메뉴 건너뛰기




Volumn 26, Issue 8, 2016, Pages 869-885

The life cycle of the 26S proteasome: From birth, through regulation and function, and onto its death

Author keywords

proteasome; ubiquitin

Indexed keywords

ATP DEPENDENT 26S PROTEASE; PROTEASOME;

EID: 84979306721     PISSN: 10010602     EISSN: 17487838     Source Type: Journal    
DOI: 10.1038/cr.2016.86     Document Type: Review
Times cited : (250)

References (217)
  • 1
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko RJ, Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 2013; 82: 415-445.
    • (2013) Annu Rev Biochem , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 2
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M, Bajorek M, Köhler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol 2000; 7: 1062-1067.
    • (2000) Nat Struct Biol , vol.7 , pp. 1062-1067
    • Groll, M.1    Bajorek, M.2    Köhler, A.3
  • 3
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008; 30: 360-368.
    • (2008) Mol Cell , vol.30 , pp. 360-368
    • Rabl, J.1    Smith, D.M.2    Yu, Y.3    Chang, S.C.4    Goldberg, A.L.5    Cheng, Y.6
  • 4
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's ring opens the gate for substrate entry
    • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's ring opens the gate for substrate entry. Mol Cell 2007; 27: 731-744.
    • (2007) Mol Cell , vol.27 , pp. 731-744
    • Smith, D.M.1    Chang, S.C.2    Park, S.3    Finley, D.4    Cheng, Y.5    Goldberg, A.L.6
  • 5
    • 1542344435 scopus 로고    scopus 로고
    • Proteasomes and their kin: Proteases in the machine age
    • Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5: 177-187.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 177-187
    • Pickart, C.M.1    Cohen, R.E.2
  • 6
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2. 4 A resolution
    • Groll M, Ditzel L, Löwe J, et al. Structure of 20S proteasome from yeast at 2. 4 A resolution. Nature 1997; 386: 463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1    Ditzel, L.2    Löwe, J.3
  • 7
    • 0029558611 scopus 로고
    • Nuclear localization signals of human and Thermoplasma proteasomal subunits are functional in vitro
    • Nederlof PM, Wang HR, Baumeister W. Nuclear localization signals of human and Thermoplasma proteasomal subunits are functional in vitro. Proc Natl Acad Sci USA 1995; 92: 12060-12064.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 12060-12064
    • Nederlof, P.M.1    Wang, H.R.2    Baumeister, W.3
  • 9
    • 0036735384 scopus 로고    scopus 로고
    • Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs
    • Ogiso Y, Tomida A, Tsuruo T. Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs. Cancer Res 2002; 62: 5008-5012.
    • (2002) Cancer Res , vol.62 , pp. 5008-5012
    • Ogiso, Y.1    Tomida, A.2    Tsuruo, T.3
  • 10
    • 0032476030 scopus 로고    scopus 로고
    • Contribution of proteasomal subunits to the cleavage of peptide substrates analyzed with yeast mutants
    • Dick TP, Nussbauma K, Deeg M, et al. Contribution of proteasomal subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 1998; 273: 25637-25646.
    • (1998) J Biol Chem , vol.273 , pp. 25637-25646
    • Dick, T.P.1    Nussbauma, K.2    Deeg, M.3
  • 11
    • 84953286231 scopus 로고    scopus 로고
    • Mammalian proteasome subtypes: Their diversity in structure and function
    • Dahlmann B. Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2016; 591: 132-140.
    • (2016) Arch Biochem Biophys , vol.591 , pp. 132-140
    • Dahlmann, B.1
  • 14
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K, Elsasser S, Zhang N, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453: 481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1    Elsasser, S.2    Zhang, N.3
  • 15
    • 84959019581 scopus 로고    scopus 로고
    • Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
    • 1-10
    • Shi Y, Chen X, Elsasser S, et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 2016; 351: aad9421. 1-10.
    • (2016) Science , vol.351 , pp. aad9421
    • Shi, Y.1    Chen, X.2    Elsasser, S.3
  • 16
    • 0031890210 scopus 로고    scopus 로고
    • Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1
    • Fu H, Sadis S, Rubin DM, et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 1998; 273: 1970-1981.
    • (1998) J Biol Chem , vol.273 , pp. 1970-1981
    • Fu, H.1    Sadis, S.2    Rubin, D.M.3
  • 17
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298: 611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3
  • 18
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002; 419: 403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 19
    • 0031038169 scopus 로고    scopus 로고
    • Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
    • Lam YA, Xu W, DeMartino GN, Cohen RE. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997; 385: 737-740.
    • (1997) Nature , vol.385 , pp. 737-740
    • Lam, Y.A.1    Xu, W.2    DeMartino, G.N.3    Cohen, R.E.4
  • 20
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett DS, Hanna J, Borodovsky A, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 2002; 10: 495-507.
    • (2002) Mol Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1    Hanna, J.2    Borodovsky, A.3
  • 21
    • 34248350363 scopus 로고    scopus 로고
    • MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
    • Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 2002; 3: 28.
    • (2002) BMC Biochem , vol.3 , pp. 28
    • Maytal-Kivity, V.1    Reis, N.2    Hofmann, K.3    Glickman, M.H.4
  • 22
    • 36849059755 scopus 로고    scopus 로고
    • Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
    • Kleijnen MF, Roelofs J, Park S, et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 2007; 14: 1180-1188.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 1180-1188
    • Kleijnen, M.F.1    Roelofs, J.2    Park, S.3
  • 23
    • 69249241853 scopus 로고    scopus 로고
    • Variably modulated gating of the 26S proteasome by ATP and polyubiquitin
    • Li X, Demartino GN, Craiu A, et al. Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem J 2009; 421: 397-404.
    • (2009) Biochem J , vol.421 , pp. 397-404
    • Li, X.1    Demartino, G.N.2    Craiu, A.3
  • 24
    • 78049264771 scopus 로고    scopus 로고
    • The 26S proteasome: Assembly and function of a destructive machine
    • Gallastegui N, Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 2010; 35: 634-642.
    • (2010) Trends Biochem Sci , vol.35 , pp. 634-642
    • Gallastegui, N.1    Groll, M.2
  • 25
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley D, Chen X, Walters KJ. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 2015; 41: 77-93.
    • (2015) Trends Biochem Sci , vol.41 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 26
    • 27644554700 scopus 로고    scopus 로고
    • A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
    • Hirano Y, Hendil KB, Yashiroda H, et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005; 437: 1381-1385.
    • (2005) Nature , vol.437 , pp. 1381-1385
    • Hirano, Y.1    Hendil, K.B.2    Yashiroda, H.3
  • 27
    • 84868238774 scopus 로고    scopus 로고
    • Structure of a proteasome Pba1-Pba2 complex implications for proteasome assembly, activation, and biological function
    • Stadtmueller BM, Kish-Trier E, Ferrell K, et al. Structure of a proteasome Pba1-Pba2 complex implications for proteasome assembly, activation, and biological function. J Biol Chem 2012; 287: 37371-37382.
    • (2012) J Biol Chem , vol.287 , pp. 37371-37382
    • Stadtmueller, B.M.1    Kish-Trier, E.2    Ferrell, K.3
  • 28
    • 33845681479 scopus 로고    scopus 로고
    • Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
    • Hirano Y, Hayashi H, Iemura S, et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 2006; 24: 977-984.
    • (2006) Mol Cell , vol.24 , pp. 977-984
    • Hirano, Y.1    Hayashi, H.2    Iemura, S.3
  • 30
    • 36749025650 scopus 로고    scopus 로고
    • The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum
    • Fricke B, Heink S, Steffen J, Kloetzel P-M, Krüger E. The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 2007; 8: 1170-1175.
    • (2007) EMBO Rep , vol.8 , pp. 1170-1175
    • Fricke, B.1    Heink, S.2    Steffen, J.3    Kloetzel, P.-M.4    Krüger, E.5
  • 31
    • 0032548998 scopus 로고    scopus 로고
    • Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
    • Ramos PC, Höckendorff J, Johnson ES, Varshavsky A, Dohmen RJ. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998; 92: 489-499.
