메뉴 건너뛰기




Volumn 16, Issue 6, 2009, Pages 574-581

Converging concepts of protein folding in vitro and in vivo

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; AMYLOID; BACTERIAL PROTEIN; CHAPERONE; CHAPERONIN; CONNECTIN; HEAT SHOCK PROTEIN 110; HEAT SHOCK PROTEIN 40; HEAT SHOCK PROTEIN 60; HEAT SHOCK PROTEIN 70; HEAT SHOCK PROTEIN 90; OLIGOMER; PROTEIN DNAJ; PROTEIN DNAK; TRIGGER FACTOR; UNCLASSIFIED DRUG;

EID: 66849143696     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.1591     Document Type: Review
Times cited : (917)

References (104)
  • 1
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223-230 (1973).
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.B.1
  • 2
    • 0029992278 scopus 로고    scopus 로고
    • Molecular chaperones in cellular protein folding
    • Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571-579 (1996).
    • (1996) Nature , vol.381 , pp. 571-579
    • Hartl, F.U.1
  • 3
    • 66849106554 scopus 로고    scopus 로고
    • An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
    • Bartlett, A.L. & Radford, S.E. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 16, 582-588 (2009).
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 582-588
    • Bartlett, A.L.1    Radford, S.E.2
  • 4
    • 33846901901 scopus 로고    scopus 로고
    • Intermediates: Ubiquitous species on folding energy landscapes?
    • Brockwell, D.J. & Radford, S.E. Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17, 30-37 (2007).
    • (2007) Curr. Opin. Struct. Biol , vol.17 , pp. 30-37
    • Brockwell, D.J.1    Radford, S.E.2
  • 6
    • 28244437028 scopus 로고    scopus 로고
    • The Yin and Yang of protein folding
    • Jahn, T.R. & Radford, S.E. The Yin and Yang of protein folding. FEBS J. 272, 5962-5970 (2005).
    • (2005) FEBS J , vol.272 , pp. 5962-5970
    • Jahn, T.R.1    Radford, S.E.2
  • 7
    • 42449151176 scopus 로고    scopus 로고
    • Protein folding and misfolding: Mechanism and principles
    • Englander, S.W., Mayne, L. & Krishna, M.M. Protein folding and misfolding: mechanism and principles. Q. Rev. Biophys. 40, 287-326 (2007).
    • (2007) Q. Rev. Biophys , vol.40 , pp. 287-326
    • Englander, S.W.1    Mayne, L.2    Krishna, M.M.3
  • 8
    • 33846916730 scopus 로고    scopus 로고
    • Malleability of protein folding pathways: A simple reason for complex behaviour
    • Lindberg, M.O. & Oliveberg, M. Malleability of protein folding pathways: a simple reason for complex behaviour. Curr. Opin. Struct. Biol. 17, 21-29 (2007).
    • (2007) Curr. Opin. Struct. Biol , vol.17 , pp. 21-29
    • Lindberg, M.O.1    Oliveberg, M.2
  • 9
    • 0030844281 scopus 로고    scopus 로고
    • Recombination of protein domains facilitated by co-translational folding in eukaryotes
    • Netzer, W.J. & Hartl, F.U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343-349 (1997).
    • (1997) Nature , vol.388 , pp. 343-349
    • Netzer, W.J.1    Hartl, F.U.2
  • 10
    • 28644437048 scopus 로고    scopus 로고
    • The importance of sequence diversity in the aggregation and evolution of proteins
    • Wright, C.F., Teichmann, S.A., Clarke, J. & Dobson, C.M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878-881 (2005).
    • (2005) Nature , vol.438 , pp. 878-881
    • Wright, C.F.1    Teichmann, S.A.2    Clarke, J.3    Dobson, C.M.4
  • 11
    • 0347357617 scopus 로고    scopus 로고
    • Protein folding and misfolding
    • Dobson, C.M. Protein folding and misfolding. Nature 426, 884-890 (2003).
