-
1
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko RJ, Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 2013; 82: 415-445.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 415-445
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
2
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Köhler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol 2000; 7: 1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Köhler, A.3
-
3
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008; 30: 360-368.
-
(2008)
Mol Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.C.4
Goldberg, A.L.5
Cheng, Y.6
-
4
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's ring opens the gate for substrate entry
-
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's ring opens the gate for substrate entry. Mol Cell 2007; 27: 731-744.
-
(2007)
Mol Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
5
-
-
1542344435
-
Proteasomes and their kin: Proteases in the machine age
-
Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5: 177-187.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 177-187
-
-
Pickart, C.M.1
Cohen, R.E.2
-
6
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2. 4 A resolution
-
Groll M, Ditzel L, Löwe J, et al. Structure of 20S proteasome from yeast at 2. 4 A resolution. Nature 1997; 386: 463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Löwe, J.3
-
7
-
-
0029558611
-
Nuclear localization signals of human and Thermoplasma proteasomal subunits are functional in vitro
-
Nederlof PM, Wang HR, Baumeister W. Nuclear localization signals of human and Thermoplasma proteasomal subunits are functional in vitro. Proc Natl Acad Sci USA 1995; 92: 12060-12064.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 12060-12064
-
-
Nederlof, P.M.1
Wang, H.R.2
Baumeister, W.3
-
8
-
-
0025173435
-
Possible mechanism of nuclear translocation of proteasomes
-
Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A. Possible mechanism of nuclear translocation of proteasomes. FEBS Lett 1990; 271: 41-46.
-
(1990)
FEBS Lett
, vol.271
, pp. 41-46
-
-
Tanaka, K.1
Yoshimura, T.2
Tamura, T.3
Fujiwara, T.4
Kumatori, A.5
Ichihara, A.6
-
9
-
-
0036735384
-
Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs
-
Ogiso Y, Tomida A, Tsuruo T. Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs. Cancer Res 2002; 62: 5008-5012.
-
(2002)
Cancer Res
, vol.62
, pp. 5008-5012
-
-
Ogiso, Y.1
Tomida, A.2
Tsuruo, T.3
-
10
-
-
0032476030
-
Contribution of proteasomal subunits to the cleavage of peptide substrates analyzed with yeast mutants
-
Dick TP, Nussbauma K, Deeg M, et al. Contribution of proteasomal subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 1998; 273: 25637-25646.
-
(1998)
J Biol Chem
, vol.273
, pp. 25637-25646
-
-
Dick, T.P.1
Nussbauma, K.2
Deeg, M.3
-
11
-
-
84953286231
-
Mammalian proteasome subtypes: Their diversity in structure and function
-
Dahlmann B. Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2016; 591: 132-140.
-
(2016)
Arch Biochem Biophys
, vol.591
, pp. 132-140
-
-
Dahlmann, B.1
-
14
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K, Elsasser S, Zhang N, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453: 481-488.
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
-
15
-
-
84959019581
-
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
-
1-10
-
Shi Y, Chen X, Elsasser S, et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 2016; 351: aad9421. 1-10.
-
(2016)
Science
, vol.351
, pp. aad9421
-
-
Shi, Y.1
Chen, X.2
Elsasser, S.3
-
16
-
-
0031890210
-
Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1
-
Fu H, Sadis S, Rubin DM, et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 1998; 273: 1970-1981.
-
(1998)
J Biol Chem
, vol.273
, pp. 1970-1981
-
-
Fu, H.1
Sadis, S.2
Rubin, D.M.3
-
17
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298: 611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
-
18
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002; 419: 403-407.
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
19
-
-
0031038169
-
Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
-
Lam YA, Xu W, DeMartino GN, Cohen RE. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997; 385: 737-740.
-
(1997)
Nature
, vol.385
, pp. 737-740
-
-
Lam, Y.A.1
Xu, W.2
DeMartino, G.N.3
Cohen, R.E.4
-
20
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett DS, Hanna J, Borodovsky A, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 2002; 10: 495-507.
-
(2002)
Mol Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
-
21
-
-
34248350363
-
MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
-
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 2002; 3: 28.
-
(2002)
BMC Biochem
, vol.3
, pp. 28
-
-
Maytal-Kivity, V.1
Reis, N.2
Hofmann, K.3
Glickman, M.H.4
-
22
-
-
36849059755
-
Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
-
Kleijnen MF, Roelofs J, Park S, et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 2007; 14: 1180-1188.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 1180-1188
-
-
Kleijnen, M.F.1
Roelofs, J.2
Park, S.3
-
23
-
-
69249241853
-
Variably modulated gating of the 26S proteasome by ATP and polyubiquitin
-
Li X, Demartino GN, Craiu A, et al. Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem J 2009; 421: 397-404.