    • (1998) Cell , vol.92 , pp. 489-499
    • Ramos, P.C.1    Höckendorff, J.2    Johnson, E.S.3    Varshavsky, A.4    Dohmen, R.J.5
  • 32
    • 84855199977 scopus 로고    scopus 로고
    • Proteasomal AAA-ATPases: Structure and function
    • Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta 2012; 1823: 67-82.
    • (2012) Biochim Biophys Acta , vol.1823 , pp. 67-82
    • Bar-Nun, S.1    Glickman, M.H.2
  • 34
    • 65849101541 scopus 로고    scopus 로고
    • Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
    • Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009; 137: 900-913.
    • (2009) Cell , vol.137 , pp. 900-913
    • Saeki, Y.1    Toh-E, A.2    Kudo, T.3    Kawamura, H.4    Tanaka, K.5
  • 35
    • 84943612692 scopus 로고    scopus 로고
    • A single helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
    • Tomko RJ, Taylor DW, Chen ZA, Wang H-W, Rappsilber J, Hochstrasser M. A single helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 2015; 163: 432-444.
    • (2015) Cell , vol.163 , pp. 432-444
    • Tomko, R.J.1    Taylor, D.W.2    Chen, Z.A.3    Wang, H.-W.4    Rappsilber, J.5    Hochstrasser, M.6
  • 36
    • 0042313977 scopus 로고    scopus 로고
    • The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
    • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 2003; 22: 3557-3567.
    • (2003) EMBO J , vol.22 , pp. 3557-3567
    • Imai, J.1    Maruya, M.2    Yashiroda, H.3    Yahara, I.4    Tanaka, K.5
  • 37
    • 84919496876 scopus 로고    scopus 로고
    • Vwa Domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome
    • Piterman R, Braunstein I, Isakov E, et al. Vwa Domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome. Mol Biol Cell 2014; 25: 3988-3998.
    • (2014) Mol Biol Cell , vol.25 , pp. 3988-3998
    • Piterman, R.1    Braunstein, I.2    Isakov, E.3
  • 39
    • 84930353020 scopus 로고    scopus 로고
    • The protein quality control machinery regulates its misassembled proteasome subunits
    • Peters LZ, Karmon O, David-Kadoch G, et al. The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 2015; 11: e1005178.
    • (2015) PLoS Genet , vol.11 , pp. e1005178
    • Peters, L.Z.1    Karmon, O.2    David-Kadoch, G.3
  • 40
    • 0037821846 scopus 로고    scopus 로고
    • Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes
    • Meiners S, Heyken D, Weller A, et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 2003; 278: 21517-21525.
    • (2003) J Biol Chem , vol.278 , pp. 21517-21525
    • Meiners, S.1    Heyken, D.2    Weller, A.3
  • 41
    • 84943771460 scopus 로고    scopus 로고
    • MTORC1 signaling activates NRF1 to increase cellular proteasome levels
    • Zhang Y, Manning BD. mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 2015; 14: 2011-2017.
    • (2015) Cell Cycle , vol.14 , pp. 2011-2017
    • Zhang, Y.1    Manning, B.D.2
  • 42
    • 84904990897 scopus 로고    scopus 로고
    • Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
    • Sha Z, Goldberg AL. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol 2014; 24: 1573-1583.
    • (2014) Curr Biol , vol.24 , pp. 1573-1583
    • Sha, Z.1    Goldberg, A.L.2
  • 43
    • 0242496212 scopus 로고    scopus 로고
    • Molecular sequelae of proteasome inhibition in human multiple myeloma cells
    • Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374-14379.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14374-14379
    • Mitsiades, N.1    Mitsiades, C.S.2    Poulaki, V.3
  • 44
    • 18944392199 scopus 로고    scopus 로고
    • Identification and characterization of a Drosophila proteasome regulatory network
    • Lundgren J, Masson P, Mirzaei Z, Young P. Identification and characterization of a Drosophila proteasome regulatory network. Mol Cell Biol 2005; 25: 4662-4675.
    • (2005) Mol Cell Biol , vol.25 , pp. 4662-4675
    • Lundgren, J.1    Masson, P.2    Mirzaei, Z.3    Young, P.4
  • 45
    • 79959823394 scopus 로고    scopus 로고
    • Specific SKN-1/NrF stress responses to perturbations in translation elongation and proteasome activity
    • Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK. Specific SKN-1/NrF stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 2011; 7: 9-11.
    • (2011) PLoS Genet , vol.7 , pp. 9-11
    • Li, X.1    Matilainen, O.2    Jin, C.3    Glover-Cutter, K.M.4    Holmberg, C.I.5    Blackwell, T.K.6
  • 46
    • 2942620845 scopus 로고    scopus 로고
    • Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome
    • London MK, Keck BI, Ramos PC, Dohmen RJ. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 2004; 567: 259-264.
    • (2004) FEBS Lett , vol.567 , pp. 259-264
    • London, M.K.1    Keck, B.I.2    Ramos, P.C.3    Dohmen, R.J.4
  • 47
    • 77950366349 scopus 로고    scopus 로고
    • Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
    • Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 2010; 38: 17-28.
    • (2010) Mol Cell , vol.38 , pp. 17-28
    • Radhakrishnan, S.K.1    Lee, C.S.2    Young, P.3    Beskow, A.4    Chan, J.Y.5    Deshaies, R.J.6
  • 48
    • 77957341511 scopus 로고    scopus 로고
    • Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
    • Steffen J, Seeger M, Koch A, Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 2010; 40: 147-158.
    • (2010) Mol Cell , vol.40 , pp. 147-158
    • Steffen, J.1    Seeger, M.2    Koch, A.3    Krüger, E.4
  • 49
    • 84877913024 scopus 로고    scopus 로고
    • Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: Implications for degradation of nrf2 in the nucleus
    • Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: Implications for degradation of nrf2 in the nucleus. J Biol Chem 2013; 288: 14569-14583.
    • (2013) J Biol Chem , vol.288 , pp. 14569-14583
    • Malloy, M.T.1    McIntosh, D.J.2    Walters, T.S.3    Flores, A.4    Goodwin, J.S.5    Arinze, I.J.6
  • 50
    • 0242721624 scopus 로고    scopus 로고
    • Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
    • Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 2003; 23: 8786-8794.
    • (2003) Mol Cell Biol , vol.23 , pp. 8786-8794
    • Kwak, M.K.1    Wakabayashi, N.2    Greenlaw, J.L.3    Yamamoto, M.4    Kensler, T.W.5
  • 51
    • 7244253081 scopus 로고    scopus 로고
    • Nrf2-Keap1 defines a physiologically important stress response mechanism
    • Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10: 549-557.
    • (2004) Trends Mol Med , vol.10 , pp. 549-557
    • Motohashi, H.1    Yamamoto, M.2
  • 52
    • 84873417130 scopus 로고    scopus 로고
    • A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster
    • Pickering AM, Staab TA., Tower J, Sieburth DS, Davies KJ. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster. J Exp Biol 2013; 216: 543-553.
    • (2013) J Exp Biol , vol.216 , pp. 543-553
    • Pickering, A.M.1    Staab, T.A.2    Tower, J.3    Sieburth, D.S.4    Davies, K.J.5
  • 53
    • 66349105688 scopus 로고    scopus 로고
    • The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans
    • Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol 2009; 29: 2704-2715.
    • (2009) Mol Cell Biol , vol.29 , pp. 2704-2715
    • Choe, K.P.1    Przybysz, A.J.2    Strange, K.3
  • 54
    • 11244343965 scopus 로고    scopus 로고
    • Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
    • Wang L, Mao X, Ju D, Xie Y. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 2004; 279: 55218-55223.
    • (2004) J Biol Chem , vol.279 , pp. 55218-55223
    • Wang, L.1    Mao, X.2    Ju, D.3    Xie, Y.4
  • 55
    • 2642560445 scopus 로고    scopus 로고
    • Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent
    • Ju D, Xie Y. Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent. J Biol Chem 2004; 279: 23851-23854.
