메뉴 건너뛰기




Volumn 58, Issue , 2007, Pages 57-83

Protein-folding dynamics: Overview of molecular simulation techniques

Author keywords

Atomic and mesoscopic models; Folding pathways; Force fields; Molecular dynamics

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CONFORMATIONS; MOLECULAR DYNAMICS; PROTEINS; SILICA; SOLVENTS;

EID: 34249930405     PISSN: 0066426X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.physchem.58.032806.104614     Document Type: Review
Times cited : (338)

References (149)
  • 1
    • 0042287973 scopus 로고    scopus 로고
    • Single-molecule fluorescence spectroscopy of biomolecular folding
    • Haran G. 2003. Single-molecule fluorescence spectroscopy of biomolecular folding. J. Phys. Condens. Matter 15:R 1291-317
    • (2003) J. Phys. Condens. Matter , vol.15 , Issue.R , pp. 1291-1317
    • Haran, G.1
  • 3
    • 1642414760 scopus 로고    scopus 로고
    • Probing the folding and unfolding dynamics of secondary and tertiary structures in a three-helix bundle protein
    • Vu DM, Myers JK, Oas TG, Dyer RB. 2004. Probing the folding and unfolding dynamics of secondary and tertiary structures in a three-helix bundle protein. Biochemistry 43:3582-89
    • (2004) Biochemistry , vol.43 , pp. 3582-3589
    • Vu, D.M.1    Myers, J.K.2    Oas, T.G.3    Dyer, R.B.4
  • 4
    • 34249931307 scopus 로고    scopus 로고
    • 200S. T-jump infrared study of the folding mechanism of coiled-coil GCN4-p1
    • Wang T, Lau WL, DeGrado WF, Gai F. 200S. T-jump infrared study of the folding mechanism of coiled-coil GCN4-p1. Biophys. J. 89:1-8
    • Biophys. J , vol.89 , pp. 1-8
    • Wang, T.1    Lau, W.L.2    DeGrado, W.F.3    Gai, F.4
  • 5
    • 24744468471 scopus 로고    scopus 로고
    • Characterisation of disulfide-bond dynamics in non-native states of lysozyme and its disulfide deletion mutants by NMR
    • Collins ES, Wirmer J, Hirai K, Tachibana H, Segawa S, et al. 2005. Characterisation of disulfide-bond dynamics in non-native states of lysozyme and its disulfide deletion mutants by NMR. Chembiochem 6:1619-27
    • (2005) Chembiochem , vol.6 , pp. 1619-1627
    • Collins, E.S.1    Wirmer, J.2    Hirai, K.3    Tachibana, H.4    Segawa, S.5
  • 7
    • 16244419001 scopus 로고    scopus 로고
    • Elucidation of the protein folding landscape by NMR
    • Dyson HJ, Wright PE. 2005. Elucidation of the protein folding landscape by NMR. Meth. Enzymol. 394:299-321
    • (2005) Meth. Enzymol , vol.394 , pp. 299-321
    • Dyson, H.J.1    Wright, P.E.2
  • 9
    • 24144467363 scopus 로고    scopus 로고
    • Hydrogen bonding dynamics during protein folding of reduced cytochrome c: Temperature and denaturant concentration dependence
    • Nishida S, Nada T, Terazima M. 2005. Hydrogen bonding dynamics during protein folding of reduced cytochrome c: temperature and denaturant concentration dependence. Biophys.J. 89:2004-10
    • (2005) Biophys.J , vol.89 , pp. 2004-2010
    • Nishida, S.1    Nada, T.2    Terazima, M.3
  • 10
    • 0036293508 scopus 로고    scopus 로고
    • The cytochrome c folding landscape revealed by electron-transfer kinetics
    • Lee JC, Chang I-J, Gray HB, Winkler JR. 2002. The cytochrome c folding landscape revealed by electron-transfer kinetics. J. Mol. Biol. 320:159-64
    • (2002) J. Mol. Biol , vol.320 , pp. 159-164
    • Lee, J.C.1    Chang, I.-J.2    Gray, H.B.3    Winkler, J.R.4
  • 11
    • 34548717559 scopus 로고
    • Phase transition for a hard-sphere system
    • Alder BJ, Wainwright TE. 1957. Phase transition for a hard-sphere system. J. Chem.Phys. 27:1208-9
    • (1957) J. Chem.Phys , vol.27 , pp. 1208-1209
    • Alder, B.J.1    Wainwright, T.E.2
  • 12
    • 0001876793 scopus 로고
    • Molecular dynamics by electronic computers
    • ed. I Prigogine, pp, New York: Intersciences
    • Alder BJ, Wainwright T. 1958. Molecular dynamics by electronic computers. In Proc. Int. Symp. Transp. Process. Stat. Mech., ed. I Prigogine, pp. 97-131. New York: Intersciences
    • (1958) Proc. Int. Symp. Transp. Process. Stat. Mech , pp. 97-131
    • Alder, B.J.1    Wainwright, T.2
  • 13
    • 33847005283 scopus 로고
    • Correlations of the motion of atoms in liquid argon
    • Rahman A. 1964. Correlations of the motion of atoms in liquid argon. Phys. Rev. 2:A405-11
    • (1964) Phys. Rev , vol.2
    • Rahman, A.1
  • 14
    • 33845790250 scopus 로고
    • Molecular dynamics study of liquid water
    • Rahman A, Stillinger FH. 1971. Molecular dynamics study of liquid water. J. Chem. Phys. 55:3336-59
    • (1971) J. Chem. Phys , vol.55 , pp. 3336-3359
    • Rahman, A.1    Stillinger, F.H.2
  • 16
    • 0026731467 scopus 로고
    • Characterization of native apomyoglobin by molecular dynamics simulations
    • Brooks CL III. 1992. Characterization of native apomyoglobin by molecular dynamics simulations. J. Mol. Biol. 227:375-80
    • (1992) J. Mol. Biol , vol.227 , pp. 375-380
    • Brooks III, C.L.1
  • 17
    • 0026630480 scopus 로고
    • Simulation of the thermal-denaturation of hen egg-white lysozyme: Trapping the molten globule state
    • Mark AE, van Gunsteren WF. 1992. Simulation of the thermal-denaturation of hen egg-white lysozyme: trapping the molten globule state. Biochemistry 31:7745-48
    • (1992) Biochemistry , vol.31 , pp. 7745-7748
    • Mark, A.E.1    van Gunsteren, W.F.2
  • 18
    • 0027219504 scopus 로고
    • Protein unfolding pathways explored through molecular-dynamics simulations
    • Daggett V, Levitt M. 1993. Protein unfolding pathways explored through molecular-dynamics simulations. J. Mol. Biol. 232:600-19
    • (1993) J. Mol. Biol , vol.232 , pp. 600-619
    • Daggett, V.1    Levitt, M.2
  • 19
    • 0027316216 scopus 로고
    • Molecular dynamics simulations of the unfolding of apomyoglobin in water
    • Tirado-Rives J, Jorgensen WL. 1993. Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry 32:4175-84
    • (1993) Biochemistry , vol.32 , pp. 4175-4184
    • Tirado-Rives, J.1    Jorgensen, W.L.2
  • 20
    • 0242610902 scopus 로고    scopus 로고
    • All-atom simulations of protein folding and unfolding
