메뉴 건너뛰기




Volumn 28, Issue , 2015, Pages 87-135

Modeling Protein Folding Pathways

Author keywords

Forced unfolding simulations; Molecular dynamics (MD) simulation; Protein folding; Protein simulation methodology

Indexed keywords

BIOINFORMATICS; MOLECULAR DYNAMICS; PROTEIN FOLDING; STUDENTS;

EID: 84994844871     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118889886.ch3     Document Type: Chapter
Times cited : (3)

References (261)
  • 1
    • 0032749078 scopus 로고    scopus 로고
    • Intrinsically Unstructured Proteins: Re-assessing the Protein Structure-Function Paradigm
    • P. E. Wright and H. J. Dyson, J. Mol. Biol., 293, 321 (1999). Intrinsically Unstructured Proteins: Re-assessing the Protein Structure-Function Paradigm.
    • (1999) J. Mol. Biol , vol.293 , pp. 321
    • Wright, P.E.1    Dyson, H.J.2
  • 3
    • 70349461173 scopus 로고    scopus 로고
    • The Continuity of Protein Structure Space is an Intrinsic Property of Proteins
    • J. Skolnick, A. K. Arakaki, S. Y. Lee, and M. Brylinski, Proc. Natl. Acad. Sci. U.S.A., 106, 15690 (2009). The Continuity of Protein Structure Space is an Intrinsic Property of Proteins.
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , pp. 15690
    • Skolnick, J.1    Arakaki, A.K.2    Lee, S.Y.3    Brylinski, M.4
  • 4
    • 17644407349 scopus 로고    scopus 로고
    • A Glimpse at the Organization of the Protein Universe
    • M. Vendruscolo and C. M. Dobson, Proc. Natl. Acad. Sci. U.S.A., 102, 5641 (2005). A Glimpse at the Organization of the Protein Universe.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 5641
    • Vendruscolo, M.1    Dobson, C.M.2
  • 5
    • 14644435825 scopus 로고    scopus 로고
    • Intrinsically Unstructured Proteins and their Functions
    • H. J. Dyson and P. E. Wright, Nat. Rev. Mol. Cell Bio., 6, 197 (2005). Intrinsically Unstructured Proteins and their Functions.
    • (2005) Nat. Rev. Mol. Cell Bio , vol.6 , pp. 197
    • Dyson, H.J.1    Wright, P.E.2
  • 6
    • 78449300388 scopus 로고
    • Studies on the Principles that Govern the Folding of Protein Chains
    • C. B. Anfinsen, Les Prix Nobel en, 1972, 103 (1973). Studies on the Principles that Govern the Folding of Protein Chains.
    • (1973) Les Prix Nobel en , vol.1972 , pp. 103
    • Anfinsen, C.B.1
  • 8
    • 0002006297 scopus 로고
    • Are there Pathways for Protein Folding?
    • C. Levinthal, J. Med. Phys., 65, 44 (1968). Are there Pathways for Protein Folding?.
    • (1968) J. Med. Phys , vol.65 , pp. 44
    • Levinthal, C.1
  • 9
    • 66849106554 scopus 로고    scopus 로고
    • An Expanding Arsenal of Experimental Methods Yields an Explosion of Insights into Protein Folding Mechanisms
    • A. I. Bartlett and S. E. Radford, Nat. Struct. Mol. Biol., 16, 582 (2009). An Expanding Arsenal of Experimental Methods Yields an Explosion of Insights into Protein Folding Mechanisms.
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 582
    • Bartlett, A.I.1    Radford, S.E.2
  • 10
    • 33847005283 scopus 로고
    • Correlations in Motion of Atoms in Liquid Argon
    • A. Rahman, Phys. Rev. A, 136, A405 (1964). Correlations in Motion of Atoms in Liquid Argon.
    • (1964) Phys. Rev. A , vol.136 , pp. A405
    • Rahman, A.1
  • 11
    • 0017776823 scopus 로고
    • Dynamics of Folded Proteins
    • J. McCammon, B. Gelin, and M. Karplus, Nature, 267, 585 (1977). Dynamics of Folded Proteins.
    • (1977) Nature , vol.267 , pp. 585
    • McCammon, J.1    Gelin, B.2    Karplus, M.3
  • 12
    • 0016610491 scopus 로고
    • Computer Simulation of Protein Folding
    • M. Levitt and A. Warshel, Nature, 253, 694 (1975). Computer Simulation of Protein Folding.
    • (1975) Nature , vol.253 , pp. 694
    • Levitt, M.1    Warshel, A.2
  • 13
    • 0016671420 scopus 로고
    • A Model of Myoglobin Self-Organization
    • O. B. Ptitsyn and A. A. Rashin, Biophys. Chem., 3, 1 (1975). A Model of Myoglobin Self-Organization.
    • (1975) Biophys. Chem , vol.3 , pp. 1
    • Ptitsyn, O.B.1    Rashin, A.A.2
  • 14
    • 0014675222 scopus 로고
    • Refinement of Protein Conformations using a Macromolecular Energy Minimization Procedure
    • M. Levitt and S. Lifson, J. Mol. Biol., 46, 269 (1969). Refinement of Protein Conformations using a Macromolecular Energy Minimization Procedure.
    • (1969) J. Mol. Biol , vol.46 , pp. 269
    • Levitt, M.1    Lifson, S.2
  • 15
    • 0000850121 scopus 로고
    • Sidechain Torsional Potentials and Motion of Amino Acids in Proteins: Bovine Pancreatic Trypsin Inhibitor
    • B. R. Gelin and M. Karplus, Proc. Natl. Acad. Sci. U.S.A., 72, 2002 (1975). Sidechain Torsional Potentials and Motion of Amino Acids in Proteins: Bovine Pancreatic Trypsin Inhibitor.
    • (1975) Proc. Natl. Acad. Sci. U.S.A , vol.72 , pp. 2002
    • Gelin, B.R.1    Karplus, M.2
  • 16
    • 0020480264 scopus 로고
    • Protein Dynamics in Solution and in a Crystalline Environment: A Molecular Dynamics Study
    • W. F. van Gunsteren and M. Karplus, Biochemistry, 21, 2259 (1982). Protein Dynamics in Solution and in a Crystalline Environment: A Molecular Dynamics Study.
    • (1982) Biochemistry , vol.21 , pp. 2259
    • van Gunsteren, W.F.1    Karplus, M.2
  • 17
    • 0021763916 scopus 로고
    • Computer Simulation as a Tool for Tracing the Conformational Differences between Proteins in Solution and in the Crystalline State
    • W. F. van Gunsteren and H. J. Berendsen, J. Mol. Biol., 176, 559 (1984). Computer Simulation as a Tool for Tracing the Conformational Differences between Proteins in Solution and in the Crystalline State.
    • (1984) J. Mol. Biol , vol.176 , pp. 559
    • van Gunsteren, W.F.1    Berendsen, H.J.2
  • 19
    • 0024094768 scopus 로고
    • Accurate Simulation of Protein Dynamics in Solution
    • M. Levitt and R. Sharon, Proc. Natl. Acad. Sci. U.S.A., 85, 7557 (1988). Accurate Simulation of Protein Dynamics in Solution.
    • (1988) Proc. Natl. Acad. Sci. U.S.A , vol.85 , pp. 7557
    • Levitt, M.1    Sharon, R.2
  • 20
    • 0026525048 scopus 로고
    • Molecular Dynamics Simulations of Helix Denaturation
    • V. Daggett and M. Levitt, J. Mol. Biol., 223, 1121 (1992). Molecular Dynamics Simulations of Helix Denaturation.
    • (1992) J. Mol. Biol , vol.223 , pp. 1121
    • Daggett, V.1    Levitt, M.2
  • 21
    • 0026205054 scopus 로고
    • A Molecular Dynamics Simulation of Polyalanine: An Analysis of Equilibrium Motions and Helix-Coil Transitions
    • V. Daggett, P. A. Kollman, and I. D. Kuntz, Biopolymers, 31, 1115 (1991). A Molecular Dynamics Simulation of Polyalanine: An Analysis of Equilibrium Motions and Helix-Coil Transitions.
    • (1991) Biopolymers , vol.31 , pp. 1115
    • Daggett, V.1    Kollman, P.A.2    Kuntz, I.D.3
  • 22
    • 0025743641 scopus 로고
    • Nanosecond Time Scale Folding Dynamics of a Pentapeptide in Water
    • D. J. Tobias, J. E. Mertz, and C. L. Brooks, III, Biochemistry, 30, 6054 (1991). Nanosecond Time Scale Folding Dynamics of a Pentapeptide in Water.
    • (1991) Biochemistry , vol.30 , pp. 6054
    • Tobias, D.J.1    Mertz, J.E.2    Brooks, C.L.3
  • 23
    • 0026694167 scopus 로고
    • A Model of the Molten Globule State from Molecular Dynamics Simulations
    • V. Daggett and M. Levitt, Proc. Natl. Acad. Sci. U.S.A., 89, 5142 (1992). A Model of the Molten Globule State from Molecular Dynamics Simulations.
    • (1992) Proc. Natl. Acad. Sci. U.S.A , vol.89 , pp. 5142
    • Daggett, V.1    Levitt, M.2
  • 25
    • 0028949547 scopus 로고
    • Theoretical Studies of Protein Folding and Unfolding
    • M. Karplus and A. Sali, Curr. Opin. Struct. Biol., 5, 58 (1995). Theoretical Studies of Protein Folding and Unfolding.
    • (1995) Curr. Opin. Struct. Biol , vol.5 , pp. 58
    • Karplus, M.1    Sali, A.2
  • 26
    • 0032561237 scopus 로고    scopus 로고
    • Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution
    • Y. Duan and P. A. Kollman, Science, 282, 740 (1998). Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution.
    • (1998) Science , vol.282 , pp. 740
    • Duan, Y.1    Kollman, P.A.2
  • 27
    • 0032544002 scopus 로고    scopus 로고
    • The Early Stage of Folding of Villin Headpiece Subdomain Observed in a 200-Nanosecond Fully Solvated Molecular Dynamics Simulation
    • Y. Duan, L. Wang, and P. A. Kollman, Proc. Natl. Acad. Sci. U.S.A., 95, 9897 (1998). The Early Stage of Folding of Villin Headpiece Subdomain Observed in a 200-Nanosecond Fully Solvated Molecular Dynamics Simulation.
    • (1998) Proc. Natl. Acad. Sci. U.S.A , vol.95 , pp. 9897
    • Duan, Y.1    Wang, L.2    Kollman, P.A.3
  • 28
    • 0029586380 scopus 로고
    • Investigation of the Solution Structure of Chymotrypsin Inhibitor 2 using Molecular Dynamics: Comparison to X-ray Crystallographic and NMR Data
    • A. Li and V. Daggett, Protein Eng., 8, 1117 (1995). Investigation of the Solution Structure of Chymotrypsin Inhibitor 2 using Molecular Dynamics: Comparison to X-ray Crystallographic and NMR Data.
    • (1995) Protein Eng , vol.8 , pp. 1117
    • Li, A.1    Daggett, V.2
  • 29
    • 0034033187 scopus 로고    scopus 로고
    • Long Timescale Simulations
    • V. Daggett, Curr. Opin. Struct. Biol., 10, 160 (2000). Long Timescale Simulations.
    • (2000) Curr. Opin. Struct. Biol , vol.10 , pp. 160
    • Daggett, V.1
  • 30
    • 44949176027 scopus 로고    scopus 로고
    • Evaluating Rotational Diffusion from Protein MD Simulations
    • V. Wong and D. A. Case, J. Phys. Chem. B, 112, 6013 (2008). Evaluating Rotational Diffusion from Protein MD Simulations.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 6013
    • Wong, V.1    Case, D.A.2
  • 31
    • 43849093505 scopus 로고    scopus 로고
    • Ten-Microsecond Molecular Dynamics Simulation of a Fast-Folding WW Domain
    • P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten, Biophys. J., 94, L75 (2008). Ten-Microsecond Molecular Dynamics Simulation of a Fast-Folding WW Domain.
    • (2008) Biophys. J , vol.94 , pp. L75
    • Freddolino, P.L.1    Liu, F.2    Gruebele, M.3    Schulten, K.4
  • 32
    • 35648943228 scopus 로고    scopus 로고
    • Heterogeneity Even at the Speed Limit of Folding: Large-Scale Molecular Dynamics Study of a Fast-Folding Variant of the Villin Headpiece
    • D. L. Ensign, P. M. Kasson, and V. S. Pande, J. Mol. Biol., 374, 806 (2007). Heterogeneity Even at the Speed Limit of Folding: Large-Scale Molecular Dynamics Study of a Fast-Folding Variant of the Villin Headpiece.
    • (2007) J. Mol. Biol , vol.374 , pp. 806
    • Ensign, D.L.1    Kasson, P.M.2    Pande, V.S.3
  • 33
    • 27344455346 scopus 로고    scopus 로고
    • Reproducible Polypeptide Folding and Structure Prediction using Molecular Dynamics Simulations
    • M. M. Seibert, A. Patriksson, B. Hess, and D. van der Spoel, J. Mol. Biol., 354, 173 (2005). Reproducible Polypeptide Folding and Structure Prediction using Molecular Dynamics Simulations.