    • (2003) Nature , vol.426 , pp. 884-890
    • Dobson, C.M.1
  • 12
    • 0347004717 scopus 로고    scopus 로고
    • Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
    • Ignatova, Z. & Gierasch, L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101, 523-528 (2004).
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 523-528
    • Ignatova, Z.1    Gierasch, L.M.2
  • 13
    • 33746099650 scopus 로고    scopus 로고
    • Protein aggregation in crowded environments
    • Ellis, R.J. & Minton, A.P. Protein aggregation in crowded environments. Biol. Chem. 387, 485-497 (2006).
    • (2006) Biol. Chem , vol.387 , pp. 485-497
    • Ellis, R.J.1    Minton, A.P.2
  • 14
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution
    • Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905-920 (2000).
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3    Moore, P.B.4    Steitz, T.A.5
  • 15
    • 28544449949 scopus 로고    scopus 로고
    • Folding zones inside the ribosomal exit tunnel
    • Lu, J.L. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123-1129 (2005).
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 1123-1129
    • Lu, J.L.1    Deutsch, C.2
  • 16
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 17
    • 66849109240 scopus 로고    scopus 로고
    • The ribosome as a platform for cotranslational processing, folding and targeting of newly synthesized proteins
    • Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for cotranslational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589-597 (2009).
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 589-597
    • Kramer, G.1    Boehringer, D.2    Ban, N.3    Bukau, B.4
  • 18
    • 33746592161 scopus 로고    scopus 로고
    • Molecular simulations of cotranslational protein folding: Fragment stabilities, folding cooperativity, and trapping in the ribosome
    • Elcock, A.H. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLOS Comput. Biol. 2, e98 (2006).
    • (2006) PLOS Comput. Biol , vol.2
    • Elcock, A.H.1
  • 19
    • 33751321592 scopus 로고    scopus 로고
    • Real-time observation of trigger factor function on translating ribosomes
    • Kaiser, C.M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455-460 (2006).
    • (2006) Nature , vol.444 , pp. 455-460
    • Kaiser, C.M.1
  • 20
    • 29344464782 scopus 로고    scopus 로고
    • Protein synthesis upon acute nutrient restriction relies on proteasome function
    • Vabulas, R.M. & Hartl, F.U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963 (2005).
    • (2005) Science , vol.310 , pp. 1960-1963
    • Vabulas, R.M.1    Hartl, F.U.2
  • 21
    • 28444484984 scopus 로고    scopus 로고
    • Genomic buffering mitigates the effects of deleterious mutations in bacteria
    • Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat. Genet. 37, 1376-1379 (2005).
    • (2005) Nat. Genet , vol.37 , pp. 1376-1379
    • Maisnier-Patin, S.1
  • 22
    • 33646897305 scopus 로고    scopus 로고
    • Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
    • Tang, Y.C. et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903-914 (2006).
    • (2006) Cell , vol.125 , pp. 903-914
    • Tang, Y.C.1
  • 23
    • 0032569851 scopus 로고    scopus 로고
    • Hsp90 as a capacitor for morphological evolution
    • Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342 (1998).
    • (1998) Nature , vol.396 , pp. 336-342
    • Rutherford, S.L.1    Lindquist, S.2
  • 24
    • 22744447508 scopus 로고    scopus 로고
    • Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
    • Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209-220 (2005).
    • (2005) Cell , vol.122 , pp. 209-220
    • Kerner, M.J.1
  • 27
    • 26844539619 scopus 로고    scopus 로고
    • Novel insights into the mechanism of chaperone-assisted protein disaggregation
    • Weibezahn, J., Schlieker, C., Tessarz, P., Mogk, A. & Bukau, B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 386, 739-744 (2005).
    • (2005) Biol. Chem , vol.386 , pp. 739-744
    • Weibezahn, J.1    Schlieker, C.2    Tessarz, P.3    Mogk, A.4    Bukau, B.5
  • 28
    • 39349083915 scopus 로고    scopus 로고
    • Adapting proteostasis for disease intervention
    • Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science 319, 916-919 (2008).