    • Day R, Daggett V. 2003. All-atom simulations of protein folding and unfolding. Adv. Protein Chem. 66:373-803
    • (2003) Adv. Protein Chem , vol.66 , pp. 373-803
    • Day, R.1    Daggett, V.2
  • 21
    • 33646904758 scopus 로고    scopus 로고
    • Protein folding simulations
    • Daggett V. 2006. Protein folding simulations. Chem. Rev. 106:1898-916
    • (2006) Chem. Rev , vol.106 , pp. 1898-1916
    • Daggett, V.1
  • 22
    • 0032561237 scopus 로고    scopus 로고
    • Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution
    • Duan V, Kollman PA. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740-44
    • (1998) Science , vol.282 , pp. 740-744
    • Duan, V.1    Kollman, P.A.2
  • 23
    • 0033529908 scopus 로고    scopus 로고
    • Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein G
    • Pande VS, Rokhsar DS. 1999. Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein G. Proc. Natl. Acad. Sci. USA 96:9062-67
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 9062-9067
    • Pande, V.S.1    Rokhsar, D.S.2
  • 24
    • 0032881707 scopus 로고    scopus 로고
    • A molecular dynamics study of the 41-56 β-hairpin from B1 domain of protein G
    • Roccatano D, Amadei A, diNola A, Berendsen HJC. 1999. A molecular dynamics study of the 41-56 β-hairpin from B1 domain of protein G. Protein Sci. 8:2130-43
    • (1999) Protein Sci , vol.8 , pp. 2130-2143
    • Roccatano, D.1    Amadei, A.2    diNola, A.3    Berendsen, H.J.C.4
  • 25
    • 0345411345 scopus 로고    scopus 로고
    • Hierarchy of structure loss in MD simulations of src SH3 domain unfolding
    • Tsai J, Levitt M, Baker D. 1999. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J. Mol Biol. 291:215-25
    • (1999) J. Mol Biol , vol.291 , pp. 215-225
    • Tsai, J.1    Levitt, M.2    Baker, D.3
  • 26
    • 33646943202 scopus 로고    scopus 로고
    • Molecular dynamics: Survey of methods for simulating the activity of proteins
    • Adcock SA, McCammon JA. 2006. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106:1589-615
    • (2006) Chem. Rev , vol.106 , pp. 1589-1615
    • Adcock, S.A.1    McCammon, J.A.2
  • 28
    • 0034743155 scopus 로고    scopus 로고
    • From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding
    • Shea JE, Brooks CL III. 2001. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52:499-535
    • (2001) Annu. Rev. Phys. Chem , vol.52 , pp. 499-535
    • Shea, J.E.1    Brooks III, C.L.2
  • 30
    • 0347753603 scopus 로고    scopus 로고
    • Reduced models of proteins and their applications
    • Kolinski A, SkolnickJ. 2004. Reduced models of proteins and their applications. Polymer 2:511-24
    • (2004) Polymer , vol.2 , pp. 511-524
    • Kolinski, A.1    SkolnickJ2
  • 31
    • 33646931471 scopus 로고    scopus 로고
    • Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet
    • Shakhnovich E. 2006. Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem. Rev. 106:1559-88
    • (2006) Chem. Rev , vol.106 , pp. 1559-1588
    • Shakhnovich, E.1
  • 32
    • 23144450194 scopus 로고    scopus 로고
    • Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode
    • Khalili M, Liwo A, Rakowski F, Grochowski P, Scheraga HA. 2005. Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. J. Phys. Chem. B 109:13785-97
    • (2005) J. Phys. Chem. B , vol.109 , pp. 13785-13797
    • Khalili, M.1    Liwo, A.2    Rakowski, F.3    Grochowski, P.4    Scheraga, H.A.5
  • 33
    • 0000937122 scopus 로고
    • The theory of Brownian movement
    • Langevin P. 1908.The theory of Brownian movement. C. R. Acad. Sci. 146:53033
    • (1908) C. R. Acad. Sci , vol.146 , pp. 53033
    • Langevin, P.1
  • 35
    • 0000026966 scopus 로고    scopus 로고
    • Explicit reversible integrators for extended systems dynamics
    • Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. 1996. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87:1117-57
    • (1996) Mol. Phys , vol.87 , pp. 1117-1157
    • Martyna, G.J.1    Tuckerman, M.E.2    Tobias, D.J.3    Klein, M.L.4
  • 36
    • 3843129507 scopus 로고    scopus 로고
    • Deterministic and stochastic algorithms for mechanical systems under constraints
    • Ciccotti G, Kalibaeva G. 2004. Deterministic and stochastic algorithms for mechanical systems under constraints. Philos. Trans. R. Soc. London Ser. A 362:1583-94
    • (2004) Philos. Trans. R. Soc. London Ser. A , vol.362 , pp. 1583-1594
    • Ciccotti, G.1    Kalibaeva, G.2
  • 37
    • 23144463330 scopus 로고    scopus 로고
    • Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsenbath dynamics and tests on model α-helical systems
    • Khalili M, Liwo A, Jagielska A, Scheraga HA. 2005. Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsenbath dynamics and tests on model α-helical systems. J. Phys. Chem. B 109:13798-810
    • (2005) J. Phys. Chem. B , vol.109 , pp. 13798-13810
    • Khalili, M.1    Liwo, A.2    Jagielska, A.3    Scheraga, H.A.4
  • 38
    • 0036783392 scopus 로고    scopus 로고
    • Kinetics nonoptimality and vibrational stability of proteins
    • Cieplak M, Hoang TX, Robbins MO. 2002. Kinetics nonoptimality and vibrational stability of proteins. Proteins 49:104-13
    • (2002) Proteins , vol.49 , pp. 104-113
    • Cieplak, M.1    Hoang, T.X.2    Robbins, M.O.3
  • 39
    • 0000219318 scopus 로고    scopus 로고
    • Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics inLN.y
    • Barth E, Schlick T. 1998. Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics inLN.y. Chem. Phys. 109:1617-32
    • (1998) Chem. Phys , vol.109 , pp. 1617-1632
    • Barth, E.1    Schlick, T.2
  • 40
    • 0033927684 scopus 로고    scopus 로고
    • A mezoscopic model of nucleic acids. Part 1: Lagrangian and quaternion molecular dynamics
    • Rudnicki WR, Bakalarski G, Lesyng B. 2000. A mezoscopic model of nucleic acids. Part 1: Lagrangian and quaternion molecular dynamics. J. Biomol. Struct. Dyn. 17:1097-108
    • (2000) J. Biomol. Struct. Dyn , vol.17 , pp. 1097-1108
    • Rudnicki, W.R.1    Bakalarski, G.2    Lesyng, B.3
  • 41