    • (2004) J Biol Chem , vol.279 , pp. 23851-23854
    • Ju, D.1    Xie, Y.2
  • 56
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
    • Xie Y, Varshavskya. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 2001; 98: 3056-3061.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavskya2
  • 57
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 1999; 450: 27-34.
    • (1999) FEBS Lett , vol.450 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 58
    • 78549260740 scopus 로고    scopus 로고
    • Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae
    • Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 2010; 11: 660.
    • (2010) BMC Genomics , vol.11 , pp. 660
    • Ma, M.1    Liu, Z.L.2
  • 59
    • 17144414925 scopus 로고    scopus 로고
    • Overexpression of proteasome 5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates
    • Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES. Overexpression of proteasome 5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 2005; 280: 11840-11850.
    • (2005) J Biol Chem , vol.280 , pp. 11840-11850
    • Chondrogianni, N.1    Tzavelas, C.2    Pemberton, A.J.3    Nezis, I.P.4    Rivett, A.J.5    Gonos, E.S.6
  • 60
    • 84866182143 scopus 로고    scopus 로고
    • RPN-6 determines C. elegans longevity under proteotoxic stress conditions
    • Vilchez D, Morantte I, Liu Z, et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012; 489: 263-268.
    • (2012) Nature , vol.489 , pp. 263-268
    • Vilchez, D.1    Morantte, I.2    Liu, Z.3
  • 61
    • 84866167976 scopus 로고    scopus 로고
    • Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
    • Vilchez D, Boyer L, Morantte I, et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012; 489: 304-308.
    • (2012) Nature , vol.489 , pp. 304-308
    • Vilchez, D.1    Boyer, L.2    Morantte, I.3
  • 62
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2013; 149: 274-293.
    • (2013) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 63
    • 84906898355 scopus 로고    scopus 로고
    • Coordinated regulation of protein synthesis and degradation by mTORC1
    • Zhang Y, Nicholatos J, Dreier JR, et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014; 513: 440-443.
    • (2014) Nature , vol.513 , pp. 440-443
    • Zhang, Y.1    Nicholatos, J.2    Dreier, J.R.3
  • 64
    • 84952705310 scopus 로고    scopus 로고
    • MTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
    • Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 2015; 112: 15790-15797.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 15790-15797
    • Zhao, J.1    Zhai, B.2    Gygi, S.P.3    Goldberg, A.L.4
  • 65
    • 84955446296 scopus 로고    scopus 로고
    • Control of proteasomal proteolysis by mTOR
    • Zhao J, Garcia GA, Goldberg AL. Control of proteasomal proteolysis by mTOR. Nature 2016; 529: E1-E2.
    • (2016) Nature , vol.529 , pp. E1-E2
    • Zhao, J.1    Garcia, G.A.2    Goldberg, A.L.3
  • 66
    • 84955482451 scopus 로고    scopus 로고
    • Zhang & Manning reply
    • Zhang Y, Manning BD. Zhang & Manning reply. Nature 2016; 529: E2-E3.
    • (2016) Nature , vol.529 , pp. E2-E3
    • Zhang, Y.1    Manning, B.D.2
  • 67
    • 84958185888 scopus 로고    scopus 로고
    • Biological significance of coand post-translational modifications of the yeast 26S proteasome
    • Hirano H, Kimura Y, Kimura A. Biological significance of coand post-translational modifications of the yeast 26S proteasome. J Proteomics 2015; 134: 37-46.
    • (2015) J Proteomics , vol.134 , pp. 37-46
    • Hirano, H.1    Kimura, Y.2    Kimura, A.3
  • 68
    • 84906054813 scopus 로고    scopus 로고
    • Lysine ubiquitination and acetylation of human cardiac 20S proteasomes
    • Zong N, Ping P, Lau E, et al. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes. Proteomics Clin Appl 2014; 8: 590-594.
    • (2014) Proteomics Clin Appl , vol.8 , pp. 590-594
    • Zong, N.1    Ping, P.2    Lau, E.3
  • 69
    • 81755163621 scopus 로고    scopus 로고
    • UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
    • Guo X, Engel JL, Xiao J, et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 2011; 108: 18649-18654.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 18649-18654
    • Guo, X.1    Engel, J.L.2    Xiao, J.3
  • 70
    • 84921695082 scopus 로고    scopus 로고
    • N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging
    • van Deventer S, Menendez-Benito V, van Leeuwen F, Neefjes J. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J Cell Sci 2015; 128: 109-117.
    • (2015) J Cell Sci , vol.128 , pp. 109-117
    • Van Deventer, S.1    Menendez-Benito, V.2    Van Leeuwen, F.3    Neefjes, J.4
  • 71
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis
    • Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 2015; 58: 1053-1066.
    • (2015) Mol Cell , vol.58 , pp. 1053-1066
    • Marshall, R.S.1    Li, F.2    Gemperline, D.C.3    Book, A.J.4    Vierstra, R.D.5
  • 72
    • 0036177305 scopus 로고    scopus 로고
    • Electrophoretic analysis of phosphorylation of the yeast 20S proteasome
    • Iwafune Y, Kawasaki H, Hirano H. Electrophoretic analysis of phosphorylation of the yeast 20S proteasome. Electrophoresis 2002; 23: 329-338.
    • (2002) Electrophoresis , vol.23 , pp. 329-338
    • Iwafune, Y.1    Kawasaki, H.2    Hirano, H.3
  • 73
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome subunit C8 (7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by-interferon
    • Bose S, Stratford FLL, Broadfoot KI, Mason GGF, Rivett AJ. Phosphorylation of 20S proteasome subunit C8 (7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by-interferon. Biochem J 2004; 378: 177-184.
    • (2004) Biochem J , vol.378 , pp. 177-184
    • Bose, S.1    Stratford, F.L.L.2    Broadfoot, K.I.3    Mason, G.G.F.4    Rivett, A.J.5
  • 74
    • 77955107424 scopus 로고    scopus 로고
    • Co-and post-translational modifications of the 26S proteasome in yeast
    • Kikuchi J, Iwafune Y, Akiyama T, et al. Co-and post-translational modifications of the 26S proteasome in yeast. Proteomics 2010; 10: 2769-2779.
    • (2010) Proteomics , vol.10 , pp. 2769-2779
    • Kikuchi, J.1    Iwafune, Y.2    Akiyama, T.3
  • 75
    • 34547953209 scopus 로고    scopus 로고
    • Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
    • Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 2007; 282: 22460-22471.
    • (2007) J Biol Chem , vol.282 , pp. 22460-22471
    • Zhang, F.1    Hu, Y.2    Huang, P.3    Toleman, C.A.4    Paterson, A.J.5    Kudlow, J.E.6
  • 76
    • 0035895354 scopus 로고    scopus 로고
    • Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
    • Satoh K, Sasajima H, Nyoumura K, Yokosawa H, Sawada H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 2001; 40: 314-319.
    • (2001) Biochemistry , vol.40 , pp. 314-319
    • Satoh, K.1    Sasajima, H.2    Nyoumura, K.3    Yokosawa, H.4    Sawada, H.5
  • 77
    • 57049151869 scopus 로고    scopus 로고
    • Revealing the dynamics of the 20S proteasome phosphoproteome: A combined CID and electron transfer dissociation approach
    • Lu H, Zong C, Wang Y, et al. Revealing the dynamics of the 20S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 2008; 7: 2073-2089.
    • (2008) Mol Cell Proteomics , vol.7 , pp. 2073-2089
    • Lu, H.1    Zong, C.2    Wang, Y.3
  • 78
    • 59949100645 scopus 로고    scopus 로고
    • Regulation of global protein translation and protein degradation in aerobic dormancy
    • Ramnanan CJ, Allan ME, Groom AG, Storey KB. Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 2009; 323: 9-20.