    • (2008) Science , vol.319 , pp. 916-919
    • Balch, W.E.1    Morimoto, R.I.2    Dillin, A.3    Kelly, J.W.4
  • 29
    • 0034924812 scopus 로고    scopus 로고
    • Folding of newly translated proteins in vivo: The role of molecular chaperones
    • Frydman, J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 70, 603-647 (2001).
    • (2001) Annu. Rev. Biochem , vol.70 , pp. 603-647
    • Frydman, J.1
  • 30
    • 0037040541 scopus 로고    scopus 로고
    • Molecular chaperones in the cytosol: From nascent chain to folded protein
    • Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858 (2002).
    • (2002) Science , vol.295 , pp. 1852-1858
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 31
    • 0026596223 scopus 로고
    • Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding
    • Langer, T. et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683-689 (1992).
    • (1992) Nature , vol.356 , pp. 683-689
    • Langer, T.1
  • 32
    • 30344462410 scopus 로고    scopus 로고
    • Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells
    • Albanèse, V., Yam, A.Y.W., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124, 75-88 (2006).
    • (2006) Cell , vol.124 , pp. 75-88
    • Albanèse, V.1    Yam, A.Y.W.2    Baughman, J.3    Parnot, C.4    Frydman, J.5
  • 33
    • 22544445528 scopus 로고    scopus 로고
    • The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex
    • Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064-10069 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 10064-10069
    • Otto, H.1
  • 34
    • 18644382616 scopus 로고    scopus 로고
    • Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032-1034 (2005).
    • Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032-1034 (2005).
  • 35
    • 58249090246 scopus 로고    scopus 로고
    • The native 3D organization of bacterial polysomes
    • Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261-271 (2009).
    • (2009) Cell , vol.136 , pp. 261-271
    • Brandt, F.1
  • 36
    • 1942421714 scopus 로고    scopus 로고
    • Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed
    • Agashe, V.R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199-209 (2004).
    • (2004) Cell , vol.117 , pp. 199-209
    • Agashe, V.R.1
  • 37
    • 0028361309 scopus 로고
    • Folding of nascent polypep-tide chains in a high molecular mass assembly with molecular chaperones
    • Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypep-tide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111-117 (1994).
    • (1994) Nature , vol.370 , pp. 111-117
    • Frydman, J.1    Nimmesgern, E.2    Ohtsuka, K.3    Hartl, F.U.4
  • 39
    • 49449105092 scopus 로고    scopus 로고
    • The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
    • Cuéllar, J. et al. The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat. Struct. Mol. Biol. 15, 858-864 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 858-864
    • Cuéllar, J.1
  • 40
    • 0032577573 scopus 로고    scopus 로고
    • Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin
    • Vainberg, I.E. et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863-873 (1998).
    • (1998) Cell , vol.93 , pp. 863-873
    • Vainberg, I.E.1
  • 41
    • 0034193525 scopus 로고    scopus 로고
    • The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribo-some-bound nascent chains examined using photo-cross-linking
    • McCallum, C.D., Do, H., Johnson, A.E. & Frydman, J. The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribo-some-bound nascent chains examined using photo-cross-linking. J. Cell Biol. 149, 591-602 (2000).
    • (2000) J. Cell Biol , vol.149 , pp. 591-602
    • McCallum, C.D.1    Do, H.2    Johnson, A.E.3    Frydman, J.4
  • 42
    • 0033521588 scopus 로고    scopus 로고
    • In vivo newly translated polypeptides are sequestered in a protected folding environment
    • Thulasiraman, V., Yang, C.F. & Frydman, J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85-95 (1999).
    • (1999) EMBO J , vol.18 , pp. 85-95
    • Thulasiraman, V.1    Yang, C.F.2    Frydman, J.3
  • 43
    • 0033521523 scopus 로고    scopus 로고
    • Compartmentation of protein folding in vivo: Sequestration of non-native polypeptide by the chaperonin-GimC system
    • Siegers, K. et al. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J. 18, 75-84 (1999).