    • 0029633186 scopus 로고
    • AMBER, a package of computer programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules
    • Pearlman DA, Case DA, Caldwell JW, Ross SW, Cheatham TE III, et al. 1995. AMBER, a package of computer programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91:1-41
    • (1995) Comput. Phys. Commun , vol.91 , pp. 1-41
    • Pearlman, D.A.1    Case, D.A.2    Caldwell, J.W.3    Ross, S.W.4    Cheatham III, T.E.5
  • 43
    • 84986483796 scopus 로고
    • Variable step molecular-dynamics: An exploratory technique for peptides with fixed geometry
    • Gibson KD, Scheraga HA. 1990. Variable step molecular-dynamics: an exploratory technique for peptides with fixed geometry. J. Comput. Chem. 11:468-97
    • (1990) J. Comput. Chem , vol.11 , pp. 468-497
    • Gibson, K.D.1    Scheraga, H.A.2
  • 44
    • 33646940952 scopus 로고
    • Numerical integration of Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
    • Ryckaert J, Ciccotti G, Berendsen H. 1977. Numerical integration of Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 27:327-41
    • (1977) J. Comp. Phys , vol.27 , pp. 327-341
    • Ryckaert, J.1    Ciccotti, G.2    Berendsen, H.3
  • 45
    • 48749148224 scopus 로고
    • RATTLE: A velocity version of the SHAKE algorithm for molecular dynamics calculations
    • Andersen H. 1983. RATTLE: a velocity version of the SHAKE algorithm for molecular dynamics calculations. J. Comp. Phys. 52:24-34
    • (1983) J. Comp. Phys , vol.52 , pp. 24-34
    • Andersen, H.1
  • 47
    • 27844498431 scopus 로고    scopus 로고
    • Application of torsion angle molecular dynamics for efficient sampling of protein conformations
    • Chen J, Im W, Brooks C III. 2005. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J. Comput. Chem. 26:1565-78
    • (2005) J. Comput. Chem , vol.26 , pp. 1565-1578
    • Chen, J.1    Im, W.2    Brooks III, C.3
  • 49
    • 0034702646 scopus 로고    scopus 로고
    • Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath
    • Morishita T. 2000. Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. J. Chem. Phys. 113:2976-82
    • (2000) J. Chem. Phys , vol.113 , pp. 2976-2982
    • Morishita, T.1
  • 50
    • 84943502952 scopus 로고
    • A molecular dynamics method for simulations in the canonical ensemble
    • Nosé S. 1984. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52:255-68
    • (1984) Mol. Phys , vol.52 , pp. 255-268
    • Nosé, S.1
  • 51
    • 0001538909 scopus 로고
    • Canonical dynamics: Equilibrum phase-space distribution
    • Hoover WG. 1985. Canonical dynamics: equilibrum phase-space distribution. Phys. Rev. A 11:1695-97
    • (1985) Phys. Rev. A , vol.11 , pp. 1695-1697
    • Hoover, W.G.1
  • 52
    • 0035585460 scopus 로고    scopus 로고
    • An improved symplectic integrator for Nosé- Poincaré thermostat
    • Nose S. 2001. An improved symplectic integrator for Nosé- Poincaré thermostat. J. Phys. Soc. Jpn. 70:75-77
    • (2001) J. Phys. Soc. Jpn , vol.70 , pp. 75-77
    • Nose, S.1
  • 53
    • 0032363602 scopus 로고    scopus 로고
    • Constant temperature simulations using the Langevin equation with velocity Verlet integration
    • Paterlini MG, Ferguson DM. 1998. Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chem. Phys. 236:243-52
    • (1998) Chem. Phys , vol.236 , pp. 243-252
    • Paterlini, M.G.1    Ferguson, D.M.2
  • 54
    • 84986512474 scopus 로고    scopus 로고
    • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. 1983. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4:187-217
    • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. 1983. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4:187-217
  • 56
    • 0001600883 scopus 로고    scopus 로고
    • Derivation of class II force fields. 7. Nonbonded force field parameters for organic compounds
    • Ewig CS, Thacher TS, Hagler AT. 1999. Derivation of class II force fields. 7. Nonbonded force field parameters for organic compounds. J. Phys. Chem. B 103:6998-7014
    • (1999) J. Phys. Chem. B , vol.103 , pp. 6998-7014
    • Ewig, C.S.1    Thacher, T.S.2    Hagler, A.T.3
  • 58
    • 4444351490 scopus 로고    scopus 로고
    • Empirical force fields for biological macromolecules: Overview and issues
    • Mackerell AD Jr. 2004. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25:1584-604
    • (2004) J. Comput. Chem , vol.25 , pp. 1584-1604
    • Mackerell Jr., A.D.1
  • 59
    • 0024836024 scopus 로고
    • A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. φ-ψ maps for N-acetyl alanine N'-methyl amide: Comparisons, contrasts and simple experimental tests
    • Roterman IK, Lambert MH, Gibson KD, Scheraga HA. 1989. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. φ-ψ maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. J. Biomol. Struct. Dyn. 7:421-53
    • (1989) J. Biomol. Struct. Dyn , vol.7 , pp. 421-453
    • Roterman, I.K.1    Lambert, M.H.2    Gibson, K.D.3    Scheraga, H.A.4
  • 60
    • 0037067120 scopus 로고    scopus 로고
    • Peptide loop closure kinetics from microsecond molecular dynamics simulation in explicit solvent
    • Yeh IC, Hummer G. 2002. Peptide loop closure kinetics from microsecond molecular dynamics simulation in explicit solvent. J. Am. Chem. Soc. 124:6563-68
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 6563-6568
    • Yeh, I.C.1    Hummer, G.2
  • 61
    • 20544435097 scopus 로고    scopus 로고
    • Exploring helix-coil transition via all-atom equilibrium ensemble simulations
    • Sorin EJ, Pande VS. 2005. Exploring helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J. 88:2472-93
    • (2005) Biophys. J , vol.88 , pp. 2472-2493
    • Sorin, E.J.1    Pande, V.S.2
  • 63
    • 0141480054 scopus 로고    scopus 로고
    • Funnel sculpting for in silico assembly of secondary structure elements of proteins
    • Fain B, Levitt M. 2003. Funnel sculpting for in silico assembly of secondary structure elements of proteins. Proc. Natl. Acad. Sci. USA 100:10700-5
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 10700-10705