-
(2009)
Biochem J
, vol.421
, pp. 397-404
-
-
Li, X.1
Demartino, G.N.2
Craiu, A.3
-
24
-
-
78049264771
-
The 26S proteasome: Assembly and function of a destructive machine
-
Gallastegui N, Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 2010; 35: 634-642.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 634-642
-
-
Gallastegui, N.1
Groll, M.2
-
25
-
-
84952639230
-
Gates, channels, and switches: Elements of the proteasome machine
-
Finley D, Chen X, Walters KJ. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 2015; 41: 77-93.
-
(2015)
Trends Biochem Sci
, vol.41
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
26
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y, Hendil KB, Yashiroda H, et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005; 437: 1381-1385.
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
Hendil, K.B.2
Yashiroda, H.3
-
27
-
-
84868238774
-
Structure of a proteasome Pba1-Pba2 complex implications for proteasome assembly, activation, and biological function
-
Stadtmueller BM, Kish-Trier E, Ferrell K, et al. Structure of a proteasome Pba1-Pba2 complex implications for proteasome assembly, activation, and biological function. J Biol Chem 2012; 287: 37371-37382.
-
(2012)
J Biol Chem
, vol.287
, pp. 37371-37382
-
-
Stadtmueller, B.M.1
Kish-Trier, E.2
Ferrell, K.3
-
28
-
-
33845681479
-
Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
-
Hirano Y, Hayashi H, Iemura S, et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 2006; 24: 977-984.
-
(2006)
Mol Cell
, vol.24
, pp. 977-984
-
-
Hirano, Y.1
Hayashi, H.2
Iemura, S.3
-
30
-
-
36749025650
-
The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum
-
Fricke B, Heink S, Steffen J, Kloetzel P-M, Krüger E. The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 2007; 8: 1170-1175.
-
(2007)
EMBO Rep
, vol.8
, pp. 1170-1175
-
-
Fricke, B.1
Heink, S.2
Steffen, J.3
Kloetzel, P.-M.4
Krüger, E.5
-
31
-
-
0032548998
-
Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
-
Ramos PC, Höckendorff J, Johnson ES, Varshavsky A, Dohmen RJ. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998; 92: 489-499.
-
(1998)
Cell
, vol.92
, pp. 489-499
-
-
Ramos, P.C.1
Höckendorff, J.2
Johnson, E.S.3
Varshavsky, A.4
Dohmen, R.J.5
-
32
-
-
84855199977
-
Proteasomal AAA-ATPases: Structure and function
-
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta 2012; 1823: 67-82.
-
(2012)
Biochim Biophys Acta
, vol.1823
, pp. 67-82
-
-
Bar-Nun, S.1
Glickman, M.H.2
-
33
-
-
84906791334
-
An inducible chaperone adapts proteasome assembly to stress
-
Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A. An inducible chaperone adapts proteasome assembly to stress. Mol Cell 2014; 55: 566-577.
-
(2014)
Mol Cell
, vol.55
, pp. 566-577
-
-
Hanssum, A.1
Zhong, Z.2
Rousseau, A.3
Krzyzosiak, A.4
Sigurdardottir, A.5
Bertolotti, A.6
-
34
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009; 137: 900-913.
-
(2009)
Cell
, vol.137
, pp. 900-913
-
-
Saeki, Y.1
Toh-E, A.2
Kudo, T.3
Kawamura, H.4
Tanaka, K.5
-
35
-
-
84943612692
-
A single helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
-
Tomko RJ, Taylor DW, Chen ZA, Wang H-W, Rappsilber J, Hochstrasser M. A single helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 2015; 163: 432-444.
-
(2015)
Cell
, vol.163
, pp. 432-444
-
-
Tomko, R.J.1
Taylor, D.W.2
Chen, Z.A.3
Wang, H.-W.4
Rappsilber, J.5
Hochstrasser, M.6
-
36
-
-
0042313977
-
The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
-
Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 2003; 22: 3557-3567.
-
(2003)
EMBO J
, vol.22
, pp. 3557-3567
-
-
Imai, J.1
Maruya, M.2
Yashiroda, H.3
Yahara, I.4
Tanaka, K.5
-
37
-
-
84919496876
-
Vwa Domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome
-
Piterman R, Braunstein I, Isakov E, et al. Vwa Domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome. Mol Biol Cell 2014; 25: 3988-3998.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 3988-3998
-
-
Piterman, R.1
Braunstein, I.2
Isakov, E.3
-
39
-
-
84930353020
-
The protein quality control machinery regulates its misassembled proteasome subunits
-
Peters LZ, Karmon O, David-Kadoch G, et al. The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 2015; 11: e1005178.