    • (2009) Mol Cell Biochem , vol.323 , pp. 9-20
    • Ramnanan, C.J.1    Allan, M.E.2    Groom, A.G.3    Storey, K.B.4
  • 79
    • 78650632460 scopus 로고    scopus 로고
    • Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation
    • Lee S-H, Park Y, Yoon SK, Yoon J-B. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J Biol Chem 2010; 285: 41280-41289.
    • (2010) J Biol Chem , vol.285 , pp. 41280-41289
    • Lee, S.-H.1    Park, Y.2    Yoon, S.K.3    Yoon, J.-B.4
  • 80
    • 33646145066 scopus 로고    scopus 로고
    • Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation
    • Liu X, Huang W, Li C, et al. Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell 2006; 22: 317-327.
    • (2006) Mol Cell , vol.22 , pp. 317-327
    • Liu, X.1    Huang, W.2    Li, C.3
  • 81
    • 84952685052 scopus 로고    scopus 로고
    • CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
    • Lokireddy S, Kukushkin NV, Goldberg AL. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 2015; 112: E7176-7185.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E7176-7185
    • Lokireddy, S.1    Kukushkin, N.V.2    Goldberg, A.L.3
  • 82
    • 77953113655 scopus 로고    scopus 로고
    • Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
    • Isasa M, Katz EJ, Kim W, et al. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 2010; 38: 733-745.
    • (2010) Mol Cell , vol.38 , pp. 733-745
    • Isasa, M.1    Katz, E.J.2    Kim, W.3
  • 83
    • 84900862275 scopus 로고    scopus 로고
    • Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
    • Besche HC, Sha Z, Kukushkin N V, et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 2014; 33: 1159-1176.
    • (2014) EMBO J , vol.33 , pp. 1159-1176
    • Besche, H.C.1    Sha, Z.2    Kukushkin, N.V.3
  • 84
    • 84890645801 scopus 로고    scopus 로고
    • Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human
    • Wang D, Fang C, Zong NC, et al. Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 2013; 12: 3793-3802.
    • (2013) Mol Cell Proteomics , vol.12 , pp. 3793-3802
    • Wang, D.1    Fang, C.2    Zong, N.C.3
  • 86
    • 84947030771 scopus 로고    scopus 로고
    • N-myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system
    • Kimura A, Kurata Y, Nakabayashi J, Kagawa H, Hirano H. N-myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteomics 2016; 130: 33-41.
    • (2016) J Proteomics , vol.130 , pp. 33-41
    • Kimura, A.1    Kurata, Y.2    Nakabayashi, J.3    Kagawa, H.4    Hirano, H.5
  • 87
    • 0346965700 scopus 로고    scopus 로고
    • O-GlcNAc modification is an endogenous inhibitor of the proteasome
    • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 2003; 115: 715-725.
    • (2003) Cell , vol.115 , pp. 715-725
    • Zhang, F.1    Su, K.2    Yang, X.3    Bowe, D.B.4    Paterson, A.J.5    Kudlow, J.E.6
  • 88
    • 0033033698 scopus 로고    scopus 로고
    • Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
    • Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA 1999; 96: 6223-6228.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6223-6228
    • Ullrich, O.1    Reinheckel, T.2    Sitte, N.3    Hass, R.4    Grune, T.5    Davies, K.J.6
  • 89
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002; 416: 763-767.
    • (2002) Nature , vol.416 , pp. 763-767
    • Lam, Y.A.1    Lawson, T.G.2    Velayutham, M.3    Zweier, J.L.4    Pickart, C.M.5
  • 91
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P, Chen X, Husnjak K, et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008; 453: 548-552.
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1    Chen, X.2    Husnjak, K.3
  • 92
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8: 994-1002.
    • (2006) Nat Cell Biol , vol.8 , pp. 994-1002
    • Yao, T.1    Song, L.2    Xu, W.3
  • 93
    • 33749348820 scopus 로고    scopus 로고
    • A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
    • Hamazaki J, Iemura S-I, Natsume T, Yashiroda H, Tanaka K, Murata S. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 2006; 25: 4524-4536.
    • (2006) EMBO J , vol.25 , pp. 4524-4536
    • Hamazaki, J.1    Iemura, S.-I.2    Natsume, T.3    Yashiroda, H.4    Tanaka, K.5    Murata, S.6
  • 94
    • 84860376787 scopus 로고    scopus 로고
    • Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome
    • Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 2012; 287: 14659-14671.
    • (2012) J Biol Chem , vol.287 , pp. 14659-14671
    • Rosenzweig, R.1    Bronner, V.2    Zhang, D.3    Fushman, D.4    Glickman, M.H.5
  • 95
    • 0036713383 scopus 로고    scopus 로고
    • Proteasome subunit Rpn1 binds ubiquitin-like protein domains
    • Elsasser S, Gali RR, Schwickart M, et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 2002; 4: 725-730.
    • (2002) Nat Cell Biol , vol.4 , pp. 725-730
    • Elsasser, S.1    Gali, R.R.2    Schwickart, M.3
  • 96
    • 79957637389 scopus 로고    scopus 로고
    • Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1
    • Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 2011; 9: 33.
    • (2011) BMC Biol , vol.9 , pp. 33
    • Gomez, T.A.1    Kolawa, N.2    Gee, M.3    Sweredoski, M.J.4    Deshaies, R.J.5
  • 97
    • 0030749261 scopus 로고    scopus 로고
    • Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease
    • Haracska L, Udvardy A. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease. FEBS Lett 1997; 412: 331-336.
    • (1997) FEBS Lett , vol.412 , pp. 331-336
    • Haracska, L.1    Udvardy, A.2
  • 98
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • van Nocker S, Sadis S, Rubin DM, et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 1996; 16: 6020-6028.
    • (1996) Mol Cell Biol , vol.16 , pp. 6020-6028
    • Van Nocker, S.1    Sadis, S.2    Rubin, D.M.3
  • 99
    • 0030033982 scopus 로고    scopus 로고
    • Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome
    • van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci USA 1996; 93: 856-860.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 856-860
    • Van Nocker, S.1    Deveraux, Q.2    Rechsteiner, M.3    Vierstra, R.D.4
  • 100
    • 70350367837 scopus 로고    scopus 로고
    • Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster
    • Lipinszki Z, Kiss P, Pál M, et al. Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. J Cell Sci 2009; 122: 3083-3092.
    • (2009) J Cell Sci , vol.122 , pp. 3083-3092
    • Lipinszki, Z.1    Kiss, P.2    Pál, M.3
  • 101
    • 3142566639 scopus 로고    scopus 로고
    • Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
    • Verma R, Oania R, Graumann J, Deshaies RJ. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004; 118: 99-110.
    • (2004) Cell , vol.118 , pp. 99-110
    • Verma, R.1    Oania, R.2    Graumann, J.3    Deshaies, R.J.4
  • 102
    • 33750532531 scopus 로고    scopus 로고
    • Molecular mechanisms of coupled monoubiquitination
    • Woelk T, Oldrini B, Maspero E, et al. Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol 2006; 8: 1246-1254.
    • (2006) Nat Cell Biol , vol.8 , pp. 1246-1254
    • Woelk, T.1    Oldrini, B.2    Maspero, E.3
  • 103
    • 0038362292 scopus 로고    scopus 로고
    • When ubiquitin meets ubiquitin receptors: A signaling connection
    • Di Fiore PP, Polo S, Hofmann K. When ubiquitin meets ubiquitin receptors: a signaling connection. Nat Rev Mol Cell Biol 2003; 4: 491-497.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 491-497
    • Di Fiore, P.P.1    Polo, S.2    Hofmann, K.3
  • 104
    • 85047669941 scopus 로고    scopus 로고
    • The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway
    • Hofmann K, Bucher P. The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 1996; 21: 172-173.
    • (1996) Trends Biochem Sci , vol.21 , pp. 172-173
    • Hofmann, K.1    Bucher, P.2
  • 105
    • 0034798985 scopus 로고    scopus 로고
    • Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
    • Wilkinson CR, Seeger M, Hartmann-Petersen R, et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 2001; 3: 939-943.