    • Fain, B.1    Levitt, M.2
  • 64
    • 33744816177 scopus 로고    scopus 로고
    • An evolutionary strategy for all-atom folding of the 60-amino-acid bacterial ribosomal protein L20
    • Schug A, Wenzel W. 2006. An evolutionary strategy for all-atom folding of the 60-amino-acid bacterial ribosomal protein L20. Biophys. J. 90:4273-80
    • (2006) Biophys. J , vol.90 , pp. 4273-4280
    • Schug, A.1    Wenzel, W.2
  • 65
    • 51149211502 scopus 로고
    • Improved simulation of liquid water by molecular dynamics
    • Stillinger FH, Rahman A. 1974. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60:1545-67
    • (1974) J. Chem. Phys , vol.60 , pp. 1545-1567
    • Stillinger, F.H.1    Rahman, A.2
  • 68
    • 2942622288 scopus 로고    scopus 로고
    • Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew- J
    • Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, et al. 2004. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew- J. Chem. Phys. 120:9665-78
    • (2004) Chem. Phys , vol.120 , pp. 9665-9678
    • Horn, H.W.1    Swope, W.C.2    Pitera, J.W.3    Madura, J.D.4    Dick, T.J.5
  • 69
    • 84986519235 scopus 로고
    • Parameterization and evolution of a flexible water model
    • Ferguson DM. 1995. Parameterization and evolution of a flexible water model. J. Comput. Chem. 16:501-11
    • (1995) J. Comput. Chem , vol.16 , pp. 501-511
    • Ferguson, D.M.1
  • 70
    • 36549102663 scopus 로고
    • A polarisable model for water using distributed charge sites
    • Sprik M, Klein ML. 1988. A polarisable model for water using distributed charge sites. J. Chem. Phys. 89:7556-60
    • (1988) J. Chem. Phys , vol.89 , pp. 7556-7560
    • Sprik, M.1    Klein, M.L.2
  • 71
    • 0344778061 scopus 로고
    • Semianalytical treatment of solvation for molecular mechanics and dynamics
    • Still WC, Tempczyk A, Hawley RC, Hendrickson T. 1990. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112: 6127-29
    • (1990) J. Am. Chem. Soc , vol.112 , pp. 6127-6129
    • Still, W.C.1    Tempczyk, A.2    Hawley, R.C.3    Hendrickson, T.4
  • 72
    • 0036138028 scopus 로고    scopus 로고
    • Evolution of a fast implicit solvent model for molecular dynamics simulations
    • Ferrara P, Apostolakis J, Caflisch A. 2002. Evolution of a fast implicit solvent model for molecular dynamics simulations. Proteins 46:24-33
    • (2002) Proteins , vol.46 , pp. 24-33
    • Ferrara, P.1    Apostolakis, J.2    Caflisch, A.3
  • 73
    • 0033654297 scopus 로고    scopus 로고
    • Generalized Born models of macromolecular solvation effects
    • Bashford D, Case D. 2000. Generalized Born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51:129-52
    • (2000) Annu. Rev. Phys. Chem , vol.51 , pp. 129-152
    • Bashford, D.1    Case, D.2
  • 74
    • 0026076082 scopus 로고
    • Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor
    • Vila J, Williams RL, Vásquez M, Scheraga HA. 1991. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. Proteins 10:199-218
    • (1991) Proteins , vol.10 , pp. 199-218
    • Vila, J.1    Williams, R.L.2    Vásquez, M.3    Scheraga, H.A.4
  • 75
    • 0027804108 scopus 로고
    • An effective solvation term based on atomic occupancies for use in protein simulations
    • Stouten PEW, Frömmel C, Nakamura H, Sander C. 1993. An effective solvation term based on atomic occupancies for use in protein simulations. Mol. Simul. 10:97-120
    • (1993) Mol. Simul , vol.10 , pp. 97-120
    • Stouten, P.E.W.1    Frömmel, C.2    Nakamura, H.3    Sander, C.4
  • 76
    • 0001151042 scopus 로고    scopus 로고
    • An efficient, differentiable hydration potential for peptides and proteins
    • Augspurger JD, Scheraga HA. 1996. An efficient, differentiable hydration potential for peptides and proteins. J. Comput. Chem. 17:1549-58
    • (1996) J. Comput. Chem , vol.17 , pp. 1549-1558
    • Augspurger, J.D.1    Scheraga, H.A.2
  • 77
    • 21344481461 scopus 로고
    • Gradient discontinuities in calculations involving molecular surface area
    • Wawak RJ, Gibson KD, Scheraga HA. 1994. Gradient discontinuities in calculations involving molecular surface area. J. Math. Chem. 15:207-32
    • (1994) J. Math. Chem , vol.15 , pp. 207-232
    • Wawak, R.J.1    Gibson, K.D.2    Scheraga, H.A.3
  • 78
    • 0141956090 scopus 로고    scopus 로고
    • Generalized Born model with a simple smoothing function
    • Im W, Lee M, Brooks C III. 2003. Generalized Born model with a simple smoothing function. J. Comput. Chem. 24:1691-702
    • (2003) J. Comput. Chem , vol.24 , pp. 1691-1702
    • Im, W.1    Lee, M.2    Brooks III, C.3
  • 79
    • 0034510764 scopus 로고    scopus 로고
    • Comparative study of folding free energy landscape of a three-stranded β-sheet protein with explicit and implicit solvent models
    • Bursulaya B, Brooks CL III. 2002. Comparative study of folding free energy landscape of a three-stranded β-sheet protein with explicit and implicit solvent models. J. Pbys. Chem. B 104:12378-83
    • (2002) J. Pbys. Chem. B , vol.104 , pp. 12378-12383
    • Bursulaya, B.1    Brooks III, C.L.2
  • 80
    • 0345724787 scopus 로고    scopus 로고
    • Ab initio folding of helix bundle proteins using molecular dynamics simulations
    • Jang S, Kim E, Shin S, Pak Y. 2003. Ab initio folding of helix bundle proteins using molecular dynamics simulations. J.Am. Chem. Soc. 125:14841-46
    • (2003) J.Am. Chem. Soc , vol.125 , pp. 14841-14846
    • Jang, S.1    Kim, E.2    Shin, S.3    Pak, Y.4
  • 81
    • 0001767031 scopus 로고    scopus 로고
    • Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations
    • Ferrara P, Apostolakis J, Caflisch A. 2000. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J. Phys. Chem. B 104:5000-10
    • (2000) J. Phys. Chem. B , vol.104 , pp. 5000-5010
    • Ferrara, P.1    Apostolakis, J.2    Caflisch, A.3
  • 82
    • 0032506017 scopus 로고    scopus 로고
    • Limited internal friction in the rate-limiting step of a two-state protein folding reaction
    • Plaxco KW, Baker D. 1998. Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proc. Natl. Acad. Sci. USA 95:13591-96