-
(2015)
PLoS Genet
, vol.11
, pp. e1005178
-
-
Peters, L.Z.1
Karmon, O.2
David-Kadoch, G.3
-
40
-
-
0037821846
-
Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes
-
Meiners S, Heyken D, Weller A, et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 2003; 278: 21517-21525.
-
(2003)
J Biol Chem
, vol.278
, pp. 21517-21525
-
-
Meiners, S.1
Heyken, D.2
Weller, A.3
-
41
-
-
84943771460
-
MTORC1 signaling activates NRF1 to increase cellular proteasome levels
-
Zhang Y, Manning BD. mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 2015; 14: 2011-2017.
-
(2015)
Cell Cycle
, vol.14
, pp. 2011-2017
-
-
Zhang, Y.1
Manning, B.D.2
-
42
-
-
84904990897
-
Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
-
Sha Z, Goldberg AL. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol 2014; 24: 1573-1583.
-
(2014)
Curr Biol
, vol.24
, pp. 1573-1583
-
-
Sha, Z.1
Goldberg, A.L.2
-
43
-
-
0242496212
-
Molecular sequelae of proteasome inhibition in human multiple myeloma cells
-
Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374-14379.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 14374-14379
-
-
Mitsiades, N.1
Mitsiades, C.S.2
Poulaki, V.3
-
44
-
-
18944392199
-
Identification and characterization of a Drosophila proteasome regulatory network
-
Lundgren J, Masson P, Mirzaei Z, Young P. Identification and characterization of a Drosophila proteasome regulatory network. Mol Cell Biol 2005; 25: 4662-4675.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4662-4675
-
-
Lundgren, J.1
Masson, P.2
Mirzaei, Z.3
Young, P.4
-
45
-
-
79959823394
-
Specific SKN-1/NrF stress responses to perturbations in translation elongation and proteasome activity
-
Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK. Specific SKN-1/NrF stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 2011; 7: 9-11.
-
(2011)
PLoS Genet
, vol.7
, pp. 9-11
-
-
Li, X.1
Matilainen, O.2
Jin, C.3
Glover-Cutter, K.M.4
Holmberg, C.I.5
Blackwell, T.K.6
-
46
-
-
2942620845
-
Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome
-
London MK, Keck BI, Ramos PC, Dohmen RJ. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 2004; 567: 259-264.
-
(2004)
FEBS Lett
, vol.567
, pp. 259-264
-
-
London, M.K.1
Keck, B.I.2
Ramos, P.C.3
Dohmen, R.J.4
-
47
-
-
77950366349
-
Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 2010; 38: 17-28.
-
(2010)
Mol Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
Beskow, A.4
Chan, J.Y.5
Deshaies, R.J.6
-
48
-
-
77957341511
-
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
-
Steffen J, Seeger M, Koch A, Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 2010; 40: 147-158.
-
(2010)
Mol Cell
, vol.40
, pp. 147-158
-
-
Steffen, J.1
Seeger, M.2
Koch, A.3
Krüger, E.4
-
49
-
-
84877913024
-
Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: Implications for degradation of nrf2 in the nucleus
-
Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: Implications for degradation of nrf2 in the nucleus. J Biol Chem 2013; 288: 14569-14583.
-
(2013)
J Biol Chem
, vol.288
, pp. 14569-14583
-
-
Malloy, M.T.1
McIntosh, D.J.2
Walters, T.S.3
Flores, A.4
Goodwin, J.S.5
Arinze, I.J.6
-
50
-
-
0242721624
-
Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
-
Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 2003; 23: 8786-8794.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8786-8794
-
-
Kwak, M.K.1
Wakabayashi, N.2
Greenlaw, J.L.3
Yamamoto, M.4
Kensler, T.W.5
-
51
-
-
7244253081
-
Nrf2-Keap1 defines a physiologically important stress response mechanism
-
Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10: 549-557.
-
(2004)
Trends Mol Med
, vol.10
, pp. 549-557
-
-
Motohashi, H.1
Yamamoto, M.2
-
52
-
-
84873417130
-
A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster
-
Pickering AM, Staab TA., Tower J, Sieburth DS, Davies KJ. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster. J Exp Biol 2013; 216: 543-553.