    • (1999) EMBO J , vol.18 , pp. 75-84
    • Siegers, K.1
  • 44
    • 84934439633 scopus 로고    scopus 로고
    • Molecular interaction network of the Hsp90 chaperone system
    • Zhao, R. & Houry, W.A. Molecular interaction network of the Hsp90 chaperone system. Adv. Exp. Med. Biol. 594, 27-36 (2007).
    • (2007) Adv. Exp. Med. Biol , vol.594 , pp. 27-36
    • Zhao, R.1    Houry, W.A.2
  • 45
    • 33745829795 scopus 로고    scopus 로고
    • Molecular chaperones: Assisting assembly in addition to folding
    • Ellis, R.J. Molecular chaperones: assisting assembly in addition to folding. Trends Biochem. Sci. 31, 395-401 (2006).
    • (2006) Trends Biochem. Sci , vol.31 , pp. 395-401
    • Ellis, R.J.1
  • 46
    • 34250017377 scopus 로고    scopus 로고
    • Structure and function of RbcX, an assembly chaperone for hexadecameric rubisco
    • Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric rubisco. Cell 129, 1189-1200 (2007).
    • (2007) Cell , vol.129 , pp. 1189-1200
    • Saschenbrecker, S.1
  • 47
    • 0033032592 scopus 로고    scopus 로고
    • Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains
    • Teter, S.A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755-765 (1999).
    • (1999) Cell , vol.97 , pp. 755-765
    • Teter, S.A.1
  • 48
    • 0033549770 scopus 로고    scopus 로고
    • Trigger factor and DnaK cooperate in folding of newly synthesized proteins
    • Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693-696 (1999).
    • (1999) Nature , vol.400 , pp. 693-696
    • Deuerling, E.1    Schulze-Specking, A.2    Tomoyasu, T.3    Mogk, A.4    Bukau, B.5
  • 49
    • 0030750584 scopus 로고    scopus 로고
    • In vivo observation of polypep-tide flux through the bacterial chaperonin system
    • Ewalt, K.L., Hendrick, J.P., Houry, W.A. & Hartl, F.U. In vivo observation of polypep-tide flux through the bacterial chaperonin system. Cell 90, 491-500 (1997).
    • (1997) Cell , vol.90 , pp. 491-500
    • Ewalt, K.L.1    Hendrick, J.P.2    Houry, W.A.3    Hartl, F.U.4
  • 50
    • 46949104585 scopus 로고    scopus 로고
    • The interaction network of the chaperonin CCT
    • Dekker, C. et al. The interaction network of the chaperonin CCT. EMBO J 27, 1827-1839 (2008).
    • (2008) EMBO J , vol.27 , pp. 1827-1839
    • Dekker, C.1
  • 51
    • 57149098022 scopus 로고    scopus 로고
    • Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
    • Yam, A.Y. et al. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat. Struct. Mol. Biol. 15, 1255-1262 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 1255-1262
    • Yam, A.Y.1
  • 52
    • 3142587059 scopus 로고    scopus 로고
    • Protein folding and quality control in the endoplasmic reticulum
    • Kleizen, B. & Braakman, I. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16, 343-349 (2004).
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 343-349
    • Kleizen, B.1    Braakman, I.2
  • 53
    • 66849131417 scopus 로고    scopus 로고
    • Cellular mechanisms of membrane protein folding
    • Skach, W.R. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606-612 (2009).
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 606-612
    • Skach, W.R.1
  • 54
    • 4944246094 scopus 로고    scopus 로고
    • Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins
    • Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590-596 (2004).