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 13591-13596
    • Plaxco, K.W.1    Baker, D.2
  • 84
    • 0037154268 scopus 로고    scopus 로고
    • Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse
    • Cheung MS, Garcia AE, Onuchic JN. 2002. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 99:685-90
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 685-690
    • Cheung, M.S.1    Garcia, A.E.2    Onuchic, J.N.3
  • 85
    • 0025896727 scopus 로고
    • Water-protein interactions: Theory and experiment
    • Teeter MM. 1991. Water-protein interactions: theory and experiment. Annu. Rev. Biophys. Biophys. Chem. 20:577-600
    • (1991) Annu. Rev. Biophys. Biophys. Chem , vol.20 , pp. 577-600
    • Teeter, M.M.1
  • 86
    • 0036732086 scopus 로고    scopus 로고
    • Constant-pH molecular dynamics using stochastic titration
    • Baptista AM, Teixeira VH, Soares CM. 2002. Constant-pH molecular dynamics using stochastic titration. J. Chem. Phys. 117:4184-200
    • (2002) J. Chem. Phys , vol.117 , pp. 4184-4200
    • Baptista, A.M.1    Teixeira, V.H.2    Soares, C.M.3
  • 87
    • 0036606101 scopus 로고    scopus 로고
    • Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation
    • Burgi R, Kollman PA, van Gunsteren WF. 2002. Simulating proteins at constant pH: an approach combining molecular dynamics and Monte Carlo simulation. Proteins 47:469-80
    • (2002) Proteins , vol.47 , pp. 469-480
    • Burgi, R.1    Kollman, P.A.2    van Gunsteren, W.F.3
  • 88
    • 37649030225 scopus 로고    scopus 로고
    • Langevin dynamics of proteins at constant pH
    • Walczak AM, Antosiewicz JM. 2002. Langevin dynamics of proteins at constant pH. Phys. Rev. E 66:051911
    • (2002) Phys. Rev. E , vol.66 , pp. 051911
    • Walczak, A.M.1    Antosiewicz, J.M.2
  • 89
    • 9244223045 scopus 로고    scopus 로고
    • Constant pH molecular dynamics in generalized Born implicit solvent
    • Mongan J, Case D, McCammon J. 2004. Constant pH molecular dynamics in generalized Born implicit solvent. J. Comput. Chem. 25:2038-48
    • (2004) J. Comput. Chem , vol.25 , pp. 2038-2048
    • Mongan, J.1    Case, D.2    McCammon, J.3
  • 90
    • 33645675121 scopus 로고    scopus 로고
    • Assessment of two theoretical methods to estimate potentiometric titration curves of peptides: Comparison with experiment
    • Makowska J, Baginska K, Makowski M, Jagielska A, Liwo A, et al. 2006. Assessment of two theoretical methods to estimate potentiometric titration curves of peptides: comparison with experiment. J. Phys. Chem. B 110:4451-58
    • (2006) J. Phys. Chem. B , vol.110 , pp. 4451-4458
    • Makowska, J.1    Baginska, K.2    Makowski, M.3    Jagielska, A.4    Liwo, A.5
  • 91
  • 92
    • 0040488445 scopus 로고    scopus 로고
    • Functional significance of hierarchical tiers in carbonmonoxy myoglobin: Conformational substates and transitions studied by conformational flooding simulations
    • Schulze B, Grubmuller H, Evanseck J. 2000. Functional significance of hierarchical tiers in carbonmonoxy myoglobin: conformational substates and transitions studied by conformational flooding simulations. J. Am. Chem. Soc. 122:8700-11
    • (2000) J. Am. Chem. Soc , vol.122 , pp. 8700-8711
    • Schulze, B.1    Grubmuller, H.2    Evanseck, J.3
  • 94
    • 0037764042 scopus 로고    scopus 로고
    • Molecular dynamics simulations of peptides and proteins with amplified collective motions
    • Zhang Z, Shi Y, Liu H. 2003. Molecular dynamics simulations of peptides and proteins with amplified collective motions. Biophys. J. 84:3583-93
    • (2003) Biophys. J , vol.84 , pp. 3583-3593
    • Zhang, Z.1    Shi, Y.2    Liu, H.3
  • 95
    • 0037339403 scopus 로고    scopus 로고
    • Selective excitation of native fluctuations during thermal unfolding simulations: Horse heart cytochrome c as a case study
    • Roccatano D, Daidone I, Ceruso MA, Bossa C, Di Nola A. 2003. Selective excitation of native fluctuations during thermal unfolding simulations: horse heart cytochrome c as a case study. Biophys. J. 84:1876-83
    • (2003) Biophys. J , vol.84 , pp. 1876-1883
    • Roccatano, D.1    Daidone, I.2    Ceruso, M.A.3    Bossa, C.4    Di Nola, A.5
  • 96
  • 98
    • 0017157584 scopus 로고
    • A simplified representation of protein conformations for rapid simulation of protein folding
    • Levitt M. 1976. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104:59-107
    • (1976) J. Mol. Biol , vol.104 , pp. 59-107
    • Levitt, M.1
  • 99
    • 1842454761 scopus 로고    scopus 로고
    • Intermediates and the folding of proteins L and G
    • Brown S, Head-Gordon T. 2004. Intermediates and the folding of proteins L and G. Protein Sei. 13:958-70
    • (2004) Protein Sei , vol.13 , pp. 958-970
    • Brown, S.1    Head-Gordon, T.2
  • 100
    • 33644893631 scopus 로고    scopus 로고
    • A coarse grained protein-lipid model with application to lipoprotein particles
    • Shih AY, Arkhipov A, Freddolino PL, Schulten K. 2006. A coarse grained protein-lipid model with application to lipoprotein particles. J. Phys. Chem. B 110:3674-84
    • (2006) J. Phys. Chem. B , vol.110 , pp. 3674-3684
    • Shih, A.Y.1    Arkhipov, A.2    Freddolino, P.L.3    Schulten, K.4
  • 101
    • 0000399469 scopus 로고    scopus 로고
    • Viscosity dependence of the folding rates of proteins
    • Klimov DK, Thirumalai D. 1997. Viscosity dependence of the folding rates of proteins. Phys. Rev. Lett. 79:317-20
    • (1997) Phys. Rev. Lett , vol.79 , pp. 317-320
    • Klimov, D.K.1    Thirumalai, D.2
  • 102
    • 0030624384 scopus 로고    scopus 로고
    • Protein folding kinetics: Timescales, pathways and energy landscapes in terms of sequence-dependent properties
    • Veitshans T, Klimov D, Thirumalai D. 1996. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Fold. Des. 2:1-22
    • (1996) Fold. Des , vol.2 , pp. 1-22
    • Veitshans, T.1    Klimov, D.2    Thirumalai, D.3
  • 103
    • 0016696599 scopus 로고
    • Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific interunit interactions