    • (2005) J. Mol. Biol , vol.354 , pp. 173
    • Seibert, M.M.1    Patriksson, A.2    Hess, B.3    van der Spoel, D.4
  • 36
    • 47049084133 scopus 로고    scopus 로고
    • Internal Hydration Increases During Activation of the G-Protein-Coupled Receptor Rhodopsin
    • A. Grossfield, M. C. Pitman, S. E. Feller, O. Soubias, and K. Gawrisch, J. Mol. Biol., 381, 478 (2008). Internal Hydration Increases During Activation of the G-Protein-Coupled Receptor Rhodopsin.
    • (2008) J. Mol. Biol , vol.381 , pp. 478
    • Grossfield, A.1    Pitman, M.C.2    Feller, S.E.3    Soubias, O.4    Gawrisch, K.5
  • 37
    • 63849294621 scopus 로고    scopus 로고
    • Identification of Two Distinct Inactive Conformations of the β2-Adrenergic Receptor Reconciles Structural and Biochemical Observations
    • R. O. Dror, D. H. Arlow, D. W. Borhani, M. Ø. Jensen, S. Piana, and D. E. Shaw, Proc. Natl. Acad. Sci. U.S.A., 106, 4689 (2009). Identification of Two Distinct Inactive Conformations of the β2-Adrenergic Receptor Reconciles Structural and Biochemical Observations.
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , pp. 4689
    • Dror, R.O.1    Arlow, D.H.2    Borhani, D.W.3    Jensen, M.O.4    Piana, S.5    Shaw, D.E.6
  • 38
    • 64649101249 scopus 로고    scopus 로고
    • Long-Timescale Molecular Dynamics Simulations of Protein Structure and Function
    • J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw, Curr. Opin. Struct. Biol., 19, 120 (2009). Long-Timescale Molecular Dynamics Simulations of Protein Structure and Function.
    • (2009) Curr. Opin. Struct. Biol , vol.19 , pp. 120
    • Klepeis, J.L.1    Lindorff-Larsen, K.2    Dror, R.O.3    Shaw, D.E.4
  • 41
    • 33847175935 scopus 로고    scopus 로고
    • High Performance Computing in Biology: Multimillion Atom Simulations of Nanoscale Systems
    • K. Y. Sanbonmatsu and C.-S. Tung, J. Struct. Biol., 157, 470 (2007). High Performance Computing in Biology: Multimillion Atom Simulations of Nanoscale Systems.
    • (2007) J. Struct. Biol , vol.157 , pp. 470
    • Sanbonmatsu, K.Y.1    Tung, C.-S.2
  • 46
    • 84857774493 scopus 로고    scopus 로고
    • Structure and Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation
    • K. Lindorff-Larsen, N. Trbovic, P. Maragakis, S. Piana, and D. E. Shaw, J. Am. Chem. Soc., 134, 3787 (2012). Structure and Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation.
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 3787
    • Lindorff-Larsen, K.1    Trbovic, N.2    Maragakis, P.3    Piana, S.4    Shaw, D.E.5
  • 48
    • 0034383950 scopus 로고    scopus 로고
    • Protein Folding: Progress Made and Promises Ahead
    • S. E. Radford, Trends Biochem. Sci, 25, 611 (2000). Protein Folding: Progress Made and Promises Ahead.
    • (2000) Trends Biochem. Sci , vol.25 , pp. 611
    • Radford, S.E.1
  • 50
    • 79958842874 scopus 로고    scopus 로고
    • Modelling Proteins: Conformational Sampling and Reconstruction of Folding Kinetics
    • K. Klenin, B. Strodel, D. J. Wales, and W. Wenzel, Biochim. Biophys. Acta, 1814, 977 (2011). Modelling Proteins: Conformational Sampling and Reconstruction of Folding Kinetics.
    • (2011) Biochim. Biophys. Acta , vol.1814 , pp. 977
    • Klenin, K.1    Strodel, B.2    Wales, D.J.3    Wenzel, W.4
  • 54
    • 33751222086 scopus 로고    scopus 로고
    • N. Attig, K. Binder, H. Grubmüller, and K. Kremer (Eds.), John von Neumann fur Computing, NIC Series Volume, Introduction to Molecular Dynamics Simulation
    • M. P. Allen, in Computational Soft Matthew: From Synthetic Polymers to Proteins, N. Attig, K. Binder, H. Grubmüller, and K. Kremer (Eds.), John von Neumann fur Computing, NIC Series Volume, 2004, pp. 1-28, Introduction to Molecular Dynamics Simulation.
    • (2004) Computational Soft Matthew: From Synthetic Polymers to Proteins , pp. 1-28
    • Allen, M.P.1
  • 55
    • 3342918929 scopus 로고    scopus 로고
    • Methods for Molecular Dynamics Simulations of Protein Folding/Unfolding in Solution
    • D. A. C. Beck and V. Daggett, Methods, 34, 112 (2004). Methods for Molecular Dynamics Simulations of Protein Folding/Unfolding in Solution.
    • (2004) Methods , vol.34 , pp. 112
    • Beck, D.A.C.1    Daggett, V.2
  • 56
    • 34249930405 scopus 로고    scopus 로고
    • Protein-Folding Dynamics: Overview of Molecular Simulation Techniques
    • H. A. Scheraga, M. Khalili, and A. Liwo, Annu. Rev. Phys. Chem., 58, 57 (2012). Protein-Folding Dynamics: Overview of Molecular Simulation Techniques.
    • (2012) Annu. Rev. Phys. Chem , vol.58 , pp. 57
    • Scheraga, H.A.1    Khalili, M.2    Liwo, A.3
  • 60
    • 33645941402 scopus 로고
    • The OPLS Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin
    • W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc., 110, 1657 (1988). The OPLS Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin.
    • (1988) J. Am. Chem. Soc , vol.110 , pp. 1657
    • Jorgensen, W.L.1    Tirado-Rives, J.2
  • 61
    • 0035039453 scopus 로고    scopus 로고
    • The Birth of Computational Structural Biology
    • M. Levitt, Nat. Struct. Biol., 8, 392 (2001). The Birth of Computational Structural Biology.
    • (2001) Nat. Struct. Biol , vol.8 , pp. 392
    • Levitt, M.1
  • 62
    • 0029633167 scopus 로고
    • Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution
    • M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, Comput. Phys. Commun., 91, 215 (1995). Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution.
    • (1995) Comput. Phys. Commun , vol.91 , pp. 215
    • Levitt, M.1    Hirshberg, M.2    Sharon, R.3    Daggett, V.4
  • 63
    • 0021104775 scopus 로고
    • Molecular Dynamics of Native Protein. I. Computer Simulation of Trajectories
    • M. Levitt, J. Mol. Biol., 168, 595 (1983). Molecular Dynamics of Native Protein. I. Computer Simulation of Trajectories.
    • (1983) J. Mol. Biol , vol.168 , pp. 595
    • Levitt, M.1
  • 65
    • 36048956049 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of Proteins: Can the Explicit Water Model be Varied?
    • D. R. Nutt and J. C. Smith, J. Chem. Theory Comput., 3, 1550 (2007). Molecular Dynamics Simulations of Proteins: Can the Explicit Water Model be Varied?.
    • (2007) J. Chem. Theory Comput , vol.3 , pp. 1550
    • Nutt, D.R.1    Smith, J.C.2
  • 66
    • 33748791718 scopus 로고    scopus 로고
    • Hydration Thermodynamic Properties of Amino Acid Analogues: A Systematic Comparison of Biomolecular Force Fields and Water Models
    • B. Hess and N. F. A. van der Vegt, J. Phys. Chem. B, 110, 17616 (2006). Hydration Thermodynamic Properties of Amino Acid Analogues: A Systematic Comparison of Biomolecular Force Fields and Water Models.
    • (2006) J. Phys. Chem. B , vol.110 , pp. 17616
    • Hess, B.1    van der Vegt, N.F.A.2
  • 67
    • 10844247921 scopus 로고    scopus 로고
    • A Modified TIP3P Water Potential for Simulation with Ewald Summation
    • D. J. Price and C. L. Brooks, III, J. Chem. Phys., 121, 10096 (2004). A Modified TIP3P Water Potential for Simulation with Ewald Summation.
    • (2004) J. Chem. Phys , vol.121 , pp. 10096
    • Price, D.J.1    Brooks, C.L.2
  • 68
    • 84859611714 scopus 로고    scopus 로고
    • Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements
    • K. A. Beauchamp, Y. S. Lin, and R. Das, J. Chem. Theory Comput. (2012). Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.
    • (2012) J. Chem. Theory Comput
    • Beauchamp, K.A.1    Lin, Y.S.2    Das, R.3
  • 70
    • 84865088597 scopus 로고    scopus 로고
    • Comparison of Secondary Structure Formation using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations
    • E. A. Cino, W.-Y. Choy, and M. Karttunen, J. Chem. Theory Comput., 8, 2725 (2012). Comparison of Secondary Structure Formation using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    • (2012) J. Chem. Theory Comput , vol.8 , pp. 2725
    • Cino, E.A.1    Choy, W.-Y.2    Karttunen, M.3
  • 72
    • 46749127364 scopus 로고    scopus 로고
    • Are Current Molecular Dynamics Force Fields too Helical?
    • R. B. Best, N.-V. Buchete, and G. Hummer, Biophys. J., 95, L07 (2008). Are Current Molecular Dynamics Force Fields too Helical?.
    • (2008) Biophys. J , vol.95 , pp. L07
    • Best, R.B.1    Buchete, N.-V.2    Hummer, G.3
  • 74
  • 75
    • 33750029744 scopus 로고    scopus 로고
    • K.B Lipkowitz, T. R. Cundari, and V. J. Gillet (Eds.), Wiley-VCH Inc., New York, Simulations of Protein Folding
    • J.-E. Shea, M. R. Friedel, and A. Baumketner, in Reviews in Computational Chemistry, K.B Lipkowitz, T. R. Cundari, and V. J. Gillet (Eds.), Wiley-VCH Inc., New York, 2006, Vol. 22, pp. 169-228, Simulations of Protein Folding.
    • (2006) Reviews in Computational Chemistry , vol.22 , pp. 169-228
    • Shea, J.-E.1    Friedel, M.R.2    Baumketner, A.3
  • 76
    • 84861770615 scopus 로고    scopus 로고
    • Coarse-Graining of Multiprotein Assemblies
    • M. G. Saunders and G. A. Voth, Curr. Opin. Struct. Biol., 22, 144 (2012). Coarse-Graining of Multiprotein Assemblies.
    • (2012) Curr. Opin. Struct. Biol , vol.22 , pp. 144
    • Saunders, M.G.1    Voth, G.A.2
  • 77
    • 84864222167 scopus 로고    scopus 로고
    • Optimal Number of Coarse-Grained Sites in Different Components of Large Biomolecular Complexes
    • A. V. Sinitskiy, M. G. Saunders, and G. A. Voth, J. Phys. Chem. B, 116, 8363 (2012). Optimal Number of Coarse-Grained Sites in Different Components of Large Biomolecular Complexes.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 8363
    • Sinitskiy, A.V.1    Saunders, M.G.2    Voth, G.A.3
  • 78
    • 84861773417 scopus 로고    scopus 로고
    • Coarse-Grained Molecular Simulations of Large Biomolecules
    • S. Takada, Curr. Opin. Struct. Biol., 22, 130 (2012). Coarse-Grained Molecular Simulations of Large Biomolecules.
    • (2012) Curr. Opin. Struct. Biol , vol.22 , pp. 130
    • Takada, S.1
  • 79
    • 69449098484 scopus 로고    scopus 로고
    • Protein Folding Simulations: From Coarse-Grained Model to All-Atom Model
    • J. Zhang, W. Li, J. Wang, M. Qin, L. Wu, Z. Yan, W. Xu, G. Zuo, and W. Wang, IUBMB Life, 61, 627 (2009). Protein Folding Simulations: From Coarse-Grained Model to All-Atom Model.
    • (2009) IUBMB Life , vol.61 , pp. 627
    • Zhang, J.1    Li, W.2    Wang, J.3    Qin, M.4    Wu, L.5    Yan, Z.6    Xu, W.7    Zuo, G.8    Wang, W.9
  • 80
    • 33745290416 scopus 로고    scopus 로고
    • A Comparison of United Atom, Explicit Atom, and Coarse-Grained Simulation Models for Poly(ethylene oxide)
    • C. Chen, P. Depa, V. G. Sakai, J. K. Maranas, J. W. Lynn, I. Peral, and J. R. D. Copley, J. Chem. Phys., 124, 234901 (2006). A Comparison of United Atom, Explicit Atom, and Coarse-Grained Simulation Models for Poly(ethylene oxide).
    • (2006) J. Chem. Phys , vol.124 , pp. 234901
    • Chen, C.1    Depa, P.2    Sakai, V.G.3    Maranas, J.K.4    Lynn, J.W.5    Peral, I.6    Copley, J.R.D.7
  • 83
    • 51149211502 scopus 로고
    • Improved Simulation of Liquid Water by Molecular Dynamics
    • F. H. Stillinger and A. Rahman, J. Chem. Phys., 60, 1545 (1974). Improved Simulation of Liquid Water by Molecular Dynamics.