-
(2013)
J Exp Biol
, vol.216
, pp. 543-553
-
-
Pickering, A.M.1
Staab, T.A.2
Tower, J.3
Sieburth, D.S.4
Davies, K.J.5
-
53
-
-
66349105688
-
The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans
-
Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol 2009; 29: 2704-2715.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2704-2715
-
-
Choe, K.P.1
Przybysz, A.J.2
Strange, K.3
-
54
-
-
11244343965
-
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
-
Wang L, Mao X, Ju D, Xie Y. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 2004; 279: 55218-55223.
-
(2004)
J Biol Chem
, vol.279
, pp. 55218-55223
-
-
Wang, L.1
Mao, X.2
Ju, D.3
Xie, Y.4
-
55
-
-
2642560445
-
Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent
-
Ju D, Xie Y. Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent. J Biol Chem 2004; 279: 23851-23854.
-
(2004)
J Biol Chem
, vol.279
, pp. 23851-23854
-
-
Ju, D.1
Xie, Y.2
-
56
-
-
0035853037
-
RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
-
Xie Y, Varshavskya. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 2001; 98: 3056-3061.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 3056-3061
-
-
Xie, Y.1
Varshavskya2
-
57
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 1999; 450: 27-34.
-
(1999)
FEBS Lett
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
58
-
-
78549260740
-
Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae
-
Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 2010; 11: 660.
-
(2010)
BMC Genomics
, vol.11
, pp. 660
-
-
Ma, M.1
Liu, Z.L.2
-
59
-
-
17144414925
-
Overexpression of proteasome 5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates
-
Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES. Overexpression of proteasome 5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 2005; 280: 11840-11850.
-
(2005)
J Biol Chem
, vol.280
, pp. 11840-11850
-
-
Chondrogianni, N.1
Tzavelas, C.2
Pemberton, A.J.3
Nezis, I.P.4
Rivett, A.J.5
Gonos, E.S.6
-
60
-
-
84866182143
-
RPN-6 determines C. elegans longevity under proteotoxic stress conditions
-
Vilchez D, Morantte I, Liu Z, et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012; 489: 263-268.
-
(2012)
Nature
, vol.489
, pp. 263-268
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
-
61
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez D, Boyer L, Morantte I, et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012; 489: 304-308.
-
(2012)
Nature
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
Boyer, L.2
Morantte, I.3
-
62
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2013; 149: 274-293.
-
(2013)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
63
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y, Nicholatos J, Dreier JR, et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014; 513: 440-443.
-
(2014)
Nature
, vol.513
, pp. 440-443
-
-
Zhang, Y.1
Nicholatos, J.2
Dreier, J.R.3
-
64
-
-
84952705310
-
MTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
-
Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 2015; 112: 15790-15797.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 15790-15797
-
-
Zhao, J.1
Zhai, B.2
Gygi, S.P.3
Goldberg, A.L.4
-
65
-
-
84955446296
-
Control of proteasomal proteolysis by mTOR
-
Zhao J, Garcia GA, Goldberg AL. Control of proteasomal proteolysis by mTOR. Nature 2016; 529: E1-E2.
-
(2016)
Nature
, vol.529
, pp. E1-E2
-
-
Zhao, J.1
Garcia, G.A.2
Goldberg, A.L.3
-
66
-
-
84955482451
-
Zhang & Manning reply
-
Zhang Y, Manning BD. Zhang & Manning reply. Nature 2016; 529: E2-E3.
-
(2016)
Nature
, vol.529
, pp. E2-E3
-
-
Zhang, Y.1
Manning, B.D.2
-
67
-
-
84958185888
-
Biological significance of coand post-translational modifications of the yeast 26S proteasome
-
Hirano H, Kimura Y, Kimura A. Biological significance of coand post-translational modifications of the yeast 26S proteasome. J Proteomics 2015; 134: 37-46.
-
(2015)
J Proteomics
, vol.134
, pp. 37-46
-
-
Hirano, H.1
Kimura, Y.2
Kimura, A.3
-
68
-
-
84906054813
-
Lysine ubiquitination and acetylation of human cardiac 20S proteasomes
-
Zong N, Ping P, Lau E, et al. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes. Proteomics Clin Appl 2014; 8: 590-594.
-
(2014)
Proteomics Clin Appl
, vol.8
, pp. 590-594
-
-
Zong, N.1
Ping, P.2
Lau, E.3
-
69
-
-
81755163621
-
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
-
Guo X, Engel JL, Xiao J, et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 2011; 108: 18649-18654.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 18649-18654
-
-
Guo, X.1
Engel, J.L.2
Xiao, J.3
-
70
-
-
84921695082
-
N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging
-
van Deventer S, Menendez-Benito V, van Leeuwen F, Neefjes J. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J Cell Sci 2015; 128: 109-117.