    • (2001) Nat Cell Biol , vol.3 , pp. 939-943
    • Wilkinson, C.R.1    Seeger, M.2    Hartmann-Petersen, R.3
  • 106
  • 107
    • 0032510057 scopus 로고    scopus 로고
    • Rad23 links DNA repair to the ubiquitin/proteasome pathway
    • Schauber C, Chen L, Tongaonkar P, et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 1998; 391: 715-718.
    • (1998) Nature , vol.391 , pp. 715-718
    • Schauber, C.1    Chen, L.2    Tongaonkar, P.3
  • 109
    • 0037065732 scopus 로고    scopus 로고
    • Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
    • Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 2002; 41: 1767-1777.
    • (2002) Biochemistry , vol.41 , pp. 1767-1777
    • Walters, K.J.1    Kleijnen, M.F.2    Goh, A.M.3    Wagner, G.4    Howley, P.M.5
  • 110
    • 0037154160 scopus 로고    scopus 로고
    • Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome
    • Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci USA 2002; 99: 745-750.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 745-750
    • Funakoshi, M.1    Sasaki, T.2    Nishimoto, T.3    Kobayashi, H.4
  • 111
    • 0030015075 scopus 로고    scopus 로고
    • Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center
    • Biggins S, Ivanovska I, Rose MD. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 1996; 133: 1331-1346.
    • (1996) J Cell Biol , vol.133 , pp. 1331-1346
    • Biggins, S.1    Ivanovska, I.2    Rose, M.D.3
  • 112
    • 55049090325 scopus 로고    scopus 로고
    • Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
    • Matiuhin Y, Kirkpatrick DS, Ziv I, et al. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 2008; 32: 415-425.
    • (2008) Mol Cell , vol.32 , pp. 415-425
    • Matiuhin, Y.1    Kirkpatrick, D.S.2    Ziv, I.3
  • 113
    • 84955444799 scopus 로고    scopus 로고
    • Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome
    • Zuin A, Bichmann A, Isasa M, Puig-Sàrries P, Díaz LM, Crosas B. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472: 353-365.
    • (2015) Biochem J , vol.472 , pp. 353-365
    • Zuin, A.1    Bichmann, A.2    Isasa, M.3    Puig-Sàrries, P.4    Díaz, L.M.5    Crosas, B.6
  • 114
    • 2442520399 scopus 로고    scopus 로고
    • Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains
    • Ko HS, Uehara T, Tsuruma K, Nomura Y. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 2004; 566: 110-114.
    • (2004) FEBS Lett , vol.566 , pp. 110-114
    • Ko, H.S.1    Uehara, T.2    Tsuruma, K.3    Nomura, Y.4
  • 115
    • 84938782305 scopus 로고    scopus 로고
    • Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis
    • Hamazaki J, Hirayama S, Murata S. Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet 2015; 11: 1-20.
    • (2015) PLoS Genet , vol.11 , pp. 1-20
    • Hamazaki, J.1    Hirayama, S.2    Murata, S.3
  • 116
    • 84894051837 scopus 로고    scopus 로고
    • Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice
    • Liu Y, Lü L, Hettinger CL, et al. Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci 2014; 34: 2813-2821.
    • (2014) J Neurosci , vol.34 , pp. 2813-2821
    • Liu, Y.1    Lü, L.2    Hettinger, C.L.3
  • 117
    • 34447095637 scopus 로고    scopus 로고
    • Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins
    • Wang H, Monteiro MJ. Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun 2007; 360: 423-427.
    • (2007) Biochem Biophys Res Commun , vol.360 , pp. 423-427
    • Wang, H.1    Monteiro, M.J.2
  • 118
    • 33644771265 scopus 로고    scopus 로고
    • Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin
    • Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ. Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet 2006; 15: 1025-1041.
    • (2006) Hum Mol Genet , vol.15 , pp. 1025-1041
    • Wang, H.1    Lim, P.J.2    Yin, C.3    Rieckher, M.4    Vogel, B.E.5    Monteiro, M.J.6
  • 119
    • 84884615595 scopus 로고    scopus 로고
    • Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation
    • Haapasalo A, Viswanathan J, Kurkinen KM, et al. Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Commun Integr Biol 2011; 4: 428-432.
    • (2011) Commun Integr Biol , vol.4 , pp. 428-432
    • Haapasalo, A.1    Viswanathan, J.2    Kurkinen, K.M.3
  • 120
    • 26944465404 scopus 로고    scopus 로고
    • Diverse polyubiquitin interaction properties of ubiquitin-associated domains
    • Raasi S, Varadan R, Fushman D, Pickart CM. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 2005; 12: 708-714.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 708-714
    • Raasi, S.1    Varadan, R.2    Fushman, D.3    Pickart, C.M.4
  • 122
    • 33751581527 scopus 로고    scopus 로고
    • Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway
    • Ishii T, Funakoshi M, Kobayashi H. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. EMBO J 2006; 25: 5492-5503.
    • (2006) EMBO J , vol.25 , pp. 5492-5503
    • Ishii, T.1    Funakoshi, M.2    Kobayashi, H.3
  • 123
    • 84914680415 scopus 로고    scopus 로고
    • Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain
    • Liang RY, Chen L, Ko BT, et al. Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain. J Mol Biol 2014; 426: 4049-4060.
    • (2014) J Mol Biol , vol.426 , pp. 4049-4060
    • Liang, R.Y.1    Chen, L.2    Ko, B.T.3
  • 124
    • 3042764201 scopus 로고    scopus 로고
    • Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis
    • Kim I, Mi K, Rao H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 2004; 15: 3357-3365.
    • (2004) Mol Biol Cell , vol.15 , pp. 3357-3365
    • Kim, I.1    Mi, K.2    Rao, H.3
  • 126
    • 0037646406 scopus 로고    scopus 로고
    • Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains
    • Raasi S, Pickart CM. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 2003; 278: 8951-8959.
    • (2003) J Biol Chem , vol.278 , pp. 8951-8959
    • Raasi, S.1    Pickart, C.M.2
  • 127
    • 11844263929 scopus 로고    scopus 로고
    • A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
    • Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 2005; 120: 73-84.
    • (2005) Cell , vol.120 , pp. 73-84
    • Richly, H.1    Rape, M.2    Braun, S.3    Rumpf, S.4    Hoege, C.5    Jentsch, S.6
  • 128
    • 30944459275 scopus 로고    scopus 로고
    • The Png1-Rad23 complex regulates glycoprotein turnover
    • Kim I, Ahn J, Liu C, et al. The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 2006; 172: 211-219.
    • (2006) J Cell Biol , vol.172 , pp. 211-219
    • Kim, I.1    Ahn, J.2    Liu, C.3
  • 129
    • 17044368771 scopus 로고    scopus 로고
    • The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation
    • Heessen S, Masucci MG, Dantuma NP. The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation. Mol Cell 2005; 18: 225-235
    • (2005) Mol Cell , vol.18 , pp. 225-235
    • Heessen, S.1    Masucci, M.G.2    Dantuma, N.P.3
  • 130
    • 84867582157 scopus 로고    scopus 로고
    • C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation
    • Heinen C, Acs K, Hoogstraten D, Dantuma NP. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation. Nat Commun 2011; 2: 191.
    • (2011) Nat Commun , vol.2 , pp. 191
    • Heinen, C.1    Acs, K.2    Hoogstraten, D.3    Dantuma, N.P.4
  • 131
    • 84856474838 scopus 로고    scopus 로고
    • Emerging functions of the VCP/ p97 AAA-ATPase in the ubiquitin system
    • Meyer H, Bug M, Bremer S. Emerging functions of the VCP/ p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14: 117-123.
    • (2012) Nat Cell Biol , vol.14 , pp. 117-123
    • Meyer, H.1    Bug, M.2    Bremer, S.3
  • 134
    • 33845939821 scopus 로고    scopus 로고
    • Cdc48 (p97): A "molecular gearbox" in the ubiquitin pathway
    • Jentsch S, Rumpf S. Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway Trends Biochem Sci 2007; 32: 6-11.