    • (1974) J. Chem. Phys , vol.60 , pp. 1545
    • Stillinger, F.H.1    Rahman, A.2
  • 84
    • 0000125216 scopus 로고    scopus 로고
    • Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution
    • M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, J. Phys. Chem. B, 101, 5051 (1997). Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution.
    • (1997) J. Phys. Chem. B , vol.101 , pp. 5051
    • Levitt, M.1    Hirshberg, M.2    Sharon, R.3    Laidig, K.E.4    Daggett, V.5
  • 85
    • 0000020246 scopus 로고    scopus 로고
    • A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions
    • M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys., 112, 8910 (2000). A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions.
    • (2000) J. Chem. Phys , vol.112 , pp. 8910
    • Mahoney, M.W.1    Jorgensen, W.L.2
  • 86
    • 0033654297 scopus 로고    scopus 로고
    • Generalized Born Models of Macromolecular Solvation Effects
    • D. Bashford and D. A. Case, Annu. Rev. Phys. Chem., 51, 129 (2000). Generalized Born Models of Macromolecular Solvation Effects.
    • (2000) Annu. Rev. Phys. Chem , vol.51 , pp. 129
    • Bashford, D.1    Case, D.A.2
  • 87
    • 0029094684 scopus 로고
    • Molecular Dynamics Simulation of Cytochrome b5: Implications for Protein-Protein Recognition
    • E. M. Storch and V. Daggett, Biochemistry, 34, 9682 (1995). Molecular Dynamics Simulation of Cytochrome b5: Implications for Protein-Protein Recognition.
    • (1995) Biochemistry , vol.34 , pp. 9682
    • Storch, E.M.1    Daggett, V.2
  • 88
    • 0037718265 scopus 로고    scopus 로고
    • Inorganic and Bioinorganic Molecular Mechanics Modeling - The Problem of the Force Field Parameterization
    • P. Comba and R. Remenyi, Coord. Chem. Rev., 238, 9 (2003). Inorganic and Bioinorganic Molecular Mechanics Modeling - The Problem of the Force Field Parameterization.
    • (2003) Coord. Chem. Rev , vol.238 , pp. 9
    • Comba, P.1    Remenyi, R.2
  • 91
    • 0000952715 scopus 로고    scopus 로고
    • Effect of Periodic Box Size on Aqueous Molecular Dynamics Simulation of a DNA Dodecamer with Particle-Mesh Ewald Method
    • O. N. de Souza and R. L. Ornstein, Biophys. J., 72, 2395 (1997). Effect of Periodic Box Size on Aqueous Molecular Dynamics Simulation of a DNA Dodecamer with Particle-Mesh Ewald Method.
    • (1997) Biophys. J , vol.72 , pp. 2395
    • de Souza, O.N.1    Ornstein, R.L.2
  • 92
    • 35948930962 scopus 로고    scopus 로고
    • Effects of Water Model and Simulation Box Size on Protein Diffusional Motions
    • K. Takemura and A. Kitao, J. Phys. Chem. B, 111, 11870 (2007). Effects of Water Model and Simulation Box Size on Protein Diffusional Motions.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 11870
    • Takemura, K.1    Kitao, A.2
  • 93
    • 0000253134 scopus 로고    scopus 로고
    • Molecular Dynamics Study on Mobility and Dipole Ordering of Solvent Around Proteins: Effects of Periodic-Box Size and Protein Charge
    • J. Higo, H. Kono, N. Nakajima, H. Shirai, H. Nakamura, and A. Sarai, Chem. Phys. Lett., 306, 395 (1999). Molecular Dynamics Study on Mobility and Dipole Ordering of Solvent Around Proteins: Effects of Periodic-Box Size and Protein Charge.
    • (1999) Chem. Phys. Lett , vol.306 , pp. 395
    • Higo, J.1    Kono, H.2    Nakajima, N.3    Shirai, H.4    Nakamura, H.5    Sarai, A.6
  • 94
    • 32344451982 scopus 로고    scopus 로고
    • The Effect of Box Shape on the Dynamic Properties of Proteins Simulated Under Periodic Boundary Conditions
    • T. A. Wassenaar and A. E. Mark, J. Comput. Chem., 27, 316 (2006). The Effect of Box Shape on the Dynamic Properties of Proteins Simulated Under Periodic Boundary Conditions.
    • (2006) J. Comput. Chem , vol.27 , pp. 316
    • Wassenaar, T.A.1    Mark, A.E.2
  • 95
    • 2542450568 scopus 로고    scopus 로고
    • Unification of Box Shapes in Molecular Simulations
    • H. Bekker, J. Comput. Chem., 18, 1930 (1997). Unification of Box Shapes in Molecular Simulations.
    • (1997) J. Comput. Chem , vol.18 , pp. 1930
    • Bekker, H.1
  • 96
    • 12144275299 scopus 로고    scopus 로고
    • Cutoff Size Need Not Strongly Influence Molecular Dynamics Results for Solvated Polypeptides
    • D. A. C. Beck, R. S. Armen, and V. Daggett, Biochemistry, 44, 609 (2005). Cutoff Size Need Not Strongly Influence Molecular Dynamics Results for Solvated Polypeptides.
    • (2005) Biochemistry , vol.44 , pp. 609
    • Beck, D.A.C.1    Armen, R.S.2    Daggett, V.3
  • 97
    • 0026755515 scopus 로고
    • Cutoff Size Does Strongly Influence Molecular Dynamics Results on Solvated Polypeptides
    • H. Schreiber and O. Steinhauser, Biochemistry, 31, 5856 (1992). Cutoff Size Does Strongly Influence Molecular Dynamics Results on Solvated Polypeptides.
    • (1992) Biochemistry , vol.31 , pp. 5856
    • Schreiber, H.1    Steinhauser, O.2
  • 98
    • 26444608613 scopus 로고    scopus 로고
    • Ensemble Versus Single-Molecule Protein Unfolding
    • R. Day and V. Daggett, Proc. Natl. Acad. Sci. U.S.A., 102, 13445 (2005). Ensemble Versus Single-Molecule Protein Unfolding.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 13445
    • Day, R.1    Daggett, V.2
  • 99
    • 0034130824 scopus 로고    scopus 로고
    • On the Temperature and Pressure Dependence of a Range of Properties of a Type of Water Model Commonly Used in High-Temperature Protein Unfolding Simulations
    • R. Walser, A. E. Mark, and W. F. van Gunsteren, Biophys. J., 78, 2752 (2000). On the Temperature and Pressure Dependence of a Range of Properties of a Type of Water Model Commonly Used in High-Temperature Protein Unfolding Simulations.
    • (2000) Biophys. J , vol.78 , pp. 2752
    • Walser, R.1    Mark, A.E.2    van Gunsteren, W.F.3
  • 100
    • 0009979659 scopus 로고
    • Precise Representation of Volume Properties of Water at One Atmosphere
    • G. S. Kell, J. Chem. Eng. Data, 12, 66 (1967). Precise Representation of Volume Properties of Water at One Atmosphere.
    • (1967) J. Chem. Eng. Data , vol.12 , pp. 66
    • Kell, G.S.1
  • 101
    • 0037138672 scopus 로고    scopus 로고
    • The Molecular Mechanism of Stabilization of Proteins by TMAO and its Ability to Counteract the Effects of Urea
    • Q. Zou, B. J. Bennion, V. Daggett, and K. P. Murphy, J. Am. Chem. Soc., 124, 1192 (2002). The Molecular Mechanism of Stabilization of Proteins by TMAO and its Ability to Counteract the Effects of Urea.
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 1192
    • Zou, Q.1    Bennion, B.J.2    Daggett, V.3    Murphy, K.P.4
  • 102
    • 66849143696 scopus 로고    scopus 로고
    • Converging Concepts of Protein Folding In Vitro and In Vivo
    • F. U. Hartl and M. Hayer-Hartl, Nat. Struct. Mol. Biol., 16, 574 (2009). Converging Concepts of Protein Folding In Vitro and In Vivo.
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 574
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 103
    • 79955013716 scopus 로고    scopus 로고
    • Making Connections Between Ultrafast Protein Folding Kinetics and Molecular Dynamics Simulations
    • T. Cellmer, M. Buscaglia, E. R. Henry, J. Hofrichter, and W. A. Eaton, Proc. Natl. Acad. Sci. U.S.A., 108, 6103 (2011). Making Connections Between Ultrafast Protein Folding Kinetics and Molecular Dynamics Simulations.
    • (2011) Proc. Natl. Acad. Sci. U.S.A , vol.108 , pp. 6103
    • Cellmer, T.1    Buscaglia, M.2    Henry, E.R.3    Hofrichter, J.4    Eaton, W.A.5
  • 104
    • 79551684199 scopus 로고    scopus 로고
    • The Folding of Single Domain Proteins - Have We Reached a Consensus?
    • T. R. Sosnick and D. Barrick, Curr. Opin. Struct. Biol., 21, 12 (2011). The Folding of Single Domain Proteins - Have We Reached a Consensus?.
    • (2011) Curr. Opin. Struct. Biol , vol.21 , pp. 12
    • Sosnick, T.R.1    Barrick, D.2
  • 105
    • 0037174385 scopus 로고    scopus 로고
    • All-Atom Structure Prediction and Folding Simulations of a Stable Protein
    • C. Simmerling, B. Strockbine, and A. E. Roitberg, J. Am. Chem. Soc., 124, 11258 (2002). All-Atom Structure Prediction and Folding Simulations of a Stable Protein.
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 11258
    • Simmerling, C.1    Strockbine, B.2    Roitberg, A.E.3
  • 106
    • 80051660916 scopus 로고    scopus 로고
    • Beyond Microscopic Reversibility: Are Observable Non-Equilibrium Processes Precisely Reversible?
    • D. Bhatt and D. M. Zuckerman, J. Chem. Theory Comput., 7, 2520 (2011). Beyond Microscopic Reversibility: Are Observable Non-Equilibrium Processes Precisely Reversible?.
    • (2011) J. Chem. Theory Comput , vol.7 , pp. 2520
    • Bhatt, D.1    Zuckerman, D.M.2
  • 107
    • 0033578828 scopus 로고    scopus 로고
    • Is Protein Unfolding the Reverse of Protein Folding? A Lattice Simulation Analysis
    • A. R. Dinner and M. Karplus, J. Mol. Biol., 292, 403 (1999). Is Protein Unfolding the Reverse of Protein Folding? A Lattice Simulation Analysis.
    • (1999) J. Mol. Biol , vol.292 , pp. 403
    • Dinner, A.R.1    Karplus, M.2
  • 108
    • 0001273302 scopus 로고
    • The Principle of Microscopic Reversibility
    • R. C. Tolman, Proc. Natl. Acad. Sci. U.S.A., 11, 436 (1925). The Principle of Microscopic Reversibility.
    • (1925) Proc. Natl. Acad. Sci. U.S.A , vol.11 , pp. 436
    • Tolman, R.C.1
  • 109
    • 33846381622 scopus 로고    scopus 로고
    • Direct Observation of Microscopic Reversibility in Single-Molecule Protein Folding
    • R. Day and V. Daggett, J. Mol. Biol., 366, 677 (2007). Direct Observation of Microscopic Reversibility in Single-Molecule Protein Folding.
    • (2007) J. Mol. Biol , vol.366 , pp. 677
    • Day, R.1    Daggett, V.2
  • 110
    • 46849113841 scopus 로고    scopus 로고
    • Microscopic Reversibility of Protein Folding in Molecular Dynamics Simulations of the Engrailed Homeodomain
    • M. E. McCully, D. A. C. Beck, and V. Daggett, Biochemistry, 47, 7079 (2008). Microscopic Reversibility of Protein Folding in Molecular Dynamics Simulations of the Engrailed Homeodomain.
    • (2008) Biochemistry , vol.47 , pp. 7079
    • McCully, M.E.1    Beck, D.A.C.2    Daggett, V.3
  • 111
    • 77956567928 scopus 로고    scopus 로고
    • Refolding the Engrailed Homeodomain: Structural Basis for the Accumulation of a Folding Intermediate
    • M. E. McCully, D. A. C. Beck, A. R. Fersht, and V. Daggett, Biophys. J., 99, 1628 (2010). Refolding the Engrailed Homeodomain: Structural Basis for the Accumulation of a Folding Intermediate.
    • (2010) Biophys. J , vol.99 , pp. 1628
    • McCully, M.E.1    Beck, D.A.C.2    Fersht, A.R.3    Daggett, V.4
  • 112
    • 0026785575 scopus 로고
    • Molecular Dynamics Simulation of Solvated Protein at High Pressure
    • D. B. Kitchen, L. H. Reed, and R. M. Levy, Biochemistry, 31, 10083 (1992). Molecular Dynamics Simulation of Solvated Protein at High Pressure.