    • (2004) Nature , vol.431 , pp. 590-596
    • Ferbitz, L.1
  • 55
    • 34249691985 scopus 로고    scopus 로고
    • Identification of nascent chain interaction sites on Trigger factor
    • Lakshmipathy, S.K. et al. Identification of nascent chain interaction sites on Trigger factor. J. Biol. Chem. 282, 12186-12193 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 12186-12193
    • Lakshmipathy, S.K.1
  • 56
    • 44649188719 scopus 로고    scopus 로고
    • Molecular mechanism and structure of Trigger factor bound to the translating ribosome
    • Merz, F. et al. Molecular mechanism and structure of Trigger factor bound to the translating ribosome. EMBO J. 27, 1622-1632 (2008).
    • (2008) EMBO J , vol.27 , pp. 1622-1632
    • Merz, F.1
  • 57
    • 33845984939 scopus 로고    scopus 로고
    • The C-terminal domain of Escherichia coli Trigger factor represents the central module of its chaperone activity
    • Merz, F. et al. The C-terminal domain of Escherichia coli Trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 281, 31963-31971 (2006).
    • (2006) J. Biol. Chem , vol.281 , pp. 31963-31971
    • Merz, F.1
  • 58
    • 27644447766 scopus 로고    scopus 로고
    • The binding mode of the Trigger factor on the ribosome: Implications for protein folding and SRP interaction
    • Schlünzen, F. et al. The binding mode of the Trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13, 1685-1694 (2005).
    • (2005) Structure , vol.13 , pp. 1685-1694
    • Schlünzen, F.1
  • 59
    • 24744435971 scopus 로고    scopus 로고
    • Structure of Trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action
    • Baram, D. et al. Structure of Trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102, 12017-12022 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12017-12022
    • Baram, D.1
  • 60
    • 0033783190 scopus 로고    scopus 로고
    • Molecular basis for interactions of the DnaK chaperone with substrates
    • Mayer, M.P., Rudiger, S. & Bukau, B. Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877-885 (2000).
    • (2000) Biol. Chem , vol.381 , pp. 877-885
    • Mayer, M.P.1    Rudiger, S.2    Bukau, B.3
  • 61
    • 0029937037 scopus 로고    scopus 로고
    • Structural analysis of substrate binding by the molecular chaperone DnaK
    • Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614 (1996).
    • (1996) Science , vol.272 , pp. 1606-1614
    • Zhu, X.1
  • 62
    • 0041026092 scopus 로고    scopus 로고
    • Interaction of Hsp70 chaperones with substrates
    • Rüdiger, S., Buchberger, A. & Bukau, B. Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol. 4, 342-349 (1997).
    • (1997) Nat. Struct. Biol , vol.4 , pp. 342-349
    • Rüdiger, S.1    Buchberger, A.2    Bukau, B.3
  • 63
    • 0034127485 scopus 로고    scopus 로고
    • Structural insights into substrate binding by the molecular chaperone DnaK
    • Pellecchia, M. et al. Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol. 7, 298-303 (2000).
    • (2000) Nat. Struct. Biol , vol.7 , pp. 298-303
    • Pellecchia, M.1
  • 64
    • 0642377466 scopus 로고    scopus 로고
    • More than folding: Localized functions of cytosolic chaperones
    • Young, J.C., Barral, J.M. & Hartl, F.U. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541-547 (2003).
    • (2003) Trends Biochem. Sci , vol.28 , pp. 541-547
    • Young, J.C.1    Barral, J.M.2    Hartl, F.U.3
  • 65
    • 0036263966 scopus 로고    scopus 로고
    • The Hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase
    • Schiene-Fischer, C., Habazettl, J., Schmid, F.X. & Fischer, G. The Hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase. Nat. Struct. Biol. 9, 419-424 (2002).
    • (2002) Nat. Struct. Biol , vol.9 , pp. 419-424
    • Schiene-Fischer, C.1    Habazettl, J.2    Schmid, F.X.3    Fischer, G.4
  • 66
    • 33745762927 scopus 로고    scopus 로고
    • Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s
    • Dragovic, Z., Broadley, S.A., Shomura, Y., Bracher, A. & Hartl, F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519-2528 (2006).