    • (2007) Trends Biochem Sci , vol.32 , pp. 6-11
    • Jentsch, S.1    Rumpf, S.2
  • 135
    • 0029809134 scopus 로고    scopus 로고
    • P62, a phosphotyrosine-independent ligand of the SH2 domain of p56 lck, belongs to a new class of ubiquitin-binding proteins
    • Vadlamudi RK, Joung I, Strominger JL, Shin J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56 lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 1996; 271: 20235-20237.
    • (1996) J Biol Chem , vol.271 , pp. 20235-20237
    • Vadlamudi, R.K.1    Joung, I.2    Strominger, J.L.3    Shin, J.4
  • 136
    • 4444220680 scopus 로고    scopus 로고
    • Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
    • Seibenhener M, Babu J. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 2004; 24: 8055-8068.
    • (2004) Mol Cell Biol , vol.24 , pp. 8055-8068
    • Seibenhener, M.1    Babu, J.2
  • 137
    • 21344463770 scopus 로고    scopus 로고
    • Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
    • Babu JR, Geetha T, Wooten MW. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 2005; 94: 192-203.
    • (2005) J Neurochem , vol.94 , pp. 192-203
    • Babu, J.R.1    Geetha, T.2    Wooten, M.W.3
  • 138
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131-24145.
    • (2007) J Biol Chem , vol.282 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3
  • 139
    • 33749049581 scopus 로고    scopus 로고
    • Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
    • Hanna J, Hathaway NA, Tone Y, et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006; 127: 99-111.
    • (2006) Cell , vol.127 , pp. 99-111
    • Hanna, J.1    Hathaway, N.A.2    Tone, Y.3
  • 140
    • 0030699383 scopus 로고    scopus 로고
    • Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26S proteasomes
    • Lam YA, Demartino GN, Pickart CM, Cohen RE, Chem JB. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26S proteasomes. J Biol Chem 1997; 272: 28438-28446.
    • (1997) J Biol Chem , vol.272 , pp. 28438-28446
    • Lam, Y.A.1    Demartino, G.N.2    Pickart, C.M.3    Cohen, R.E.4    Chem, J.B.5
  • 141
    • 84937111175 scopus 로고    scopus 로고
    • Structural characterization of the interaction of Ubp6 with the 26S proteasome
    • Aufderheide A, Beck F, Stengel F, et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA 2015; 112: 8626-8631.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 8626-8631
    • Aufderheide, A.1    Beck, F.2    Stengel, F.3
  • 142
    • 27744516748 scopus 로고    scopus 로고
    • Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14
    • Hu M, Li P, Song L, et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 2005; 24: 3747-3756.
    • (2005) EMBO J , vol.24 , pp. 3747-3756
    • Hu, M.1    Li, P.2    Song, L.3
  • 143
    • 84964453431 scopus 로고    scopus 로고
    • USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites
    • Lee BH, Lu Y, Prado MA, et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 2016; 532: 398-401.
    • (2016) Nature , vol.532 , pp. 398-401
    • Lee, B.H.1    Lu, Y.2    Prado, M.A.3
  • 145
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298: 611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3
  • 147
    • 0026530899 scopus 로고
    • A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains: Role in protein degradation
    • Hadari T, Warms JVB, Rose IA, Hershko A. A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains: Role in protein degradation. J Biol Chem 1992; 267: 719-727.
    • (1992) J Biol Chem , vol.267 , pp. 719-727
    • Hadari, T.1    Warms, J.V.B.2    Rose, I.A.3    Hershko, A.4
  • 148
    • 0030746105 scopus 로고    scopus 로고
    • In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome
    • Amerik Ay, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 1997; 16: 4826-4838.
    • (1997) EMBO J , vol.16 , pp. 4826-4838
    • Amerik, Ay.1    Swaminathan, S.2    Krantz, B.A.3    Wilkinson, K.D.4    Hochstrasser, M.5
  • 149
    • 33646066025 scopus 로고    scopus 로고
    • The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
    • Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 2006; 124: 1197-1208.
    • (2006) Cell , vol.124 , pp. 1197-1208
    • Reyes-Turcu, F.E.1    Horton, J.R.2    Mullally, J.E.3    Heroux, A.4    Cheng, X.5    Wilkinson, K.D.6
  • 150
    • 64149087218 scopus 로고    scopus 로고
    • Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53
    • Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2009; 284: 5030-5041.
    • (2009) J Biol Chem , vol.284 , pp. 5030-5041
    • Dayal, S.1    Sparks, A.2    Jacob, J.3    Allende-Vega, N.4    Lane, D.P.5    Saville, M.K.6
  • 151
    • 0032828077 scopus 로고    scopus 로고
    • The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes
    • Zaiss DMW, Standera S, Holzhütter H, Kloetzel PM, Sijts AJAM. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 1999; 457: 333-338.
    • (1999) FEBS Lett , vol.457 , pp. 333-338
    • Zaiss, D.M.W.1    Standera, S.2    Holzhütter, H.3    Kloetzel, P.M.4    Ajam, S.5
  • 152
    • 0034674655 scopus 로고    scopus 로고
    • CDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome
    • McCutchen-Maloney SL, Matsuda K, Shimbara N, et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 2000; 275: 18557-18565.
    • (2000) J Biol Chem , vol.275 , pp. 18557-18565
    • McCutchen-Maloney, S.L.1    Matsuda, K.2    Shimbara, N.3
  • 153
  • 154
    • 79955544968 scopus 로고    scopus 로고
    • A conserved F box regulatory complex controls proteasome activity in Drosophila
    • Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 2011; 145: 371-382.
    • (2011) Cell , vol.145 , pp. 371-382
    • Bader, M.1    Benjamin, S.2    Wapinski, O.L.3    Smith, D.M.4    Goldberg, A.L.5    Steller, H.6
  • 155
    • 84903475943 scopus 로고    scopus 로고
    • Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function
    • Li X, Thompson D, Kumar B, DeMartino GN. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 2014; 289: 17392-17405.
    • (2014) J Biol Chem , vol.289 , pp. 17392-17405
    • Li, X.1    Thompson, D.2    Kumar, B.3    DeMartino, G.N.4
  • 156
    • 80054703106 scopus 로고    scopus 로고
    • Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
    • Lee SYC, De La Mota-Peynado A, Roelofs J. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 2011; 286: 36641-36651.
    • (2011) J Biol Chem , vol.286 , pp. 36641-36651
    • Lee, S.Y.C.1    De La Mota-Peynado, A.2    Roelofs, J.3
  • 157
    • 84885586226 scopus 로고    scopus 로고
    • The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
    • De La Mota-Peynado A, Lee SYC, Pierce BM, Wani P, Singh CR, Roelofs J. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 2013; 288: 29467-29481.
    • (2013) J Biol Chem , vol.288 , pp. 29467-29481
    • De La Mota-Peynado, A.1    Lee, S.Y.C.2    Pierce, B.M.3    Wani, P.4    Singh, C.R.5    Roelofs, J.6
  • 158
    • 77955503621 scopus 로고    scopus 로고
    • Ecm29 fulfils quality control functions in proteasome assembly
    • Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C. Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 2010; 38: 879-888.
    • (2010) Mol Cell , vol.38 , pp. 879-888
    • Lehmann, A.1    Niewienda, A.2    Jechow, K.3    Janek, K.4    Enenkel, C.5
  • 159
    • 80054702676 scopus 로고    scopus 로고
    • Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
    • Park S, Kim W, Tian G, Gygi SP, Finley D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 2011; 286: 36652-36666.
    • (2011) J Biol Chem , vol.286 , pp. 36652-36666
    • Park, S.1    Kim, W.2    Tian, G.3    Gygi, S.P.4    Finley, D.5
  • 160
    • 78649980437 scopus 로고    scopus 로고
    • Regulation of the 26S proteasome complex during oxidative stress
    • Wang X, Yen J, Kaiser P, Huang L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 2010; 3: ra88.
    • (2010) Sci Signal , vol.3 , pp. ra88
    • Wang, X.1    Yen, J.2    Kaiser, P.3    Huang, L.4
  • 161
    • 0035072229 scopus 로고    scopus 로고
    • Degradation of oxidized proteins by the 20S proteasome
    • Davies KJ a. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83: 301-310.