    • (1992) Biochemistry , vol.31 , pp. 10083
    • Kitchen, D.B.1    Reed, L.H.2    Levy, R.M.3
  • 113
    • 37649031797 scopus 로고    scopus 로고
    • Reversible Temperature and Pressure Denaturation of a Protein Fragment: A Replica Exchange Molecular Dynamics Simulation Study
    • D. Paschek and A. E. García, Phys. Rev. Lett., 93, 238105 (2004). Reversible Temperature and Pressure Denaturation of a Protein Fragment: A Replica Exchange Molecular Dynamics Simulation Study.
    • (2004) Phys. Rev. Lett , vol.93 , pp. 238105
    • Paschek, D.1    García, A.E.2
  • 114
    • 33646012000 scopus 로고    scopus 로고
    • A Molecular Dynamics Simulation of SNase and its Hydration Shell at High Temperature and High Pressure
    • N. Smolin and R. Winter, Biochim. Biophys. Acta, 1764, 522 (2006). A Molecular Dynamics Simulation of SNase and its Hydration Shell at High Temperature and High Pressure.
    • (2006) Biochim. Biophys. Acta , vol.1764 , pp. 522
    • Smolin, N.1    Winter, R.2
  • 116
    • 77951642190 scopus 로고    scopus 로고
    • Studying the Unfolding Kinetics of Proteins Under Pressure Using Long Molecular Dynamics Simulation Runs
    • O. Chara, J. R. Grigera, and A. N. McCarthy, J. Biol. Phys., 33, 515 (2007). Studying the Unfolding Kinetics of Proteins Under Pressure Using Long Molecular Dynamics Simulation Runs.
    • (2007) J. Biol. Phys , vol.33 , pp. 515
    • Chara, O.1    Grigera, J.R.2    McCarthy, A.N.3
  • 117
    • 28044463816 scopus 로고    scopus 로고
    • Cooperative Water Filling of a Nonpolar Protein Cavity Observed by High-Pressure Crystallography and Simulation
    • M. D. Collins, G. Hummer, M. L. Quillin, B. W. Matthews, and S. M. Gruner, Proc. Natl. Acad. Sci. U.S.A., 102, 16668 (2005). Cooperative Water Filling of a Nonpolar Protein Cavity Observed by High-Pressure Crystallography and Simulation.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 16668
    • Collins, M.D.1    Hummer, G.2    Quillin, M.L.3    Matthews, B.W.4    Gruner, S.M.5
  • 118
    • 33646472558 scopus 로고    scopus 로고
    • Pressure Denaturation of Apomyoglobin: A Molecular Dynamics Simulation Study
    • A. N. McCarthy and J. R. Grigera, Biochim. Biophys. Acta, 1764, 506 (2006). Pressure Denaturation of Apomyoglobin: A Molecular Dynamics Simulation Study.
    • (2006) Biochim. Biophys. Acta , vol.1764 , pp. 506
    • McCarthy, A.N.1    Grigera, J.R.2
  • 119
    • 0037171124 scopus 로고    scopus 로고
    • High Pressure Simulations of Biomolecules
    • E. Paci, Biochim. Biophys. Acta, 1595, 185 (2002). High Pressure Simulations of Biomolecules.
    • (2002) Biochim. Biophys. Acta , vol.1595 , pp. 185
    • Paci, E.1
  • 120
  • 121
    • 79953858621 scopus 로고    scopus 로고
    • Backbone and Side-Chain Contributions in Protein Denaturation by Urea
    • D. R. Canchi and A. E. García, Biophys. J., 100, 1526 (2011). Backbone and Side-Chain Contributions in Protein Denaturation by Urea.
    • (2011) Biophys. J , vol.100 , pp. 1526
    • Canchi, D.R.1    García, A.E.2
  • 122
    • 77749285768 scopus 로고    scopus 로고
    • Equilibrium Study of Protein Denaturation by Urea
    • D. R. Canchi, D. Paschek, and A. E. García, J. Am. Chem. Soc., 132, 2338 (2010). Equilibrium Study of Protein Denaturation by Urea.
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 2338
    • Canchi, D.R.1    Paschek, D.2    García, A.E.3
  • 123
    • 11344259541 scopus 로고    scopus 로고
    • Characterization of the Denaturation of Human α-Lactalbumin in Urea by Molecular Dynamics Simulations
    • L. J. Smith, R. M. Jones, and W. F. van Gunsteren, Proteins: Struct., Funct., Bioinf., 58, 439 (2004). Characterization of the Denaturation of Human α-Lactalbumin in Urea by Molecular Dynamics Simulations.
    • (2004) Proteins: Struct., Funct., Bioinf , vol.58 , pp. 439
    • Smith, L.J.1    Jones, R.M.2    van Gunsteren, W.F.3
  • 124
    • 23244452958 scopus 로고    scopus 로고
    • Effect of Urea on Peptide Conformation in Water: Molecular Dynamics and Experimental Characterization
    • A. Caballero-Herrera, K. Nordstrand, K. D. Berndt, and L. Nilsson, Biophys. J., 89, 842 (2005). Effect of Urea on Peptide Conformation in Water: Molecular Dynamics and Experimental Characterization.
    • (2005) Biophys. J , vol.89 , pp. 842
    • Caballero-Herrera, A.1    Nordstrand, K.2    Berndt, K.D.3    Nilsson, L.4
  • 125
  • 126
    • 57149110439 scopus 로고    scopus 로고
    • Polar or Apolar--The Role of Polarity for Urea-Induced Protein Denaturation
    • M. C. Stumpe and H. Grubmüller, PLoS Comput. Biol., 4, e1000221 (2008). Polar or Apolar--The Role of Polarity for Urea-Induced Protein Denaturation.
    • (2008) PLoS Comput. Biol , vol.4 , pp. e1000221
    • Stumpe, M.C.1    Grubmüller, H.2
  • 127
    • 55949131241 scopus 로고    scopus 로고
    • Urea Denaturation by Stronger Dispersion Interactions with Proteins than Water Implies a 2-Stage Unfolding
    • L. Hua, R. Zhou, D. Thirumalai, and B. J. Berne, Proc. Natl. Acad. Sci. U.S.A., 105, 16928 (2008). Urea Denaturation by Stronger Dispersion Interactions with Proteins than Water Implies a 2-Stage Unfolding.
    • (2008) Proc. Natl. Acad. Sci. U.S.A , vol.105 , pp. 16928
    • Hua, L.1    Zhou, R.2    Thirumalai, D.3    Berne, B.J.4
  • 128
    • 67650363919 scopus 로고    scopus 로고
    • Urea Impedes the Hydrophobic Collapse of Partially Unfolded Proteins
    • M. C. Stumpe and H. Grubmüller, Biophys. J., 96, 3744 (2009). Urea Impedes the Hydrophobic Collapse of Partially Unfolded Proteins.
    • (2009) Biophys. J , vol.96 , pp. 3744
    • Stumpe, M.C.1    Grubmüller, H.2
  • 129
    • 48249112177 scopus 로고    scopus 로고
    • Early Events in Protein Folding: Is There Something More Than Hydrophobic Burst?
    • C. Camilloni, L. Sutto, D. Provasi, G. Tiana, and R. A. Broglia, Protein Sci., 17, 1424 (2008). Early Events in Protein Folding: Is There Something More Than Hydrophobic Burst?.
    • (2008) Protein Sci , vol.17 , pp. 1424
    • Camilloni, C.1    Sutto, L.2    Provasi, D.3    Tiana, G.4    Broglia, R.A.5
  • 130
    • 45849084663 scopus 로고    scopus 로고
    • Urea and Guanidinium Chloride Denature Protein L in Different Ways in Molecular Dynamics Simulations
    • C. Camilloni, A. Guerini Rocco, I. Eberini, E. Gianazza, R. A. Broglia, and G. Tiana, Biophys. J., 94, 4654 (2008). Urea and Guanidinium Chloride Denature Protein L in Different Ways in Molecular Dynamics Simulations.
    • (2008) Biophys. J , vol.94 , pp. 4654
    • Camilloni, C.1    Guerini Rocco, A.2    Eberini, I.3    Gianazza, E.4    Broglia, R.A.5    Tiana, G.6
  • 131
    • 34250869055 scopus 로고    scopus 로고
    • Interactions Between Hydrophobic and Ionic Solutes in Aqueous Guanidinium Chloride and Urea Solutions: Lessons for Protein Denaturation Mechanism
    • E. P. O'Brien, R. I. Dima, B. R. Brooks, and D. Thirumalai, J. Am. Chem. Soc., 129, 7346 (2007). Interactions Between Hydrophobic and Ionic Solutes in Aqueous Guanidinium Chloride and Urea Solutions: Lessons for Protein Denaturation Mechanism.
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 7346
    • O'Brien, E.P.1    Dima, R.I.2    Brooks, B.R.3    Thirumalai, D.4
  • 132
    • 0030939289 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of the Unfolding of Barnase in Water and 8 M Aqueous Urea
    • J. Tirado-Rives, M. Orozco, and W. L. Jorgensen, Biochemistry, 36, 7313 (1997). Molecular Dynamics Simulations of the Unfolding of Barnase in Water and 8 M Aqueous Urea.
    • (1997) Biochemistry , vol.36 , pp. 7313
    • Tirado-Rives, J.1    Orozco, M.2    Jorgensen, W.L.3
  • 133
    • 0038370011 scopus 로고    scopus 로고
    • The Molecular Basis for the Chemical Denaturation of Proteins by Urea
    • B. J. Bennion and V. Daggett, Proc. Natl. Acad. Sci. U.S.A., 100, 5142 (2003). The Molecular Basis for the Chemical Denaturation of Proteins by Urea.
    • (2003) Proc. Natl. Acad. Sci. U.S.A , vol.100 , pp. 5142
    • Bennion, B.J.1    Daggett, V.2
  • 134
    • 65249132421 scopus 로고    scopus 로고
    • Specificity of Ion-Protein Interactions: Complementary and Competitive Effects of Tetrapropylammonium, Guanidinium, Sulfate, and Chloride Ions
    • P. E. Mason, C. E. Dempsey, L. Vrbka, J. Heyda, J. W. Brady, and P. Jungwirth, J. Phys. Chem. B, 113, 3227 (2009). Specificity of Ion-Protein Interactions: Complementary and Competitive Effects of Tetrapropylammonium, Guanidinium, Sulfate, and Chloride Ions.
    • (2009) J. Phys. Chem. B , vol.113 , pp. 3227
    • Mason, P.E.1    Dempsey, C.E.2    Vrbka, L.3    Heyda, J.4    Brady, J.W.5    Jungwirth, P.6
  • 135
    • 79953759344 scopus 로고    scopus 로고
    • Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back
    • J. L. England and G. Haran, Annu. Rev. Phys. Chem., 62, 257 (2011). Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back.
    • (2011) Annu. Rev. Phys. Chem , vol.62 , pp. 257
    • England, J.L.1    Haran, G.2
  • 136
    • 84868587589 scopus 로고    scopus 로고
    • Collapse of Unfolded Proteins in a Mixture of Denaturants
    • Z. Xia, P. Das, E. I. Shakhnovich, and R. Zhou, J. Am. Chem. Soc., 134, 18266 (2012). Collapse of Unfolded Proteins in a Mixture of Denaturants.
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 18266
    • Xia, Z.1    Das, P.2    Shakhnovich, E.I.3    Zhou, R.4
  • 137
    • 0029915110 scopus 로고    scopus 로고
    • Pressure-Tuning the Conformation of Bovine Pancreatic Trypsin Inhibitor Studied by Fourier-Transform Infrared Spectroscopy
    • K. Goossens, L. Smeller, J. Frank, and K. Heremans, Eur. J. Biochem., 236, 254 (1996). Pressure-Tuning the Conformation of Bovine Pancreatic Trypsin Inhibitor Studied by Fourier-Transform Infrared Spectroscopy.
    • (1996) Eur. J. Biochem , vol.236 , pp. 254
    • Goossens, K.1    Smeller, L.2    Frank, J.3    Heremans, K.4
  • 139
    • 0010349062 scopus 로고
    • Stabilization of α-Helical Secondary Structure During High-Temperature Molecular-Dynamics Simulations of α-Lactalbumin
    • P. Fan, D. Kominos, D. B. Kitchen, R. M. Levy, and J. Baum, Chem. Phys., 158, 295 (1991). Stabilization of α-Helical Secondary Structure During High-Temperature Molecular-Dynamics Simulations of α-Lactalbumin.
    • (1991) Chem. Phys , vol.158 , pp. 295
    • Fan, P.1    Kominos, D.2    Kitchen, D.B.3    Levy, R.M.4    Baum, J.5
  • 140
    • 0026630480 scopus 로고
    • Simulation of the Thermal Denaturation of Hen Egg White Lysozyme: Trapping the Molten Globule State
    • A. E. Mark and W. F. van Gunsteren, Biochemistry, 31, 7745 (1992). Simulation of the Thermal Denaturation of Hen Egg White Lysozyme: Trapping the Molten Globule State.
    • (1992) Biochemistry , vol.31 , pp. 7745
    • Mark, A.E.1    van Gunsteren, W.F.2
  • 141
    • 0027219504 scopus 로고
    • Protein Unfolding Pathways Explored Through Molecular Dynamics Simulations
    • V. Daggett and M. Levitt, J. Mol. Biol., 232, 600 (1993). Protein Unfolding Pathways Explored Through Molecular Dynamics Simulations.