    • (2006) EMBO J , vol.25 , pp. 2519-2528
    • Dragovic, Z.1    Broadley, S.A.2    Shomura, Y.3    Bracher, A.4    Hartl, F.U.5
  • 67
    • 33745749328 scopus 로고    scopus 로고
    • Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor
    • Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510-2518 (2006).
    • (2006) EMBO J , vol.25 , pp. 2510-2518
    • Raviol, H.1    Sadlish, H.2    Rodriguez, F.3    Mayer, M.P.4    Bukau, B.5
  • 68
    • 34848869936 scopus 로고    scopus 로고
    • Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1
    • Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106-120 (2007).
    • (2007) Cell , vol.131 , pp. 106-120
    • Liu, Q.1    Hendrickson, W.A.2
  • 69
    • 44649110104 scopus 로고    scopus 로고
    • Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding
    • Polier, S., Dragovic, Z., Hartl, F.U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068-1079 (2008).
    • (2008) Cell , vol.133 , pp. 1068-1079
    • Polier, S.1    Dragovic, Z.2    Hartl, F.U.3    Bracher, A.4
  • 70
    • 45849091944 scopus 로고    scopus 로고
    • Structure of the Hsp110: Hsc70 nucleotide exchange machine
    • Schuermann, J.P. et al. Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell 31, 232-243 (2008).
    • (2008) Mol. Cell , vol.31 , pp. 232-243
    • Schuermann, J.P.1
  • 72
    • 1842464687 scopus 로고    scopus 로고
    • Inter-residue interactions in protein folding and stability
    • Gromiha, M.M. & Selvaraj, S. Inter-residue interactions in protein folding and stability. Prog. Biophys. Mol. Biol. 86, 235-277 (2004).
    • (2004) Prog. Biophys. Mol. Biol , vol.86 , pp. 235-277
    • Gromiha, M.M.1    Selvaraj, S.2
  • 73
    • 0030870719 scopus 로고    scopus 로고
    • The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
    • Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750 (1997).
    • (1997) Nature , vol.388 , pp. 741-750
    • Xu, Z.1    Horwich, A.L.2    Sigler, P.B.3
  • 74
    • 24644501099 scopus 로고    scopus 로고
    • Direct NMR observation of a substrate protein bound to the chaperonin GroEL
    • Horst, R. et al. Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 102, 12748-12753 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12748-12753
    • Horst, R.1
  • 75
    • 41149089882 scopus 로고    scopus 로고
    • Monitoring protein conformation along the pathway of chaperonin-assisted folding
    • Sharma, S. et al. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142-153 (2008).
    • (2008) Cell , vol.133 , pp. 142-153
    • Sharma, S.1
  • 76
    • 51649109975 scopus 로고    scopus 로고
    • Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy
    • Hillger, F. et al. Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 47, 6184-6188 (2008).
    • (2008) Angew. Chem. Int. Ed , vol.47 , pp. 6184-6188
    • Hillger, F.1
  • 77
    • 34247644778 scopus 로고    scopus 로고
    • Topologies of a substrate protein bound to the chaperonin GroEL
    • Elad, N. et al. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 26, 415-426 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 415-426
    • Elad, N.1
  • 78
    • 0035913902 scopus 로고    scopus 로고
    • Dual function of protein confinement in chaperonin-assisted protein folding
    • Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223-233 (2001).
    • (2001) Cell , vol.107 , pp. 223-233
    • Brinker, A.1
  • 79
    • 0035913910 scopus 로고    scopus 로고
    • GroEL/GroES-mediated folding of a protein too large to be encapsulated
    • Chaudhuri, T.K., Farr, G.W., Fenton, W.A., Rospert, S. & Horwich, A.L. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107, 235-246 (2001).