    • Taketomi H, Ueda Y, Gō N. 1975. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific interunit interactions. Int. J. Pept. Protein Ref. 7:445-59
    • (1975) Int. J. Pept. Protein Ref , vol.7 , pp. 445-459
    • Taketomi, H.1    Ueda, Y.2    Gō, N.3
  • 104
    • 0001720011 scopus 로고    scopus 로고
    • Molecular dynamics of folding of secondary structures in Go-type models of proteins
    • Hoang TX, Cieplak M. 2000. Molecular dynamics of folding of secondary structures in Go-type models of proteins. J. Chem. Phys. 112:6851-62
    • (2000) J. Chem. Phys , vol.112 , pp. 6851-6862
    • Hoang, T.X.1    Cieplak, M.2
  • 105
    • 0242383943 scopus 로고    scopus 로고
    • Improved Go-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions
    • Karanicolas J, Brooks CL III. 2003. Improved Go-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions. J. Mol. Biol. 334:309-25
    • (2003) J. Mol. Biol , vol.334 , pp. 309-325
    • Karanicolas, J.1    Brooks III, C.L.2
  • 106
    • 34547709547 scopus 로고    scopus 로고
    • Thermal unfolding of proteins
    • Cieplak M, Sulkowska J. 2005. Thermal unfolding of proteins. J. Chem. Phys. 123:194908
    • (2005) J. Chem. Phys , vol.123 , pp. 194908
    • Cieplak, M.1    Sulkowska, J.2
  • 107
    • 34547854222 scopus 로고    scopus 로고
    • Protein unfolding in a force clamp
    • Cieplak M. 2006. Protein unfolding in a force clamp. J. Chem.Phys. 123:194901
    • (2006) J. Chem.Phys , vol.123 , pp. 194901
    • Cieplak, M.1
  • 108
    • 0036499417 scopus 로고    scopus 로고
    • Toward minimalist models of larger proteins: A ubiquitin-like protein
    • Sorenson JM, Head-Gordon T. 2002. Toward minimalist models of larger proteins: a ubiquitin-like protein. Proteins 46:368-79
    • (2002) Proteins , vol.46 , pp. 368-379
    • Sorenson, J.M.1    Head-Gordon, T.2
  • 109
    • 0000420941 scopus 로고    scopus 로고
    • Brownian dynamics simulations of protein folding
    • He SQ, Scheraga HA. 1998. Brownian dynamics simulations of protein folding. J. Chem. Phys. 108:287-300
    • (1998) J. Chem. Phys , vol.108 , pp. 287-300
    • He, S.Q.1    Scheraga, H.A.2
  • 110
    • 0027650879 scopus 로고
    • Boltzmann principle, knowledge-based mean fields and proteinfolding: An approach to the computational determination of protein structures
    • Sippl MJ. 1993. Boltzmann principle, knowledge-based mean fields and proteinfolding: an approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7:473-501
    • (1993) J. Comput. Aided Mol. Des , vol.7 , pp. 473-501
    • Sippl, M.J.1
  • 111
    • 0035889689 scopus 로고    scopus 로고
    • Linear programming optimization and a double statistical filter for protein threading protocols
    • Melier J, Eiber R. 2001. Linear programming optimization and a double statistical filter for protein threading protocols. Proteins 45:241-61
    • (2001) Proteins , vol.45 , pp. 241-261
    • Melier, J.1    Eiber, R.2
  • 112
    • 0030593470 scopus 로고    scopus 로고
    • Easily searched protein folding potentials
    • Grippen GM. 1996. Easily searched protein folding potentials. J. Mol. Biol. 260:467-75
    • (1996) J. Mol. Biol , vol.260 , pp. 467-475
    • Grippen, G.M.1
  • 114
    • 33645243373 scopus 로고    scopus 로고
    • Denatured proteins and early folding intermediates simulated in a reduced conformational space
    • Kmiecik S, Kurcinski M, Rutkowska A, Gront D, Kolinski A. 2006. Denatured proteins and early folding intermediates simulated in a reduced conformational space. Acta Biochim. Pol. 53:131-43
    • (2006) Acta Biochim. Pol , vol.53 , pp. 131-143
    • Kmiecik, S.1    Kurcinski, M.2    Rutkowska, A.3    Gront, D.4    Kolinski, A.5
  • 115
    • 0242322468 scopus 로고    scopus 로고
    • Unfolding of globular proteins: Monte Carlo dynamics of a realistic reduced model
    • Kolinski A, Klein P, Romiszowski P, Skolnick J. 2003. Unfolding of globular proteins: Monte Carlo dynamics of a realistic reduced model. Biophys. J. 85:3271-78
    • (2003) Biophys. J , vol.85 , pp. 3271-3278
    • Kolinski, A.1    Klein, P.2    Romiszowski, P.3    Skolnick, J.4
  • 116
    • 12944327750 scopus 로고    scopus 로고
    • Energy landscapes and solved protein-folding problems
    • Wolynes PG. 2005. Energy landscapes and solved protein-folding problems. Philos. Trans. R. Soc. London Ser. A 363:453-64
    • (2005) Philos. Trans. R. Soc. London Ser. A , vol.363 , pp. 453-464
    • Wolynes, P.G.1
  • 118
    • 0035424584 scopus 로고    scopus 로고
    • Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field
    • Liwo A, Czaplewski C, PillardyJ, Scheraga HA. 2001. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J. Chem. Phys. 115:2323-47
    • (2001) J. Chem. Phys , vol.115 , pp. 2323-2347
    • Liwo, A.1    Czaplewski, C.2    Pillardy, J.3    Scheraga, H.A.4
  • 119
    • 8344277888 scopus 로고    scopus 로고
    • Optimization of the UNRES force field by hierarchical design of the potential-energy landscape. 2. Off-lattice tests of the method with single proteins
    • Oldziej S, Liwo A, Czaplewski C, PillardyJ, Scheraga HA. 2004. Optimization of the UNRES force field by hierarchical design of the potential-energy landscape. 2. Off-lattice tests of the method with single proteins. J: Phys. Chem. B 108:16934-49
    • (2004) J: Phys. Chem. B , vol.108 , pp. 16934-16949
    • Oldziej, S.1    Liwo, A.2    Czaplewski, C.3    Pillardy, J.4    Scheraga, H.A.5
  • 120
    • 14044266389 scopus 로고    scopus 로고
    • Ab initio simulations of proteinfolding pathways by molecular dynamics with the united-residue model of polypeptide chains
    • Liwo A, Khalili M, Scheraga HA. 2005. Ab initio simulations of proteinfolding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc. Natl. Acad. Sci. USA 102:2362-67
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 2362-2367
    • Liwo, A.1    Khalili, M.2    Scheraga, H.A.3
  • 121
    • 28944442465 scopus 로고    scopus 로고
    • Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains
    • Khalili M, Liwo A, Scheraga HA. 2006. Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains. J. Mol. Biol. 355:536-47
    • (2006) J. Mol. Biol , vol.355 , pp. 536-547
    • Khalili, M.1    Liwo, A.2    Scheraga, H.A.3
  • 122
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: What determined the structural details of the transition state ensemble and "enroute" intermediates for protein folding? An investigation for small globular proteins
    • Clementi C, Nymeyer H, Onuchic JN. 2000. Topological and energetic factors: What determined the structural details of the transition state ensemble and "enroute" intermediates for protein folding? An investigation for small globular proteins J. Mol. Biol. 298:937-53
    • (2000) J. Mol. Biol , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 123
    • 1942437505 scopus 로고    scopus 로고
    • Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase B's closing
    • Radhakrishnan R, Schlick T. 2004. Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase B's closing. Proc. Natl. Acad. Sci. USA 101:5970-75
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 5970-5975
    • Radhakrishnan, R.1    Schlick, T.2
  • 124
    • 4544223597 scopus 로고    scopus 로고
    • Characterizing the rate-limiting step of Tip-cage folding by all-atom molecular dynamics simulations
    • Chowdhury S, Lee MC, Duan Y. 2004. Characterizing the rate-limiting step of Tip-cage folding by all-atom molecular dynamics simulations. J. Phys. Chem. B 108:13855-65
    • (2004) J. Phys. Chem. B , vol.108 , pp. 13855-13865
    • Chowdhury, S.1    Lee, M.C.2    Duan, Y.3
  • 125
    • 0037235952 scopus 로고    scopus 로고
    • Atomistic protein folding simulations on the submillisecond timescale using worldwide distributed computing
    • Pande VS, Baker I, Chapman J, Elmer S, Kaliq S, et al. 2003. Atomistic protein folding simulations on the submillisecond timescale using worldwide distributed computing. Biopolymers 68:91-109
    • (2003) Biopolymers , vol.68 , pp. 91-109
    • Pande, V.S.1    Baker, I.2    Chapman, J.3    Elmer, S.4    Kaliq, S.5
  • 126
    • 0043237588 scopus 로고    scopus 로고
    • Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding
    • Krieger F, Fierz B, Bieri O, Drewello M, Kiefhaber T. 2003. Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. J. Mol. Biol. 332:265-74
    • (2003) J. Mol. Biol , vol.332 , pp. 265-274
    • Krieger, F.1    Fierz, B.2    Bieri, O.3    Drewello, M.4    Kiefhaber, T.5
  • 127
    • 0037478676 scopus 로고    scopus 로고
    • Analysis of the distributed computing approach applied to the folding of a small β peptide
    • Paci E, Cavalli A, Vendruscolo M, Caflisch A. 2003. Analysis of the distributed computing approach applied to the folding of a small β peptide. Proc. Natl. Acad. Sci. USA 100:8217-22
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8217-8222
    • Paci, E.1    Cavalli, A.2    Vendruscolo, M.3    Caflisch, A.4
  • 128
    • 28044453750 scopus 로고    scopus 로고
    • Protein folding by distributed computing and the denatured state ensemble
    • Marianayagam NJ, Fawzi NL, Head-Gordon T. 2005. Protein folding by distributed computing and the denatured state ensemble. Proc. Natl. Acad. Sci. USA 102:16684-89
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 16684-16689
    • Marianayagam, N.J.1    Fawzi, N.L.2    Head-Gordon, T.3
  • 129
    • 0001616080 scopus 로고    scopus 로고
    • Replica-exchange molecular dynamics method for protein folding
    • Sugita Y, Okatmoto Y. 1999. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314:141-51
    • (1999) Chem. Phys. Lett , vol.314 , pp. 141-151
    • Sugita, Y.1    Okatmoto, Y.2
  • 130
    • 0037305918 scopus 로고    scopus 로고
    • Multiplexed-replica exchange molecular dynamics method for protein folding simulation
    • Rhee YM, Pande VS. 2003. Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84:775-86
    • (2003) Biophys. J , vol.84 , pp. 775-786
    • Rhee, Y.M.1    Pande, V.S.2
  • 131
    • 3042801661 scopus 로고    scopus 로고
    • Free energy surfaces of β-hairpin and α-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model
    • Felts A, Harano Y, Gallicchio E, Levy R. 2004. Free energy surfaces of β-hairpin and α-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Proteins 56:310-21
    • (2004) Proteins , vol.56 , pp. 310-321
    • Felts, A.1    Harano, Y.2    Gallicchio, E.3    Levy, R.4
  • 132
    • 33749993881 scopus 로고    scopus 로고
    • Replica exchange and multicanonical algorithms with the coarse-grained united-residue (UNRES) force field
    • Nanias M, Czaplewski C, Scheraga FIA. 2006. Replica exchange and multicanonical algorithms with the coarse-grained united-residue (UNRES) force field. J. Chem. Theor. Comput. 2:513-28
    • (2006) J. Chem. Theor. Comput , vol.2 , pp. 513-528
    • Nanias, M.1    Czaplewski, C.2    Scheraga, F.I.A.3
  • 133
    • 28844454252 scopus 로고    scopus 로고
    • Parallel tempering: Theory, applications, and new perspectives
    • Earl DJ, Deem MW. 2005. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7:3910-16
    • (2005) Phys. Chem. Chem. Phys , vol.7 , pp. 3910-3916
    • Earl, D.J.1    Deem, M.W.2
  • 134
    • 0035909921 scopus 로고    scopus 로고
    • The free energy landscape for Bhairpin folding in explicit water
    • Zhou RH, Berne BJ, Germain R. 2001. The free energy landscape for Bhairpin folding in explicit water. Proc. Natl. Acad. Sci. USA 98:14931-36
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 14931-14936
    • Zhou, R.H.1    Berne, B.J.2    Germain, R.3
  • 135
    • 0345133287 scopus 로고    scopus 로고
    • Folding a protein in a computer: An atomic description of the folding/unfolding of protein A
    • Garcia AE, Onuchic JN. 2003. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA 100:13898-903
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13898-13903
    • Garcia, A.E.1    Onuchic, J.N.2
  • 136
    • 0037221599 scopus 로고    scopus 로고
    • Is there a unifying mechanism for protein folding?