    • (1993) J. Mol. Biol , vol.232 , pp. 600
    • Daggett, V.1    Levitt, M.2
  • 142
    • 0028264860 scopus 로고
    • Molecular Dynamics Simulation of Protein Denaturation: Solvation of the Hydrophobic Cores and Secondary Structure of Barnase
    • A. Caflisch and M. Karplus, Proc. Natl. Acad. Sci. U.S.A., 91, 1746 (1994). Molecular Dynamics Simulation of Protein Denaturation: Solvation of the Hydrophobic Cores and Secondary Structure of Barnase.
    • (1994) Proc. Natl. Acad. Sci. U.S.A , vol.91 , pp. 1746
    • Caflisch, A.1    Karplus, M.2
  • 143
    • 0030775114 scopus 로고    scopus 로고
    • Can Protein Unfolding Simulate Protein Folding?
    • A. V. Finkelstein, Protein Eng., 10, 843 (1997). Can Protein Unfolding Simulate Protein Folding?.
    • (1997) Protein Eng , vol.10 , pp. 843
    • Finkelstein, A.V.1
  • 144
    • 1842584557 scopus 로고    scopus 로고
    • Temperature Dependence of the Free Energy Landscape of the Src-SH3 Protein Domain
    • W. Guo, S. Lampoudi, and J.-E. Shea, Proteins, 55, 395 (2004). Temperature Dependence of the Free Energy Landscape of the Src-SH3 Protein Domain.
    • (2004) Proteins , vol.55 , pp. 395
    • Guo, W.1    Lampoudi, S.2    Shea, J.-E.3
  • 145
    • 0037093655 scopus 로고    scopus 로고
    • Weak Temperature Dependence of the Free Energy Surface and Folding Pathways of Structured Peptides
    • A. Cavalli, P. Ferrara, and A. Caflisch, Proteins: Struct., Funct., Bioinf., 47, 305 (2002). Weak Temperature Dependence of the Free Energy Surface and Folding Pathways of Structured Peptides.
    • (2002) Proteins: Struct., Funct., Bioinf , vol.47 , pp. 305
    • Cavalli, A.1    Ferrara, P.2    Caflisch, A.3
  • 146
    • 36048954137 scopus 로고    scopus 로고
    • On the Use of Elevated Temperature in Simulations to Study Protein Unfolding Mechanisms
    • T. Wang and R. C. Wade, J. Chem. Theory Comput., 3, 1476 (2007). On the Use of Elevated Temperature in Simulations to Study Protein Unfolding Mechanisms.
    • (2007) J. Chem. Theory Comput , vol.3 , pp. 1476
    • Wang, T.1    Wade, R.C.2
  • 147
    • 0036968512 scopus 로고    scopus 로고
    • Increasing Temperature Accelerates Protein Unfolding Without Changing the Pathway of Unfolding
    • R. Day, B. J. Bennion, S. Ham, and V. Daggett, J. Mol. Biol., 322, 189 (2002). Increasing Temperature Accelerates Protein Unfolding Without Changing the Pathway of Unfolding.
    • (2002) J. Mol. Biol , vol.322 , pp. 189
    • Day, R.1    Bennion, B.J.2    Ham, S.3    Daggett, V.4
  • 148
    • 0032584783 scopus 로고    scopus 로고
    • Reversible Peptide Folding in Solution by Molecular Dynamics Simulation
    • X. Daura, B. Jaun, D. Seebach, W. F. van Gunsteren, and A. E. Mark, J. Mol. Biol., 280, 925 (1998). Reversible Peptide Folding in Solution by Molecular Dynamics Simulation.
    • (1998) J. Mol. Biol , vol.280 , pp. 925
    • Daura, X.1    Jaun, B.2    Seebach, D.3    van Gunsteren, W.F.4    Mark, A.E.5
  • 149
    • 0034610360 scopus 로고    scopus 로고
    • Protein Folding and Unfolding in Microseconds to Nanoseconds by Experiment and Simulation
    • U. Mayor, C. M. Johnson, V. Daggett, and A. R. Fersht, Proc. Natl. Acad. Sci. U.S.A., 97, 13518 (2000). Protein Folding and Unfolding in Microseconds to Nanoseconds by Experiment and Simulation.
    • (2000) Proc. Natl. Acad. Sci. U.S.A , vol.97 , pp. 13518
    • Mayor, U.1    Johnson, C.M.2    Daggett, V.3    Fersht, A.R.4
  • 151
    • 3843135179 scopus 로고    scopus 로고
    • Diffusing and Colliding: The Atomic Level Folding/Unfolding Pathway of a Small Helical Protein
    • M. L. Demarco, D. O. V. Alonso, and V. Daggett, J. Mol. Biol., 341, 1109 (2004). Diffusing and Colliding: The Atomic Level Folding/Unfolding Pathway of a Small Helical Protein.
    • (2004) J. Mol. Biol , vol.341 , pp. 1109
    • Demarco, M.L.1    Alonso, D.O.V.2    Daggett, V.3
  • 152
    • 0037083390 scopus 로고    scopus 로고
    • Thermal Unfolding Molecular Dynamics Simulation of Escherichia Coli Dihydrofo-late Reductase: Thermal Stability of Protein Domains and Unfolding Pathway
    • Y. Y. Sham, B. Ma, C.-J. Tsai, and R. Nussinov, Proteins: Struct., Funct., Bioinf., 46, 308 (2002). Thermal Unfolding Molecular Dynamics Simulation of Escherichia Coli Dihydrofo-late Reductase: Thermal Stability of Protein Domains and Unfolding Pathway.
    • (2002) Proteins: Struct., Funct., Bioinf , vol.46 , pp. 308
    • Sham, Y.Y.1    Ma, B.2    Tsai, C.-J.3    Nussinov, R.4
  • 153
    • 0141705747 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of the Unfolding of β2-Microglobulin and its Variants
    • B. Ma and R. Nussinov, Protein Eng., 16, 561 (2003). Molecular Dynamics Simulations of the Unfolding of β2-Microglobulin and its Variants.
    • (2003) Protein Eng , vol.16 , pp. 561
    • Ma, B.1    Nussinov, R.2
  • 154
    • 0033529908 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of Unfolding and Refolding of a β-Hairpin Fragment of Protein G
    • V. S. Pande and D. S. Rokhsar, Proc. Natl. Acad. Sci. U.S.A., 96, 9062 (1999). Molecular Dynamics Simulations of Unfolding and Refolding of a β-Hairpin Fragment of Protein G.
    • (1999) Proc. Natl. Acad. Sci. U.S.A , vol.96 , pp. 9062
    • Pande, V.S.1    Rokhsar, D.S.2
  • 155
    • 17744395510 scopus 로고    scopus 로고
    • Sensitivity of the Folding/Unfolding Transition State Ensemble of Chymotrypsin Inhibitor 2 to Changes in Temperature and Solvent
    • R. Day and V. Daggett, Protein Sci., 14, 1242 (2005). Sensitivity of the Folding/Unfolding Transition State Ensemble of Chymotrypsin Inhibitor 2 to Changes in Temperature and Solvent.
    • (2005) Protein Sci , vol.14 , pp. 1242
    • Day, R.1    Daggett, V.2
  • 156
    • 84868120948 scopus 로고    scopus 로고
    • Multimolecule Test-Tube Simulations of Protein Unfolding and Aggregation
    • M. E. McCully, D. A. C. Beck, and V. Daggett, Proc. Natl. Acad. Sci. U.S.A., 109, 17851 (2012). Multimolecule Test-Tube Simulations of Protein Unfolding and Aggregation.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , pp. 17851
    • McCully, M.E.1    Beck, D.A.C.2    Daggett, V.3
  • 157
    • 33846940059 scopus 로고    scopus 로고
    • Mechanical Unfolding of Proteins: Insights into Biology, Structure and Folding
    • J. Forman and J. Clarke, Curr. Opin. Struct. Biol., 17, 58 (2007). Mechanical Unfolding of Proteins: Insights into Biology, Structure and Folding.
    • (2007) Curr. Opin. Struct. Biol , vol.17 , pp. 58
    • Forman, J.1    Clarke, J.2
  • 158
    • 43749107950 scopus 로고    scopus 로고
    • Mechanical Biochemistry of Proteins One Molecule at a Time
    • A. F. Oberhauser and M. Carrión-Vázquez, J. Biol. Chem., 283, 6617 (2008). Mechanical Biochemistry of Proteins One Molecule at a Time.
    • (2008) J. Biol. Chem , vol.283 , pp. 6617
    • Oberhauser, A.F.1    Carrión-Vázquez, M.2
  • 159
    • 70349885458 scopus 로고    scopus 로고
    • Force and Function: Probing Proteins with AFM-Based Force Spectroscopy
    • E. M. Puchner and H. E. Gaub, Curr. Opin. Struct. Biol., 19, 605 (2009). Force and Function: Probing Proteins with AFM-Based Force Spectroscopy.
    • (2009) Curr. Opin. Struct. Biol , vol.19 , pp. 605
    • Puchner, E.M.1    Gaub, H.E.2
  • 161
    • 0031011695 scopus 로고    scopus 로고
    • Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM
    • M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Science, 276, 1109 (1997). Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM.
    • (1997) Science , vol.276 , pp. 1109
    • Rief, M.1    Gautel, M.2    Oesterhelt, F.3    Fernandez, J.M.4    Gaub, H.E.5
  • 162
    • 79951831503 scopus 로고    scopus 로고
    • Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory
    • J. Hsin, J. Strümpfer, E. H. Lee, and K. Schulten, Annu. Rev. Biophys., 40, 187 (2011). Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory.
    • (2011) Annu. Rev. Biophys , vol.40 , pp. 187
    • Hsin, J.1    Strümpfer, J.2    Lee, E.H.3    Schulten, K.4
  • 163
    • 0028824480 scopus 로고
    • Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity
    • S. Labeit and B. Kolmerer, Science, 270, 293 (1995). Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity.
    • (1995) Science , vol.270 , pp. 293
    • Labeit, S.1    Kolmerer, B.2
  • 165
    • 0031848099 scopus 로고    scopus 로고
    • Unfolding of Titin Immunoglobulin Domains by Steered Molecular Dynamics Simulation
    • H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten, Biophys. J., 75, 662 (1998). Unfolding of Titin Immunoglobulin Domains by Steered Molecular Dynamics Simulation.
    • (1998) Biophys. J , vol.75 , pp. 662
    • Lu, H.1    Isralewitz, B.2    Krammer, A.3    Vogel, V.4    Schulten, K.5
  • 167
    • 0035312645 scopus 로고    scopus 로고
    • Steered Molecular Dynamics and Mechanical Functions of Proteins
    • B. Isralewitz, M. Gao, and K. Schulten, Curr. Opin. Struct. Biol., 11, 224 (2001). Steered Molecular Dynamics and Mechanical Functions of Proteins.
    • (2001) Curr. Opin. Struct. Biol , vol.11 , pp. 224
    • Isralewitz, B.1    Gao, M.2    Schulten, K.3
  • 168
    • 0033531973 scopus 로고    scopus 로고
    • Forced Unfolding of Fibronectin Type 3 Modules: An Analysis by Biased Molecular Dynamics Simulations
    • E. Paci and M. Karplus, J. Mol. Biol., 288, 441 (1999). Forced Unfolding of Fibronectin Type 3 Modules: An Analysis by Biased Molecular Dynamics Simulations.
    • (1999) J. Mol. Biol , vol.288 , pp. 441
    • Paci, E.1    Karplus, M.2
  • 169
    • 0030059225 scopus 로고    scopus 로고
    • Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force
    • H. Grubmuller, B. Heymann, and P. Tavan, Science, 271, 997 (1996). Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force.
    • (1996) Science , vol.271 , pp. 997
    • Grubmuller, H.1    Heymann, B.2    Tavan, P.3
  • 171
    • 0033917135 scopus 로고    scopus 로고
    • The Key Event in Force-Induced Unfolding of Titin's Immunoglobulin Domains
    • H. Lu and K. Schulten, Biophys. J., 79, 51 (2000). The Key Event in Force-Induced Unfolding of Titin's Immunoglobulin Domains.
    • (2000) Biophys. J , vol.79 , pp. 51
    • Lu, H.1    Schulten, K.2
  • 172
    • 0033445338 scopus 로고    scopus 로고
    • Steered Molecular Dynamics Simulation of Conformational Changes of Immunoglobulin Domain 127 Interpret Atomic Force Microscopy Observations
    • H. Lu and K. Schulten, Chem. Phys., 247, 141 (1999). Steered Molecular Dynamics Simulation of Conformational Changes of Immunoglobulin Domain 127 Interpret Atomic Force Microscopy Observations.
    • (1999) Chem. Phys , vol.247 , pp. 141
    • Lu, H.1    Schulten, K.2
  • 173
    • 33644619697 scopus 로고    scopus 로고
    • Simulations of Multi-Directional Forced Unfolding of Titin 127
    • R. Toofanny and P. M. Williams, J. Mol. Graph. Model., 24, 396 (2006). Simulations of Multi-Directional Forced Unfolding of Titin 127.