    • (2001) Cell , vol.107 , pp. 235-246
    • Chaudhuri, T.K.1    Farr, G.W.2    Fenton, W.A.3    Rospert, S.4    Horwich, A.L.5
  • 80
    • 58149229533 scopus 로고    scopus 로고
    • Chaperonin complex with a newly folded protein encapsulated in the folding chamber
    • Clare, D.K., Bakkes, P.J., van Heerikhuizen, H., van der Vies, S.M. & Saibil, H.R. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107-110 (2009).
    • (2009) Nature , vol.457 , pp. 107-110
    • Clare, D.K.1    Bakkes, P.J.2    van Heerikhuizen, H.3    van der Vies, S.M.4    Saibil, H.R.5
  • 81
    • 56249135270 scopus 로고    scopus 로고
    • Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
    • Apetri, A.C. & Horwich, A.L. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. USA 105, 17351-17355 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17351-17355
    • Apetri, A.C.1    Horwich, A.L.2
  • 82
    • 4944221602 scopus 로고    scopus 로고
    • Expansion and compression of a protein folding intermediate by GroEL
    • Lin, Z. & Rye, H.S. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16, 23-34 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 23-34
    • Lin, Z.1    Rye, H.S.2
  • 83
    • 0043238073 scopus 로고    scopus 로고
    • Effects of confinement in chaperonin assisted protein folding: Rate enhancement by decreasing the roughness of the folding energy landscape
    • Baumketner, A., Jewett, A. & Shea, J.E. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332, 701-713 (2003).
    • (2003) J. Mol. Biol , vol.332 , pp. 701-713
    • Baumketner, A.1    Jewett, A.2    Shea, J.E.3
  • 84
    • 33750720952 scopus 로고    scopus 로고
    • A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding
    • Hayer-Hartl, M. & Minton, A.P. A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding. Biochemistry 45, 13356-13360 (2006).
    • (2006) Biochemistry , vol.45 , pp. 13356-13360
    • Hayer-Hartl, M.1    Minton, A.P.2
  • 85
    • 44349090822 scopus 로고    scopus 로고
    • Essential role of the chaperonin folding compartment in vivo
    • Tang, Y.C., Chang, H.C., Chakraborty, K., Hartl, F.U. & Hayer-Hartl, M. Essential role of the chaperonin folding compartment in vivo. EMBO J. 27, 1458-1468 (2008).
    • (2008) EMBO J , vol.27 , pp. 1458-1468
    • Tang, Y.C.1    Chang, H.C.2    Chakraborty, K.3    Hartl, F.U.4    Hayer-Hartl, M.5
  • 86
    • 0037184939 scopus 로고    scopus 로고
    • Directed evolution of substrate-optimized GroEL/S chaperonins
    • Wang, J.D., Herman, C., Tipton, K.A., Gross, C.A. & Weissman, J.S. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111, 1027-1039 (2002).
    • (2002) Cell , vol.111 , pp. 1027-1039
    • Wang, J.D.1    Herman, C.2    Tipton, K.A.3    Gross, C.A.4    Weissman, J.S.5
  • 87
    • 51749084427 scopus 로고    scopus 로고
    • A role for confined water in chaperonin function
    • England, J.L., Lucent, D. & Pande, V.S. A role for confined water in chaperonin function. J. Am. Chem. Soc. 130, 11838-11839 (2008).
    • (2008) J. Am. Chem. Soc , vol.130 , pp. 11838-11839
    • England, J.L.1    Lucent, D.2    Pande, V.S.3
  • 88
    • 38049125649 scopus 로고    scopus 로고
    • Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
    • Horst, R., Fenton, W.A., Englander, S.W., Wuthrich, K. & Horwich, A.L. Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution. Proc. Natl. Acad. Sci. USA 104, 20788-20792 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 20788-20792
    • Horst, R.1    Fenton, W.A.2    Englander, S.W.3    Wuthrich, K.4    Horwich, A.L.5
  • 90
    • 40949124274 scopus 로고    scopus 로고
    • GroEL stimulates protein folding through forced unfolding
    • Lin, Z., Madan, D. & Rye, H.S. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15, 303-311 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 303-311
    • Lin, Z.1    Madan, D.2    Rye, H.S.3
  • 91
    • 53049103895 scopus 로고    scopus 로고
    • Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant
    • Koike-Takeshita, A., Yoshida, M. & Taguchi, H. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J. Biol. Chem. 283, 23774-23781 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 23774-23781
    • Koike-Takeshita, A.1    Yoshida, M.2    Taguchi, H.3
  • 92
    • 66849099684 scopus 로고    scopus 로고
    • Unraveling molecular interactions and structures of self-perpetuating prions
    • Tessier, P. & Lindquist, S. Unraveling molecular interactions and structures of self-perpetuating prions. Nat. Struct. Mol. Biol. 16, 598-605 (2009).