    • (2001) Biochimie , vol.83 , pp. 301-310
    • Davies, K.J.A.1
  • 162
    • 40149100476 scopus 로고    scopus 로고
    • Regulation of proteasome-mediated protein degradation during oxidative stress and aging
    • Breusing N, Grune T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 2008; 389: 203-209.
    • (2008) Biol Chem , vol.389 , pp. 203-209
    • Breusing, N.1    Grune, T.2
  • 163
    • 84979047223 scopus 로고    scopus 로고
    • KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition
    • Haratake K, Sato A, Tsuruta F, Chiba T. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J Biochem 2016; 159: 609-618.
    • (2016) J Biochem , vol.159 , pp. 609-618
    • Haratake, K.1    Sato, A.2    Tsuruta, F.3    Chiba, T.4
  • 164
    • 11144225834 scopus 로고    scopus 로고
    • Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles
    • Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M. Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 2004; 279: 54849-54861.
    • (2004) J Biol Chem , vol.279 , pp. 54849-54861
    • Gorbea, C.1    Goellner, G.M.2    Teter, K.3    Holmes, R.K.4    Rechsteiner, M.5
  • 165
    • 77957817388 scopus 로고    scopus 로고
    • A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components
    • Gorbea C, Pratt G, Ustrell V, et al. A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 2010; 285: 31616-31633.
    • (2010) J Biol Chem , vol.285 , pp. 31616-31633
    • Gorbea, C.1    Pratt, G.2    Ustrell, V.3
  • 166
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E, Hill CP. Structural biology of the proteasome. Annu Rev Biophys 2013; 42: 29-49.
    • (2013) Annu Rev Biophys , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 167
    • 31044449824 scopus 로고    scopus 로고
    • The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REG' proteasome
    • Li X, Lonard DM, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REG? proteasome. Cell 2006; 124: 381-392.
    • (2006) Cell , vol.124 , pp. 381-392
    • Li, X.1    Lonard, D.M.2    Jung, S.Y.3
  • 168
    • 34250339984 scopus 로고    scopus 로고
    • Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REG-proteasome pathway
    • Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW. Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REG-proteasome pathway. Mol Cell 2007; 26: 831-842.
    • (2007) Mol Cell , vol.26 , pp. 831-842
    • Li, X.1    Amazit, L.2    Long, W.3    Lonard, D.M.4    Monaco, J.J.5    O'Malley, B.W.6
  • 169
    • 34250342888 scopus 로고    scopus 로고
    • Ubiquitin-independent degradation of cell-cycle inhibitors by the REG proteasome
    • Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM. Ubiquitin-independent degradation of cell-cycle inhibitors by the REG proteasome. Mol Cell 2007; 26: 843-852.
    • (2007) Mol Cell , vol.26 , pp. 843-852
    • Chen, X.1    Barton, L.F.2    Chi, Y.3    Clurman, B.E.4    Roberts, J.M.5
  • 170
    • 84922933771 scopus 로고    scopus 로고
    • Deciphering preferential interactions within supramolecular protein complexes: The proteasome case
    • Fabre B, Lambour T, Garrigues L, et al. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11: 771.
    • (2015) Mol Syst Biol , vol.11 , pp. 771
    • Fabre, B.1    Lambour, T.2    Garrigues, L.3
  • 171
    • 84902075951 scopus 로고    scopus 로고
    • Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines
    • Fabre B, Lambour T, Garrigues L, et al. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J Proteome Res 2014; 13: 3027-3037.
    • (2014) J Proteome Res , vol.13 , pp. 3027-3037
    • Fabre, B.1    Lambour, T.2    Garrigues, L.3
  • 173
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F, Unverdorben P, Bohn S, et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 2012; 109: 14870-14875.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 14870-14875
    • Beck, F.1    Unverdorben, P.2    Bohn, S.3
  • 174
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, Förster F, Bohn S, et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 2012; 109: 1380-1387.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 1380-1387
    • Lasker, K.1    Förster, F.2    Bohn, S.3
  • 175
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P, Beck F, Sledz P, et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 2014; 111: 5544-5549.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5544-5549
    • Unverdorben, P.1    Beck, F.2    Sledz, P.3
  • 176
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20: 781-788.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 177
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • led P, Unverdorben P, Beck F, et al. Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 2013; 110: 7264-7269.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 7264-7269
    • Led, P.1    Unverdorben, P.2    Beck, F.3
  • 178
    • 84921752079 scopus 로고    scopus 로고
    • Proteasomes. A molecular census of 26S proteasomes in intact neurons
    • Asano S, Fukuda Y, Beck F, et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 2015; 347: 439-442.
    • (2015) Science , vol.347 , pp. 439-442
    • Asano, S.1    Fukuda, Y.2    Beck, F.3
  • 179
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan B, Huang X, Wu J, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 2016; 113: 2642-2647.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 2642-2647
    • Luan, B.1    Huang, X.2    Wu, J.3
  • 180
    • 53149123284 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core
    • da Fonseca PCA, Morris EP. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 2008; 283: 23305-23314.
    • (2008) J Biol Chem , vol.283 , pp. 23305-23314
    • Da Fonseca, P.C.A.1    Morris, E.P.2
  • 181
    • 57649140340 scopus 로고    scopus 로고
    • Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome
    • Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 2008; 283: 31813-31822.
    • (2008) J Biol Chem , vol.283 , pp. 31813-31822
    • Gillette, T.G.1    Kumar, B.2    Thompson, D.3    Slaughter, C.A.4    DeMartino, G.N.5
  • 182
    • 0036198110 scopus 로고    scopus 로고
    • Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions
    • Schmidt T, Lindenberg KS, Krebs A, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 2002; 51: 302-310.
    • (2002) Ann Neurol , vol.51 , pp. 302-310
    • Schmidt, T.1    Lindenberg, K.S.2    Krebs, A.3
  • 183
    • 0032945938 scopus 로고    scopus 로고
    • Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone
    • Stenoien DL, Cummings CJ, Adams HP, et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 1999; 8: 731-741.
    • (1999) Hum Mol Genet , vol.8 , pp. 731-741
    • Stenoien, D.L.1    Cummings, C.J.2    Adams, H.P.3
  • 184
    • 84890988864 scopus 로고    scopus 로고
    • Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies
    • Schipper-Krom S, Juenemann K, Jansen AH, et al. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies. FEBS Lett 2014; 588: 151-159.
    • (2014) FEBS Lett , vol.588 , pp. 151-159
    • Schipper-Krom, S.1    Juenemann, K.2    Jansen, A.H.3
  • 185
    • 18544410106 scopus 로고    scopus 로고
    • Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation
    • Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90: 537-548.
    • (1997) Cell , vol.90 , pp. 537-548
    • Davies, S.W.1    Turmaine, M.2    Cozens, B.A.3
  • 186
    • 59449084849 scopus 로고    scopus 로고
    • Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones
    • Rousseau E, Kojima R, Hoffner G, Djian P, Bertolotti A. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J Biol Chem 2009; 284: 1917-1929.
    • (2009) J Biol Chem , vol.284 , pp. 1917-1929
    • Rousseau, E.1    Kojima, R.2    Hoffner, G.3    Djian, P.4    Bertolotti, A.5
  • 187
    • 0031838352 scopus 로고    scopus 로고
    • Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1
    • Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998; 19: 148-154.
    • (1998) Nat Genet , vol.19 , pp. 148-154
    • Cummings, C.J.1    Mancini, M.A.2    Antalffy, B.3    DeFranco, D.B.4    Orr, H.T.5    Zoghbi, H.Y.6
  • 188
    • 0030752709 scopus 로고    scopus 로고
    • Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain
    • DiFiglia M. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277: 1990-1993.
    • (1997) Science , vol.277 , pp. 1990-1993
    • DiFiglia, M.1
  • 189
    • 0035336658 scopus 로고    scopus 로고
    • Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release
    • Jana NR. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 2001; 10: 1049-1059.