    • (2006) J. Mol. Graph. Model , vol.24 , pp. 396
    • Toofanny, R.1    Williams, P.M.2
  • 174
    • 0034804341 scopus 로고    scopus 로고
    • Can Non-Mechanical Proteins Withstand Force? Stretching Barnase by Atomic Force Microscopy and Molecular Dynamics Simulation
    • R. B. Best, B. Li, A. Steward, V. Daggett, and J. Clarke, Biophys. J., 81, 2344 (2001). Can Non-Mechanical Proteins Withstand Force? Stretching Barnase by Atomic Force Microscopy and Molecular Dynamics Simulation.
    • (2001) Biophys. J , vol.81 , pp. 2344
    • Best, R.B.1    Li, B.2    Steward, A.3    Daggett, V.4    Clarke, J.5
  • 176
    • 66149165741 scopus 로고    scopus 로고
    • Mechanical Unfolding Pathway and Origin of Mechanical Stability of Proteins of Ubiquitin Family: An Investigation by Steered Molecular Dynamics Simulation
    • A. Das and C. Mukhopadhyay, Proteins: Struct., Funct., Bioinf., 75, 1024 (2009). Mechanical Unfolding Pathway and Origin of Mechanical Stability of Proteins of Ubiquitin Family: An Investigation by Steered Molecular Dynamics Simulation.
    • (2009) Proteins: Struct., Funct., Bioinf , vol.75 , pp. 1024
    • Das, A.1    Mukhopadhyay, C.2
  • 177
    • 68249162307 scopus 로고    scopus 로고
    • Mechanical Unfolding of Proteins L and G with Constant Force: Similarities and Differences
    • A. V. Glyakina, N. K. Balabaev, and O. V. Galzitskaya, J. Chem. Phys., 131, 045102 (2009). Mechanical Unfolding of Proteins L and G with Constant Force: Similarities and Differences.
    • (2009) J. Chem. Phys , vol.131 , pp. 045102
    • Glyakina, A.V.1    Balabaev, N.K.2    Galzitskaya, O.V.3
  • 178
    • 0032579189 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of the Unfolding of Barnase: Characterization of the Major Intermediate
    • A. Li and V. Daggett, J. Mol. Biol., 275, 677 (1998). Molecular Dynamics Simulation of the Unfolding of Barnase: Characterization of the Major Intermediate.
    • (1998) J. Mol. Biol , vol.275 , pp. 677
    • Li, A.1    Daggett, V.2
  • 179
    • 65549157601 scopus 로고    scopus 로고
    • Comparison of Transition States Obtained Upon Modeling of Unfolding of Immunoglobulin-Binding Domains of Proteins L and G Caused by External Action with Transition States Obtained in the Absence of Force Probed by Experiments
    • A. V. Glyakina, N. K. Balabaev, and O. V. Galzitskaya, Biochemistry (Moscow), 74(316) (2009). Comparison of Transition States Obtained Upon Modeling of Unfolding of Immunoglobulin-Binding Domains of Proteins L and G Caused by External Action with Transition States Obtained in the Absence of Force Probed by Experiments.
    • (2009) Biochemistry (Moscow) , vol.74 , Issue.316
    • Glyakina, A.V.1    Balabaev, N.K.2    Galzitskaya, O.V.3
  • 180
    • 33846368131 scopus 로고    scopus 로고
    • Internal Protein Dynamics Shifts the Distance to the Mechanical Transition State
    • D. K. West, E. Paci, and P. D. Olmsted, Phys. Rev. E, 74, 061912 (2006). Internal Protein Dynamics Shifts the Distance to the Mechanical Transition State.
    • (2006) Phys. Rev. E , vol.74 , pp. 061912
    • West, D.K.1    Paci, E.2    Olmsted, P.D.3
  • 181
    • 37749024809 scopus 로고    scopus 로고
    • Stretching to Understand Proteins - A Survey of the Protein Data Bank
    • J. I. Sukowska and M. Cieplak, Biophys. J., 94, 6 (2008). Stretching to Understand Proteins - A Survey of the Protein Data Bank.
    • (2008) Biophys. J , vol.94 , pp. 6
    • Sukowska, J.I.1    Cieplak, M.2
  • 182
    • 73549110486 scopus 로고    scopus 로고
    • Mechanical Strength of 17,134 Model Proteins and Cysteine Slipknots
    • M. Sikora, J. I. Sukowska, and M. Cieplak, PLoS Comput. Biol., 5, e1000547 (2009). Mechanical Strength of 17,134 Model Proteins and Cysteine Slipknots.
    • (2009) PLoS Comput. Biol , vol.5 , pp. e1000547
    • Sikora, M.1    Sukowska, J.I.2    Cieplak, M.3
  • 185
    • 62449236890 scopus 로고    scopus 로고
    • J. Buchner and T. Kiefhaber (Eds.), Wiley-VCH Verlag GmbH, Molecular Dynamics Simulations to Study Protein Folding and Unfolding
    • A. Caflisch and E. Paci, in Protein Folding Handbook, J. Buchner and T. Kiefhaber (Eds.), Wiley-VCH Verlag GmbH, 2008, pp. 1143-1169, Molecular Dynamics Simulations to Study Protein Folding and Unfolding.
    • (2008) Protein Folding Handbook , pp. 1143-1169
    • Caflisch, A.1    Paci, E.2
  • 186
    • 0034743155 scopus 로고    scopus 로고
    • From Folding Theories to Folding Proteins: A Review and Assessment of Simulation Studies of Protein Folding and Unfolding
    • J.-E. Shea and C. L. Brooks, III, Annu. Rev. Phys. Chem., 52, 499 (2001). From Folding Theories to Folding Proteins: A Review and Assessment of Simulation Studies of Protein Folding and Unfolding.
    • (2001) Annu. Rev. Phys. Chem , vol.52 , pp. 499
    • Shea, J.-E.1    Brooks, C.L.2
  • 187
    • 0242353859 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Protein Folding by Essential Dynamics Sampling: Folding Landscape of Horse Heart Cytochrome C
    • I. Daidone, A. Amadei, D. Roccatano, and A. D. Nola, Biophys. J., 85, 2865 (2003). Molecular Dynamics Simulation of Protein Folding by Essential Dynamics Sampling: Folding Landscape of Horse Heart Cytochrome C.
    • (2003) Biophys. J , vol.85 , pp. 2865
    • Daidone, I.1    Amadei, A.2    Roccatano, D.3    Nola, A.D.4
  • 188
    • 34147177151 scopus 로고    scopus 로고
    • Improved Sampling Methods for Molecular Simulation
    • H. Lei and Y. Duan, Curr. Opin. Struct. Biol., 17, 187 (2007). Improved Sampling Methods for Molecular Simulation.
    • (2007) Curr. Opin. Struct. Biol , vol.17 , pp. 187
    • Lei, H.1    Duan, Y.2
  • 189
    • 78149495449 scopus 로고    scopus 로고
    • Reaching Biological Timescales with All-Atom Molecular Dynamics Simulations
    • M. C. Zwier and L. T. Chong, Curr. Opin. Pharmacol., 10, 745 (2010). Reaching Biological Timescales with All-Atom Molecular Dynamics Simulations.
    • (2010) Curr. Opin. Pharmacol , vol.10 , pp. 745
    • Zwier, M.C.1    Chong, L.T.2
  • 190
    • 0035895427 scopus 로고    scopus 로고
    • Exploration of Partially Unfolded States of Human α-Lactalbumin by Molecular Dynamics Simulation
    • E. Paci, L. J. Smith, C. M. Dobson, and M. Karplus, J. Mol. Biol., 306, 329 (2001). Exploration of Partially Unfolded States of Human α-Lactalbumin by Molecular Dynamics Simulation.
    • (2001) J. Mol. Biol , vol.306 , pp. 329
    • Paci, E.1    Smith, L.J.2    Dobson, C.M.3    Karplus, M.4
  • 191
    • 0036435907 scopus 로고    scopus 로고
    • Determination of a Transition State at Atomic Resolution from Protein Engineering Data
    • E. Paci, M. Vendruscolo, C. M. Dobson, and M. Karplus, J. Mol. Biol., 324, 151 (2002). Determination of a Transition State at Atomic Resolution from Protein Engineering Data.
    • (2002) J. Mol. Biol , vol.324 , pp. 151
    • Paci, E.1    Vendruscolo, M.2    Dobson, C.M.3    Karplus, M.4
  • 192
    • 0035976752 scopus 로고    scopus 로고
    • Forces and Energetics of Hapten-Antibody Dissociation: A Biased Molecular Dynamics Simulation Study
    • E. Paci, A. Caflisch, A. Pluckthun, and M. Karplus, J. Mol. Biol., 314, 589 (2001). Forces and Energetics of Hapten-Antibody Dissociation: A Biased Molecular Dynamics Simulation Study.
    • (2001) J. Mol. Biol , vol.314 , pp. 589
    • Paci, E.1    Caflisch, A.2    Pluckthun, A.3    Karplus, M.4
  • 193
    • 33745764034 scopus 로고    scopus 로고
    • Structural Comparison of the Two Alternative Transition States for Folding of TI 127
    • C. D. Geierhaas, R. B. Best, E. Paci, M. Vendruscolo, and J. Clarke, Biophys. J., 91, 263 (2006). Structural Comparison of the Two Alternative Transition States for Folding of TI 127.
    • (2006) Biophys. J , vol.91 , pp. 263
    • Geierhaas, C.D.1    Best, R.B.2    Paci, E.3    Vendruscolo, M.4    Clarke, J.5
  • 194
    • 78650924377 scopus 로고    scopus 로고
    • Structural Insights into the Two Sequential Folding Transition States of the PB1 Domain of NBR1 from Φ Value Analysis and Biased Molecular Dynamics Simulations
    • P. Chen, C.-L. Evans, J. D. Hirst, and M. S. Searle, Biochemistry, 50, 125 (2011). Structural Insights into the Two Sequential Folding Transition States of the PB1 Domain of NBR1 from Φ Value Analysis and Biased Molecular Dynamics Simulations.
    • (2011) Biochemistry , vol.50 , pp. 125
    • Chen, P.1    Evans, C.-L.2    Hirst, J.D.3    Searle, M.S.4
  • 195
    • 34547726188 scopus 로고    scopus 로고
    • Transition States for Protein Folding using Molecular Dynamics and Experimental Restraints
    • L. R. Allen and E. Paci, J. Phys.: Condens. Matter, 19, 285211 (2007). Transition States for Protein Folding using Molecular Dynamics and Experimental Restraints.
    • (2007) J. Phys.: Condens. Matter , vol.19 , pp. 285211
    • Allen, L.R.1    Paci, E.2
  • 196
    • 0026511656 scopus 로고
    • The Folding of an Enzyme. I. Theory of Protein Engineering Analysis of Stability and Pathway of Protein Folding
    • A. R. Fersht, A. Matouschek, and L. Serrano, J. Mol. Biol., 224, 771 (1992). The Folding of an Enzyme. I. Theory of Protein Engineering Analysis of Stability and Pathway of Protein Folding.
    • (1992) J. Mol. Biol , vol.224 , pp. 771
    • Fersht, A.R.1    Matouschek, A.2    Serrano, L.3
  • 197
    • 0028820703 scopus 로고
    • Denaturant Values and Heat Capacity Changes: Relation to Changes in Accessible Surface Areas of Protein Unfolding
    • J. K. Myers, N. C. Pace, and J. Martin Scholtz, Protein Sci., 4, 2138 (1995). Denaturant Values and Heat Capacity Changes: Relation to Changes in Accessible Surface Areas of Protein Unfolding.
    • (1995) Protein Sci , vol.4 , pp. 2138
    • Myers, J.K.1    Pace, N.C.2    Martin Scholtz, J.3
  • 198
    • 5144220785 scopus 로고    scopus 로고
    • Comparison of the Transition States for Folding of Two Ig-Like Proteins from Different Superfamilies
    • C. D. Geierhaas, E. Paci, M. Vendruscolo, and J. Clarke, J. Mol. Biol., 343, 1111 (2004). Comparison of the Transition States for Folding of Two Ig-Like Proteins from Different Superfamilies.
    • (2004) J. Mol. Biol , vol.343 , pp. 1111
    • Geierhaas, C.D.1    Paci, E.2    Vendruscolo, M.3    Clarke, J.4
  • 199
    • 0034652206 scopus 로고    scopus 로고
    • Transition-State Structure as a Unifying Basis in Protein-Folding Mechanisms: Contact Order, Chain Topology, Stability, and the Extended Nucleus Mechanism
    • A. Fersht, Proc. Natl Acad. Sci. U.S.A., 974, 1525 (2000). Transition-State Structure as a Unifying Basis in Protein-Folding Mechanisms: Contact Order, Chain Topology, Stability, and the Extended Nucleus Mechanism.
    • (2000) Proc. Natl Acad. Sci. U.S.A , vol.974 , pp. 1525
    • Fersht, A.1
  • 200
    • 72549115471 scopus 로고    scopus 로고
    • Dynameomics: a Consensus View of the Protein Unfolding/Folding Transition State Ensemble Across a Diverse Set of Protein Folds
    • A. L. Jonsson, K. A. Scott, and V. Daggett, Biophys. J., 97, 2958 (2009). Dynameomics: a Consensus View of the Protein Unfolding/Folding Transition State Ensemble Across a Diverse Set of Protein Folds.