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 598-605
    • Tessier, P.1    Lindquist, S.2
  • 93
    • 33746377894 scopus 로고    scopus 로고
    • Protein misfolding, functional amyloid, and human disease
    • Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333-366 (2006).
    • (2006) Annu. Rev. Biochem , vol.75 , pp. 333-366
    • Chiti, F.1    Dobson, C.M.2
  • 95
    • 0034608868 scopus 로고    scopus 로고
    • Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils
    • Muchowski, P.J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841-7846 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 7841-7846
    • Muchowski, P.J.1
  • 96
    • 11144243412 scopus 로고    scopus 로고
    • Modulation of neurodegeneration by molecular chaperones
    • Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11-22 (2005).
    • (2005) Nat. Rev. Neurosci , vol.6 , pp. 11-22
    • Muchowski, P.J.1    Wacker, J.L.2
  • 97
    • 0036468432 scopus 로고    scopus 로고
    • Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease
    • Auluck, P.K., Chan, H.Y.E., Trojanowski, J.Q., Lee, V.M.Y. & Bonini, N.M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865-868 (2002).
    • (2002) Science , vol.295 , pp. 865-868
    • Auluck, P.K.1    Chan, H.Y.E.2    Trojanowski, J.Q.3    Lee, V.M.Y.4    Bonini, N.M.5
  • 98
    • 33748561495 scopus 로고    scopus 로고
    • Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers
    • Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887-897 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 887-897
    • Behrends, C.1
  • 99
    • 33749177252 scopus 로고    scopus 로고
    • The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
    • Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155-1162 (2006).
    • (2006) Nat. Cell Biol , vol.8 , pp. 1155-1162
    • Tam, S.1    Geller, R.2    Spiess, C.3    Frydman, J.4
  • 100
    • 33749176269 scopus 로고    scopus 로고
    • Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
    • Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163-1170 (2006).
    • (2006) Nat. Cell Biol , vol.8 , pp. 1163-1170
    • Kitamura, A.1
  • 101
    • 0742323000 scopus 로고    scopus 로고
    • Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones
    • Morley, J.F. & Morimoto, R.I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657-664 (2004).
    • (2004) Mol. Biol. Cell , vol.15 , pp. 657-664
    • Morley, J.F.1    Morimoto, R.I.2
  • 102
    • 0035363805 scopus 로고    scopus 로고
    • Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease
    • Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307-1315 (2001).
    • (2001) Hum. Mol. Genet , vol.10 , pp. 1307-1315
    • Sittler, A.1
  • 103
    • 0034646511 scopus 로고    scopus 로고
    • Structure of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine
    • Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199-210 (2000).
    • (2000) Cell , vol.101 , pp. 199-210
    • Scheufler, C.1
  • 104
    • 0030936995 scopus 로고    scopus 로고
    • Crystal structure of the nucleotide exchange factor GrpE to the ATPase domain of the molecular chaperone DnaK
    • Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F.U. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE to the ATPase domain of the molecular chaperone DnaK. Science 276, 431-435 (1997).
    • (1997) Science , vol.276 , pp. 431-435
    • Harrison, C.J.1    Hayer-Hartl, M.2    Di Liberto, M.3    Hartl, F.U.4    Kuriyan, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.