    • Daggett V, Fersht AR. 2003. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28:18-25
    • (2003) Trends Biochem. Sci , vol.28 , pp. 18-25
    • Daggett, V.1    Fersht, A.R.2
  • 137
    • 0033578828 scopus 로고    scopus 로고
    • Is protein unfolding the reverse of protein folding? A lattice simulation analysis
    • Dinner AR, Karplus M. 1999. Is protein unfolding the reverse of protein folding? A lattice simulation analysis. J. Mol. EM. 292:403-19
    • (1999) J. Mol. EM , vol.292 , pp. 403-419
    • Dinner, A.R.1    Karplus, M.2
  • 138
    • 0030775114 scopus 로고    scopus 로고
    • Can protein unfolding simulate protein folding?
    • Finkelstein AV. 1997. Can protein unfolding simulate protein folding? Protein Eng. 10:843-45
    • (1997) Protein Eng , vol.10 , pp. 843-845
    • Finkelstein, A.V.1
  • 139
    • 0037093655 scopus 로고    scopus 로고
    • Weak temperature dependence of the free energy surface and folding pathways of structured proteins
    • Cavalli A, Ferrara P, Caflisch A. 2002. Weak temperature dependence of the free energy surface and folding pathways of structured proteins. Proteins 47:305-14
    • (2002) Proteins , vol.47 , pp. 305-314
    • Cavalli, A.1    Ferrara, P.2    Caflisch, A.3
  • 141
    • 0036286652 scopus 로고    scopus 로고
    • Long time dynamics of complex systems
    • Eiber R, Ghosh A, Cardenas A. 2002. Long time dynamics of complex systems. Ace. Chem. Res. 35:396-403
    • (2002) Ace. Chem. Res , vol.35 , pp. 396-403
    • Eiber, R.1    Ghosh, A.2    Cardenas, A.3
  • 142
    • 0036678831 scopus 로고    scopus 로고
    • An atomically detailed study of the folding pathways of protein A with the stochastic difference equation
    • Ghosh A, Elber R, Scheraga HA. 2002. An atomically detailed study of the folding pathways of protein A with the stochastic difference equation. Proc. Natl. Acad. Sci. USA 99:10394-98
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 10394-10398
    • Ghosh, A.1    Elber, R.2    Scheraga, H.A.3
  • 143
    • 0028326042 scopus 로고
    • Monte-Carlo simulations of protein-folding. 2. Application to protein A, ROP, and crambin
    • Kolinski A, Skolnick J. 1994. Monte-Carlo simulations of protein-folding. 2. Application to protein A, ROP, and crambin. Proteins 18:353-66
    • (1994) Proteins , vol.18 , pp. 353-366
    • Kolinski, A.1    Skolnick, J.2
  • 144
    • 33745618137 scopus 로고    scopus 로고
    • Φ-analysis of the folding of the B domain of protein A using multiple optical probes
    • Sato S, Religa TL, Fersht AR. 2006. Φ-analysis of the folding of the B domain of protein A using multiple optical probes. J. Mol. Biol. 360:850-64
    • (2006) J. Mol. Biol , vol.360 , pp. 850-864
    • Sato, S.1    Religa, T.L.2    Fersht, A.R.3
  • 145
    • 0029151245 scopus 로고
    • First-principles calculation of the folding free energy of a 3-helix bundle protein
    • Boczko EM, Brooks CL III. 1995. First-principles calculation of the folding free energy of a 3-helix bundle protein. Science 269:393-96
    • (1995) Science , vol.269 , pp. 393-396
    • Boczko, E.M.1    Brooks III, C.L.2
  • 146
    • 0033857499 scopus 로고    scopus 로고
    • Quantumdynamical picture of a multistep enzymatic process: Reaction catalyzed by phospholipase A2
    • Bala P, Grochowski P, Nowinski K, LesyngB,McCammonJA. 2000. Quantumdynamical picture of a multistep enzymatic process: reaction catalyzed by phospholipase A2. Biophys. J. 79:1253-62
    • (2000) Biophys. J , vol.79 , pp. 1253-1262
    • Bala, P.1    Grochowski, P.2    Nowinski, K.3    Lesyng, B.4    McCammon, J.A.5
  • 147
    • 33646935697 scopus 로고    scopus 로고
    • Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis
    • Olsson MHM, Parson WW, Warshel A. 2006. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem. Rev. 106:1737-56
    • (2006) Chem. Rev , vol.106 , pp. 1737-1756
    • Olsson, M.H.M.1    Parson, W.W.2    Warshel, A.3
  • 148
    • 0036558224 scopus 로고    scopus 로고
    • Energy-based reconstruction of a protein backbone from its α-carbon trace by a Monte Carlo method
    • Kaźmierkiewicz R, Liwo A, Scheraga HA. 2002. Energy-based reconstruction of a protein backbone from its α-carbon trace by a Monte Carlo method. J. Comput. Chem. 23:715-23
    • (2002) J. Comput. Chem , vol.23 , pp. 715-723
    • Kaźmierkiewicz, R.1    Liwo, A.2    Scheraga, H.A.3
  • 149
    • 0037438462 scopus 로고    scopus 로고
    • Kaźmierkiewicz R, Liwo A, Scheraga HA. 2003. Addition of side chains to a known backbone with defined side-chain centroids. Biophys. Chem. 100:261-80. Erratum. Biophys. Chem. 106:91
    • Kaźmierkiewicz R, Liwo A, Scheraga HA. 2003. Addition of side chains to a known backbone with defined side-chain centroids. Biophys. Chem. 100:261-80. Erratum. Biophys. Chem. 106:91


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.