Biochimie 68:1231-36
    • (1986) Biochimie , vol.68 , pp. 1231-1236
    • Baltzinger, M.1    Ebel, J.P.2    Remy, P.3
  • 150
    • 84937231163 scopus 로고    scopus 로고
    • Diadenosine 5-, 5- -P1, P4-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication
    • Marriott AS, CopelandNA, Cunningham R, WilkinsonMC, McLennan AG, JonesNJ. 2015. Diadenosine 5-, 5- -P1, P4-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication. DNA Repair 33:90-100
    • (2015) DNA Repair , vol.33 , pp. 90-100
    • Marriott, A.S.1    Copeland, N.A.2    Cunningham, R.3    Wilkinson, M.C.4    McLennan, A.G.5    Jones, N.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.