    • (2009) Biophys. J , vol.97 , pp. 2958
    • Jonsson, A.L.1    Scott, K.A.2    Daggett, V.3
  • 201
    • 28844506608 scopus 로고    scopus 로고
    • Direct Observation of Protein Folding, Aggregation, and a Prion-Like Conformational Conversion
    • F. Ding, J. J. LaRocque, and N. V. Dokholyan, J. Biol. Chem., 280, 40235 (2005). Direct Observation of Protein Folding, Aggregation, and a Prion-Like Conformational Conversion.
    • (2005) J. Biol. Chem , vol.280 , pp. 40235
    • Ding, F.1    LaRocque, J.J.2    Dokholyan, N.V.3
  • 202
    • 0032080053 scopus 로고    scopus 로고
    • Calculations on Folding of Segment B1 of Streptococcal Protein G
    • F. B. Sheinerman and C. L. Brooks, III, J. Mol. Biol., 278, 439 (1998). Calculations on Folding of Segment B1 of Streptococcal Protein G.
    • (1998) J. Mol. Biol , vol.278 , pp. 439
    • Sheinerman, F.B.1    Brooks, C.L.2
  • 203
    • 77951685093 scopus 로고    scopus 로고
    • A Comprehensive Multidimensional-Embedded, One-Dimensional Reaction Coordinate for Protein Unfold-ing/Folding
    • R. Toofanny, A. L. Jonsson, and V. Daggett, Biophys. J., 98, 2671 (2010). A Comprehensive Multidimensional-Embedded, One-Dimensional Reaction Coordinate for Protein Unfold-ing/Folding.
    • (2010) Biophys. J , vol.98 , pp. 2671
    • Toofanny, R.1    Jonsson, A.L.2    Daggett, V.3
  • 204
    • 0028143603 scopus 로고
    • Characterization of the Transition State of Protein Unfolding by use of Molecular Dynamics: Chymotrypsin Inhibitor 2
    • A. Li and V. Daggett, Proc. Natl. Acad. Sci. U.S.A., 91, 10430 (1994). Characterization of the Transition State of Protein Unfolding by use of Molecular Dynamics: Chymotrypsin Inhibitor 2.
    • (1994) Proc. Natl. Acad. Sci. U.S.A , vol.91 , pp. 10430
    • Li, A.1    Daggett, V.2
  • 205
    • 0029963345 scopus 로고    scopus 로고
    • Identification and Characterization of the Unfolding Transition State of Chymotrypsin Inhibitor 2 by Molecular Dynamics Simulations
    • A. Li and V. Daggett, J. Mol. Biol., 257, 412 (1996). Identification and Characterization of the Unfolding Transition State of Chymotrypsin Inhibitor 2 by Molecular Dynamics Simulations.
    • (1996) J. Mol. Biol , vol.257 , pp. 412
    • Li, A.1    Daggett, V.2
  • 206
    • 33745606942 scopus 로고    scopus 로고
    • Φ-Analysis at the Experimental Limits: Mechanism of β-Hairpin Formation
    • M. Petrovich, A. L. Jonsson, N. Ferguson, V. Daggett, and A. R. Fersht, J. Mol. Biol., 360, 865 (2006). Φ-Analysis at the Experimental Limits: Mechanism of β-Hairpin Formation.
    • (2006) J. Mol. Biol , vol.360 , pp. 865
    • Petrovich, M.1    Jonsson, A.L.2    Ferguson, N.3    Daggett, V.4    Fersht, A.R.5
  • 207
    • 33846901901 scopus 로고    scopus 로고
    • Intermediates: Ubiquitous Species on Folding Energy Landscapes?
    • D. Brockwell and S. Radford, Curr. Opin. Struct. Biol., 17, 30 (2007). Intermediates: Ubiquitous Species on Folding Energy Landscapes?.
    • (2007) Curr. Opin. Struct. Biol , vol.17 , pp. 30
    • Brockwell, D.1    Radford, S.2
  • 209
    • 27144532135 scopus 로고    scopus 로고
    • Solution Structure of a Protein Denatured State and Folding Intermediate
    • T. L. Religa, J. S. Markson, U. Mayor, S. M. V. Freund, and A. R. Fersht, Nature, 437, 1053 (2005). Solution Structure of a Protein Denatured State and Folding Intermediate.
    • (2005) Nature , vol.437 , pp. 1053
    • Religa, T.L.1    Markson, J.S.2    Mayor, U.3    Freund, S.M.V.4    Fersht, A.R.5
  • 210
    • 36549027538 scopus 로고    scopus 로고
    • A One-Dimensional Reaction Coordinate for Identification of Transition States from Explicit Solvent P(fold)-Like Calculations
    • D. A. C. Beck and V. Daggett, Biophys. J., 93, 3382 (2007). A One-Dimensional Reaction Coordinate for Identification of Transition States from Explicit Solvent P(fold)-Like Calculations.
    • (2007) Biophys. J , vol.93 , pp. 3382
    • Beck, D.A.C.1    Daggett, V.2
  • 211
    • 0031059496 scopus 로고    scopus 로고
    • Theoretical Studies of Protein-Folding Thermodynamics and Kinetics
    • E. I. Shakhnovich, Curr. Opin. Struct. Biol., 7, 29 (1997). Theoretical Studies of Protein-Folding Thermodynamics and Kinetics.
    • (1997) Curr. Opin. Struct. Biol , vol.7 , pp. 29
    • Shakhnovich, E.I.1
  • 212
    • 0017157584 scopus 로고
    • A Simplified Representation of Protein Conformations for Rapid Simulation of Protein Folding
    • M. Levitt, J. Mol. Biol., 104, 59 (1976). A Simplified Representation of Protein Conformations for Rapid Simulation of Protein Folding.
    • (1976) J. Mol. Biol , vol.104 , pp. 59
    • Levitt, M.1
  • 213
    • 0017124029 scopus 로고
    • Folding and Stability of Helical Proteins: Carp Myogen
    • A. Warshel and M. Levitt, J. Mol. Biol., 106, 421 (1976). Folding and Stability of Helical Proteins: Carp Myogen.
    • (1976) J. Mol. Biol , vol.106 , pp. 421
    • Warshel, A.1    Levitt, M.2
  • 214
    • 33747873410 scopus 로고    scopus 로고
    • β-Hairpins with Native-Like and Non-Native Hydrogen Bonding Patterns Could Form During the Refolding of Staphylococcal Nuclease
    • S. Patel, P. Sista, P. V. Balaji, and Y. U. Sasidhar, J. Mol. Graph. Model., 25, 103 (2006). β-Hairpins with Native-Like and Non-Native Hydrogen Bonding Patterns Could Form During the Refolding of Staphylococcal Nuclease.
    • (2006) J. Mol. Graph. Model , vol.25 , pp. 103
    • Patel, S.1    Sista, P.2    Balaji, P.V.3    Sasidhar, Y.U.4
  • 216
    • 0036428782 scopus 로고    scopus 로고
    • Simulation of Folding of a Small α-Helical Protein in Atomistic Detail Using Worldwide-Distributed Computing
    • B. Zagrovic, C. D. Snow, M. R. Shirts, and V. S. Pande, J. Mol. Biol., 323, 927 (2002). Simulation of Folding of a Small α-Helical Protein in Atomistic Detail Using Worldwide-Distributed Computing.
    • (2002) J. Mol. Biol , vol.323 , pp. 927
    • Zagrovic, B.1    Snow, C.D.2    Shirts, M.R.3    Pande, V.S.4
  • 217
    • 34249807361 scopus 로고    scopus 로고
    • Ab Initio Folding of Albumin Binding Domain from All-Atom Molecular Dynamics Simulation
    • H. Lei and Y. Duan, J. Phys. Chem. B, 111, 5458 (2007). Ab Initio Folding of Albumin Binding Domain from All-Atom Molecular Dynamics Simulation.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 5458
    • Lei, H.1    Duan, Y.2
  • 219
    • 0030627746 scopus 로고    scopus 로고
    • Dynamics of a Type VI Reverse Turn in a Linear Peptide in Aqueous Solution
    • E. Demchuk, D. Bashford, and D. A. Case, Folding Des., 2, 35 (1997). Dynamics of a Type VI Reverse Turn in a Linear Peptide in Aqueous Solution.
    • (1997) Folding Des , vol.2 , pp. 35
    • Demchuk, E.1    Bashford, D.2    Case, D.A.3
  • 220
    • 84863091846 scopus 로고    scopus 로고
    • Conformational Distributions of Denatured and Unstructured Proteins are Similar to those of 20 × 20 Blocked Dipeptides
    • K.-I. Oh, Y.-S. Jung, G.-S. Hwang, and M. Cho, J. Biomol. NMR, 53, 25 (2012). Conformational Distributions of Denatured and Unstructured Proteins are Similar to those of 20 × 20 Blocked Dipeptides.
    • (2012) J. Biomol. NMR , vol.53 , pp. 25
    • Oh, K.-I.1    Jung, Y.-S.2    Hwang, G.-S.3    Cho, M.4
  • 221
    • 50449111518 scopus 로고    scopus 로고
    • The Intrinsic Conformational Propensities of the 20 Naturally Occurring Amino Acids and Reflection of these Propensities in Proteins
    • D. A. C. Beck, D. O. V. Alonso, D. Inoyama, and V. Daggett, Proc. Natl. Acad. Sci. U.S.A., 105, 12259 (2008). The Intrinsic Conformational Propensities of the 20 Naturally Occurring Amino Acids and Reflection of these Propensities in Proteins.
    • (2008) Proc. Natl. Acad. Sci. U.S.A , vol.105 , pp. 12259
    • Beck, D.A.C.1    Alonso, D.O.V.2    Inoyama, D.3    Daggett, V.4
  • 222
    • 23744502246 scopus 로고    scopus 로고
    • Is There or Isn't There? The Case For (and Against) Residual Structure in Chemically Denatured Proteins
    • E. R. McCarney, J. E. Kohn, and K. W. Plaxco, Crit. Rev. Biochem. Mol. Biol., 40, 181 (2005). Is There or Isn't There? The Case For (and Against) Residual Structure in Chemically Denatured Proteins.
    • (2005) Crit. Rev. Biochem. Mol. Biol , vol.40 , pp. 181
    • McCarney, E.R.1    Kohn, J.E.2    Plaxco, K.W.3
  • 223
    • 33646908786 scopus 로고    scopus 로고
    • Conformation of the Backbone in Unfolded Proteins
    • Z. Shi, K. Chen, Z. Liu, and N. R. Kallenbach, Chem. Rev., 106, 1877 (2006). Conformation of the Backbone in Unfolded Proteins.
    • (2006) Chem. Rev , vol.106 , pp. 1877
    • Shi, Z.1    Chen, K.2    Liu, Z.3    Kallenbach, N.R.4
  • 225
    • 35448930794 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations from Putative Transition States of α-Spectrin SH3 Domain
    • X. Periole, M. Vendruscolo, and A. E. Mark, Proteins: Struct., Funct., Bioinf., 69, 536 (2007). Molecular Dynamics Simulations from Putative Transition States of α-Spectrin SH3 Domain.
    • (2007) Proteins: Struct., Funct., Bioinf , vol.69 , pp. 536
    • Periole, X.1    Vendruscolo, M.2    Mark, A.E.3
  • 226
    • 1842334454 scopus 로고    scopus 로고
    • Refolding Simulations of an Isolated Fragment of Barnase into a Native-Like β Hairpin: Evidence for Compactness and Hydrogen Bonding as Concurrent Stabilizing Factors
    • M. Prévost and I. Ortmans, Proteins: Struct., Funct., Bioinf., 29, 212 (1997). Refolding Simulations of an Isolated Fragment of Barnase into a Native-Like β Hairpin: Evidence for Compactness and Hydrogen Bonding as Concurrent Stabilizing Factors.
    • (1997) Proteins: Struct., Funct., Bioinf , vol.29 , pp. 212
    • Prévost, M.1    Ortmans, I.2
  • 227
    • 84864750900 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation Exploration of Unfolding and Refolding of a Ten-Amino Acid Miniprotein
    • G.-J. Zhao and C.-L. Cheng, Amino Acids, 43, 557 (2012). Molecular Dynamics Simulation Exploration of Unfolding and Refolding of a Ten-Amino Acid Miniprotein.
    • (2012) Amino Acids , vol.43 , pp. 557
    • Zhao, G.-J.1    Cheng, C.-L.2
  • 228
    • 0028965968 scopus 로고
    • Molecular Dynamics Simulations of Protein Unfolding and Limited Refolding: Characterization of Partially Unfolded States of Ubiquitin in 60% Methanol and in Water
    • D. O. V. Alonso and V. Daggett, J. Mol. Biol., 247, 501 (1995). Molecular Dynamics Simulations of Protein Unfolding and Limited Refolding: Characterization of Partially Unfolded States of Ubiquitin in 60% Methanol and in Water.