    • (2001) Hum Mol Genet , vol.10 , pp. 1049-1059
    • Jana, N.R.1
  • 190
    • 0035031779 scopus 로고    scopus 로고
    • Polyglutamine and CBP: Fatal attraction?
    • McCampbell A, Fischbeck KH. Polyglutamine and CBP: fatal attraction? Nat Med 2001; 7: 528-530.
    • (2001) Nat Med , vol.7 , pp. 528-530
    • McCampbell, A.1    Fischbeck, K.H.2
  • 191
    • 84905257556 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution
    • Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014; 7: 70.
    • (2014) Front Mol Neurosci , vol.7 , pp. 70
    • Dantuma, N.P.1    Bott, L.C.2
  • 192
    • 69549131138 scopus 로고    scopus 로고
    • Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment
    • Maynard CJ, Böttcher C, Ortega Z, et al. Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proc Natl Acad Sci USA 2009; 106: 13986-13991.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 13986-13991
    • Maynard, C.J.1    Böttcher, C.2    Ortega, Z.3
  • 193
    • 0035947372 scopus 로고    scopus 로고
    • Impairment of the ubiquitin-proteasome system by protein aggregation
    • Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292: 1552-1555.
    • (2001) Science , vol.292 , pp. 1552-1555
    • Bence, N.F.1    Sampat, R.M.2    Kopito, R.R.3
  • 194
    • 84859983420 scopus 로고    scopus 로고
    • Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
    • Hipp MS, Patel CN, Bersuker K, et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J Cell Biol 2012; 196: 573-587.
    • (2012) J Cell Biol , vol.196 , pp. 573-587
    • Hipp, M.S.1    Patel, C.N.2    Bersuker, K.3
  • 195
    • 84954291382 scopus 로고    scopus 로고
    • Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling
    • Myeku N, Clelland CL, Emrani S, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 2015; 22: 46-53.
    • (2015) Nat Med , vol.22 , pp. 46-53
    • Myeku, N.1    Clelland, C.L.2    Emrani, S.3
  • 196
    • 4143112402 scopus 로고    scopus 로고
    • Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity
    • Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73: 311-357.
    • (2004) Prog Neurobiol , vol.73 , pp. 311-357
    • Hegde, A.N.1
  • 197
    • 84978786221 scopus 로고    scopus 로고
    • The proteasome controls presynaptic differentiation through modulation of an onsite pool of polyubiquitinated conjugates
    • Pinto MJ, Alves PL, Martins L, et al. The proteasome controls presynaptic differentiation through modulation of an onsite pool of polyubiquitinated conjugates. J Cell Biol 2016; 212: 789-801.
    • (2016) J Cell Biol , vol.212 , pp. 789-801
    • Pinto, M.J.1    Alves, P.L.2    Martins, L.3
  • 198
    • 84907470628 scopus 로고    scopus 로고
    • Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side
    • Tsai NP. Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side. Biochim Biophys Acta 2014; 1843: 2838-2842.
    • (2014) Biochim Biophys Acta , vol.1843 , pp. 2838-2842
    • Tsai, N.P.1
  • 199
    • 84930427217 scopus 로고    scopus 로고
    • GluN2B-containing NMDA receptors regulate AMPA receptor traffic through anchoring of the synaptic proteasome
    • Ferreira JS, Schmidt J, Rio P, et al. GluN2B-containing NMDA receptors regulate AMPA receptor traffic through anchoring of the synaptic proteasome. J Neurosci 2015; 35: 8462-8479.
    • (2015) J Neurosci , vol.35 , pp. 8462-8479
    • Ferreira, J.S.1    Schmidt, J.2    Rio, P.3
  • 203
    • 0035147230 scopus 로고    scopus 로고
    • Interferon regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies
    • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN. Interferon regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J Cell Sci 2001; 114: 29-36.
    • (2001) J Cell Sci , vol.114 , pp. 29-36
    • Fabunmi, R.P.1    Wigley, W.C.2    Thomas, P.J.3    DeMartino, G.N.4
  • 204
    • 0035908032 scopus 로고    scopus 로고
    • Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor degradation
    • Lallemand-Breitenbach V, Zhu J, Puvion F, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor degradation. J Exp Med 2001; 193: 1361-1371.
    • (2001) J Exp Med , vol.193 , pp. 1361-1371
    • Lallemand-Breitenbach, V.1    Zhu, J.2    Puvion, F.3
  • 205
    • 84903691140 scopus 로고    scopus 로고
    • A cellular system that degrades misfolded proteins and protects against neurodegeneration
    • Guo L, Giasson BI, Glavis-Bloom A, et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell 2014; 55: 15-30.
    • (2014) Mol Cell , vol.55 , pp. 15-30
    • Guo, L.1    Giasson, B.I.2    Glavis-Bloom, A.3
  • 206
    • 0345593387 scopus 로고    scopus 로고
    • Dynamic association of proteasomal machinery with the centrosome
    • Wigley CW, Fabunmi RP, Lee MG, et al. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 1999; 145: 481-490.
    • (1999) J Cell Biol , vol.145 , pp. 481-490
    • Wigley, C.W.1    Fabunmi, R.P.2    Lee, M.G.3
  • 207
    • 84892433922 scopus 로고    scopus 로고
    • The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain
    • Puram S V., Kim AH, Park HY, Anckar J, Bonni A. The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. Cell Rep 2013; 4: 19-30.
    • (2013) Cell Rep , vol.4 , pp. 19-30
    • Puram, S.V.1    Kim, A.H.2    Park, H.Y.3    Anckar, J.4    Bonni, A.5
  • 208
    • 33947301163 scopus 로고    scopus 로고
    • Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum
    • Ng W, Sergeyenko T, Zeng N, Brown JD, Römisch K. Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. J Cell Sci 2007; 120: 682-691.
    • (2007) J Cell Sci , vol.120 , pp. 682-691
    • Ng, W.1    Sergeyenko, T.2    Zeng, N.3    Brown, J.D.4    Römisch, K.5
  • 209
    • 22744456680 scopus 로고    scopus 로고
    • The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane
    • Kalies K-U, Allan S, Sergeyenko T, Kröger H, Römisch K. The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J 2005; 24: 2284-2293.
    • (2005) EMBO J , vol.24 , pp. 2284-2293
    • Kalies, K.-U.1    Allan, S.2    Sergeyenko, T.3    Kröger, H.4    Römisch, K.5
  • 210
    • 84922575718 scopus 로고    scopus 로고
    • Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD
    • Kaiser ML, Römisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 2015; 10: 1-19.
    • (2015) PLoS One , vol.10 , pp. 1-19
    • Kaiser, M.L.1    Römisch, K.2
  • 211
    • 76649093912 scopus 로고    scopus 로고
    • Degradation of an intramitochondrial protein by the cytosolic proteasome
    • Azzu V, Brand MD. Degradation of an intramitochondrial protein by the cytosolic proteasome. J Cell Sci 2010; 123: 578-585.
    • (2010) J Cell Sci , vol.123 , pp. 578-585
    • Azzu, V.1    Brand, M.D.2
  • 212
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20: 1726-1737.
    • (2011) Hum Mol Genet , vol.20 , pp. 1726-1737
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3
  • 215
    • 4344598382 scopus 로고    scopus 로고
    • Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man
    • Adrain C, Creagh EM, Cullen SP, Martin SJ. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. J Biol Chem 2004; 279: 36923-36930.
    • (2004) J Biol Chem , vol.279 , pp. 36923-36930
    • Adrain, C.1    Creagh, E.M.2    Cullen, S.P.3    Martin, S.J.4
  • 216
  • 217
    • 84964674982 scopus 로고    scopus 로고
    • Starvation induces proteasome autophagy with different pathways for core and regulatory particle
    • Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J. Starvation induces proteasome autophagy with different pathways for core and regulatory particle. J Biol Chem 2015; 291: 3239-3253.
    • (2015) J Biol Chem , vol.291 , pp. 3239-3253
    • Waite, K.A.1    De-La Mota-Peynado, A.2    Vontz, G.3    Roelofs, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.