    • (1995) J. Mol. Biol , vol.247 , pp. 501
    • Alonso, D.O.V.1    Daggett, V.2
  • 229
    • 0031965674 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of Hydrophobic Collapse of Ubiquitin
    • D. O. V. Alonso and V. Daggett, Protein Sci., 7, 860 (1998). Molecular Dynamics Simulations of Hydrophobic Collapse of Ubiquitin.
    • (1998) Protein Sci , vol.7 , pp. 860
    • Alonso, D.O.V.1    Daggett, V.2
  • 230
    • 0036892356 scopus 로고    scopus 로고
    • All-Atom Fast Protein Folding Simulations: The Villin Headpiece
    • M.-Y. Shen and K. F. Freed, Proteins: Struct., Funct., Bioinf., 49, 439 (2002). All-Atom Fast Protein Folding Simulations: The Villin Headpiece.
    • (2002) Proteins: Struct., Funct., Bioinf , vol.49 , pp. 439
    • Shen, M.-Y.1    Freed, K.F.2
  • 231
    • 34249298006 scopus 로고    scopus 로고
    • Two-Stage Folding of HP-35 from Ab Initio Simulations
    • H. Lei and Y. Duan, J. Mol. Biol., 370, 196 (2007). Two-Stage Folding of HP-35 from Ab Initio Simulations.
    • (2007) J. Mol. Biol , vol.370 , pp. 196
    • Lei, H.1    Duan, Y.2
  • 232
    • 70349778502 scopus 로고    scopus 로고
    • Common Structural Transitions in Explicit-Solvent Simulations of Villin Headpiece Folding
    • P. L. Freddolino and K. Schulten, Biophys. J., 97, 2338 (2009). Common Structural Transitions in Explicit-Solvent Simulations of Villin Headpiece Folding.
    • (2009) Biophys. J , vol.97 , pp. 2338
    • Freddolino, P.L.1    Schulten, K.2
  • 233
    • 34247639441 scopus 로고    scopus 로고
    • Folding Free-Energy Landscape of Villin Headpiece Subdomain from Molecular Dynamics Simulations
    • H. Lei, C. Wu, H. Liu, and Y. Duan, Proc. Natl. Acad. Sci. U.S.A., 104, 4925 (2007). Folding Free-Energy Landscape of Villin Headpiece Subdomain from Molecular Dynamics Simulations.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 4925
    • Lei, H.1    Wu, C.2    Liu, H.3    Duan, Y.4
  • 234
    • 1042279571 scopus 로고    scopus 로고
    • Comparison of the Transition State Ensembles for Folding of Im7 and Im9 Determined using All-Atom Molecular Dynamics Simulations with Φ Value Restraints
    • E. Paci, C. Friel, K. Lindorff-Larsen, S. Radford, M. Karplus, and M. Vendruscolo, Proteins: Struct., Funct., Bioinf., 54, 513 (2004). Comparison of the Transition State Ensembles for Folding of Im7 and Im9 Determined using All-Atom Molecular Dynamics Simulations with Φ Value Restraints.
    • (2004) Proteins: Struct., Funct., Bioinf , vol.54 , pp. 513
    • Paci, E.1    Friel, C.2    Lindorff-Larsen, K.3    Radford, S.4    Karplus, M.5    Vendruscolo, M.6
  • 237
    • 0033588067 scopus 로고    scopus 로고
    • Non-Functional Conserved Residues in Globins and their Possible Role as a Folding Nucleus
    • O. B. Ptitsyn and K. L. Ting, J. Mol. Biol., 291, 671 (1999). Non-Functional Conserved Residues in Globins and their Possible Role as a Folding Nucleus.
    • (1999) J. Mol. Biol , vol.291 , pp. 671
    • Ptitsyn, O.B.1    Ting, K.L.2
  • 239
    • 56749176808 scopus 로고    scopus 로고
    • Dynameomics: Large-Scale Assessment of Native Protein Flexibility
    • N. C. Benson and V. Daggett, Protein Sci., 17, 2038 (2008). Dynameomics: Large-Scale Assessment of Native Protein Flexibility.
    • (2008) Protein Sci , vol.17 , pp. 2038
    • Benson, N.C.1    Daggett, V.2
  • 240
    • 44649116524 scopus 로고    scopus 로고
    • Dynameomics: Mass Annotation of Protein Dynamics and Unfolding in Water by High-Throughput Atomistic Molecular Dynamics Simulations
    • D. A. C. Beck, A. L. Jonsson, R. D. Schaeffer, K. A. Scott, R. Day, R. Toofanny, D. O. V. Alonso, and V. Daggett, Protein Eng. Des. Sel., 21, 353 (2008). Dynameomics: Mass Annotation of Protein Dynamics and Unfolding in Water by High-Throughput Atomistic Molecular Dynamics Simulations.
    • (2008) Protein Eng. Des. Sel , vol.21 , pp. 353
    • Beck, D.A.C.1    Jonsson, A.L.2    Schaeffer, R.D.3    Scott, K.A.4    Day, R.5    Toofanny, R.6    Alonso, D.O.V.7    Daggett, V.8
  • 242
    • 0141524060 scopus 로고    scopus 로고
    • a Consensus View of Fold Space: Combining SCOP, CATH, and the Dali Domain Dictionary
    • R. Day, D. A. C. Beck, R. S. Armen, and V. Daggett, Protein Sci., 12, 2150 (2003). a Consensus View of Fold Space: Combining SCOP, CATH, and the Dali Domain Dictionary.
    • (2003) Protein Sci , vol.12 , pp. 2150
    • Day, R.1    Beck, D.A.C.2    Armen, R.S.3    Daggett, V.4
  • 245
    • 84869123655 scopus 로고    scopus 로고
    • When a Domain is Not a Domain, and Why it is Important to Properly Filter Proteins in Databases
    • C.-L. Towse and V. Daggett, BioEssays, 34, 1060 (2012). When a Domain is Not a Domain, and Why it is Important to Properly Filter Proteins in Databases.
    • (2012) BioEssays , vol.34 , pp. 1060
    • Towse, C.-L.1    Daggett, V.2
  • 246
    • 79251565520 scopus 로고    scopus 로고
    • The Dynameomics Rotamer Library: Amino Acid Side Chain Conformations and Dynamics from Comprehensive Molecular Dynamics Simulations in Water
    • A. D. Scouras and V. Daggett, Protein Sci., 20, 341 (2011). The Dynameomics Rotamer Library: Amino Acid Side Chain Conformations and Dynamics from Comprehensive Molecular Dynamics Simulations in Water.
    • (2011) Protein Sci , vol.20 , pp. 341
    • Scouras, A.D.1    Daggett, V.2
  • 247
    • 80053386128 scopus 로고    scopus 로고
    • The Effect of Context on the Folding of β-Hairpins
    • A. L. Jonsson and V. Daggett, J. Struct. Biol., 176, 143 (2011). The Effect of Context on the Folding of β-Hairpins.
    • (2011) J. Struct. Biol , vol.176 , pp. 143
    • Jonsson, A.L.1    Daggett, V.2
  • 248
    • 34547499110 scopus 로고    scopus 로고
    • The Design and Characterization of Two Proteins with 88% Sequence Identity but Different Structure and Function
    • P. A. Alexander, Y. He, Y. Chen, J. Orban, and P. N. Bryan, Proc. Natl. Acad. Sci. U.S.A., 104, 11963 (2007). The Design and Characterization of Two Proteins with 88% Sequence Identity but Different Structure and Function.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 11963
    • Alexander, P.A.1    He, Y.2    Chen, Y.3    Orban, J.4    Bryan, P.N.5
  • 249
    • 55749108537 scopus 로고    scopus 로고
    • NMR Structures of Two Designed Proteins with High Sequence Identity but Different Fold and Function
    • Y. He, Y. Chen, P. Alexander, P. N. Bryan, and J. Orban, Proc. Natl. Acad. Sci. U.S.A., 105, 14412 (2008). NMR Structures of Two Designed Proteins with High Sequence Identity but Different Fold and Function.
    • (2008) Proc. Natl. Acad. Sci. U.S.A , vol.105 , pp. 14412
    • He, Y.1    Chen, Y.2    Alexander, P.3    Bryan, P.N.4    Orban, J.5
  • 250
    • 27444443861 scopus 로고    scopus 로고
    • Solution NMR Structures of IgG Binding Domains with Artificially Evolved High Levels of Sequence Identity but Different Folds
    • Y. He, D. C. Yeh, P. Alexander, P. N. Bryan, and J. Orban, Biochemistry, 44, 14055 (2005). Solution NMR Structures of IgG Binding Domains with Artificially Evolved High Levels of Sequence Identity but Different Folds.
    • (2005) Biochemistry , vol.44 , pp. 14055
    • He, Y.1    Yeh, D.C.2    Alexander, P.3    Bryan, P.N.4    Orban, J.5
  • 251
    • 84863012003 scopus 로고    scopus 로고
    • Mutational Tipping Points for Switching Protein Folds and Functions
    • Y. He, Y. Chen, P. A. Alexander, P. N. Bryan, and J. Orban, Structure, 20, 283 (2012). Mutational Tipping Points for Switching Protein Folds and Functions.
    • (2012) Structure , vol.20 , pp. 283
    • He, Y.1    Chen, Y.2    Alexander, P.A.3    Bryan, P.N.4    Orban, J.5
  • 252
    • 33846985596 scopus 로고    scopus 로고
    • Folding Mechanisms of Proteins with High Sequence Identity but Different Folds
    • K. A. Scott and V. Daggett, Biochemistry, 46, 1545 (2007). Folding Mechanisms of Proteins with High Sequence Identity but Different Folds.
    • (2007) Biochemistry , vol.46 , pp. 1545
    • Scott, K.A.1    Daggett, V.2
  • 253
    • 79952805688 scopus 로고    scopus 로고
    • The Denatured State Dictates the Topology of Two Proteins with Almost Identical Sequence but Different Native Structure and Function
    • A. Morrone, M. E. McCully, P. N. Bryan, M. Brunori, V. Daggett, S. Gianni, and C. Travaglini-Allocatelli, J. Biol. Chem., 286, 3863 (2011). The Denatured State Dictates the Topology of Two Proteins with Almost Identical Sequence but Different Native Structure and Function.
    • (2011) J. Biol. Chem , vol.286 , pp. 3863
    • Morrone, A.1    McCully, M.E.2    Bryan, P.N.3    Brunori, M.4    Daggett, V.5    Gianni, S.6    Travaglini-Allocatelli, C.7
  • 254
    • 83455221631 scopus 로고    scopus 로고
    • Current Computer Modeling Cannot Explain why Two Highly Similar Sequences Fold into Different Structures
    • J. R. Allison, M. Bergeler, N. Hansen, and W. F. van Gunsteren, Biochemistry, 50, 10965 (2011). Current Computer Modeling Cannot Explain why Two Highly Similar Sequences Fold into Different Structures.
    • (2011) Biochemistry , vol.50 , pp. 10965
    • Allison, J.R.1    Bergeler, M.2    Hansen, N.3    van Gunsteren, W.F.4
  • 255
    • 84861367246 scopus 로고    scopus 로고
    • Biomolecular Simulation: A Computational Microscope for Molecular Biology
    • R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, Biophysics, 41, 429 (2012). Biomolecular Simulation: A Computational Microscope for Molecular Biology.
    • (2012) Biophysics , vol.41 , pp. 429
    • Dror, R.O.1    Dirks, R.M.2    Grossman, J.P.3    Xu, H.4    Shaw, D.E.5
  • 256
    • 79960595060 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations using Graphics Processing Units
    • J. A. Baker and J. D. Hirst, Mol. Inf., 30, 498 (2011). Molecular Dynamics Simulations using Graphics Processing Units.
    • (2011) Mol. Inf , vol.30 , pp. 498
    • Baker, J.A.1    Hirst, J.D.2
  • 258
    • 79251477549 scopus 로고    scopus 로고
    • Protein Dynamics: Moore's Law in Molecular Biology
    • M. Vendruscolo and C. M. Dobson, Curr. Biol., 21, R68 (2011). Protein Dynamics: Moore's Law in Molecular Biology.
    • (2011) Curr. Biol , vol.21 , pp. R68
    • Vendruscolo, M.1    Dobson, C.M.2
  • 259
    • 44649152369 scopus 로고    scopus 로고
    • Dynameomics: A Multi-Dimensional Analysis-Optimized Database for Dynamic Protein Data
    • C. Kehl, A. M. Simms, R. Toofanny, and V. Daggett, Protein Eng. Des. Sel., 21, 379 (2008). Dynameomics: A Multi-Dimensional Analysis-Optimized Database for Dynamic Protein Data.
    • (2008) Protein Eng. Des. Sel , vol.21 , pp. 379
    • Kehl, C.1    Simms, A.M.2    Toofanny, R.3    Daggett, V.4
  • 260
    • 44649195146 scopus 로고    scopus 로고
    • Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository for Protein Simulations
    • A. M. Simms, R. Toofanny, C. Kehl, N. C. Benson, and V. Daggett, Protein Eng. Des. Sel., 21, 369 (2008). Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository for Protein Simulations.
    • (2008) Protein Eng. Des. Sel , vol.21 , pp. 369
    • Simms, A.M.1    Toofanny, R.2    Kehl, C.3    Benson, N.C.4    Daggett, V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.