-
(2015)
J Cell Sci
, vol.128
, pp. 109-117
-
-
Van Deventer, S.1
Menendez-Benito, V.2
Van Leeuwen, F.3
Neefjes, J.4
-
71
-
-
84937574462
-
Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis
-
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 2015; 58: 1053-1066.
-
(2015)
Mol Cell
, vol.58
, pp. 1053-1066
-
-
Marshall, R.S.1
Li, F.2
Gemperline, D.C.3
Book, A.J.4
Vierstra, R.D.5
-
72
-
-
0036177305
-
Electrophoretic analysis of phosphorylation of the yeast 20S proteasome
-
Iwafune Y, Kawasaki H, Hirano H. Electrophoretic analysis of phosphorylation of the yeast 20S proteasome. Electrophoresis 2002; 23: 329-338.
-
(2002)
Electrophoresis
, vol.23
, pp. 329-338
-
-
Iwafune, Y.1
Kawasaki, H.2
Hirano, H.3
-
73
-
-
1542344946
-
Phosphorylation of 20S proteasome subunit C8 (7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by-interferon
-
Bose S, Stratford FLL, Broadfoot KI, Mason GGF, Rivett AJ. Phosphorylation of 20S proteasome subunit C8 (7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by-interferon. Biochem J 2004; 378: 177-184.
-
(2004)
Biochem J
, vol.378
, pp. 177-184
-
-
Bose, S.1
Stratford, F.L.L.2
Broadfoot, K.I.3
Mason, G.G.F.4
Rivett, A.J.5
-
74
-
-
77955107424
-
Co-and post-translational modifications of the 26S proteasome in yeast
-
Kikuchi J, Iwafune Y, Akiyama T, et al. Co-and post-translational modifications of the 26S proteasome in yeast. Proteomics 2010; 10: 2769-2779.
-
(2010)
Proteomics
, vol.10
, pp. 2769-2779
-
-
Kikuchi, J.1
Iwafune, Y.2
Akiyama, T.3
-
75
-
-
34547953209
-
Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
-
Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 2007; 282: 22460-22471.
-
(2007)
J Biol Chem
, vol.282
, pp. 22460-22471
-
-
Zhang, F.1
Hu, Y.2
Huang, P.3
Toleman, C.A.4
Paterson, A.J.5
Kudlow, J.E.6
-
76
-
-
0035895354
-
Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
-
Satoh K, Sasajima H, Nyoumura K, Yokosawa H, Sawada H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 2001; 40: 314-319.
-
(2001)
Biochemistry
, vol.40
, pp. 314-319
-
-
Satoh, K.1
Sasajima, H.2
Nyoumura, K.3
Yokosawa, H.4
Sawada, H.5
-
77
-
-
57049151869
-
Revealing the dynamics of the 20S proteasome phosphoproteome: A combined CID and electron transfer dissociation approach
-
Lu H, Zong C, Wang Y, et al. Revealing the dynamics of the 20S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 2008; 7: 2073-2089.
-
(2008)
Mol Cell Proteomics
, vol.7
, pp. 2073-2089
-
-
Lu, H.1
Zong, C.2
Wang, Y.3
-
78
-
-
59949100645
-
Regulation of global protein translation and protein degradation in aerobic dormancy
-
Ramnanan CJ, Allan ME, Groom AG, Storey KB. Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 2009; 323: 9-20.
-
(2009)
Mol Cell Biochem
, vol.323
, pp. 9-20
-
-
Ramnanan, C.J.1
Allan, M.E.2
Groom, A.G.3
Storey, K.B.4
-
79
-
-
78650632460
-
Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation
-
Lee S-H, Park Y, Yoon SK, Yoon J-B. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J Biol Chem 2010; 285: 41280-41289.
-
(2010)
J Biol Chem
, vol.285
, pp. 41280-41289
-
-
Lee, S.-H.1
Park, Y.2
Yoon, S.K.3
Yoon, J.-B.4
-
80
-
-
33646145066
-
Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation
-
Liu X, Huang W, Li C, et al. Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell 2006; 22: 317-327.
-
(2006)
Mol Cell
, vol.22
, pp. 317-327
-
-
Liu, X.1
Huang, W.2
Li, C.3
-
81
-
-
84952685052
-
CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
-
Lokireddy S, Kukushkin NV, Goldberg AL. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 2015; 112: E7176-7185.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E7176-7185
-
-
Lokireddy, S.1
Kukushkin, N.V.2
Goldberg, A.L.3
-
82
-
-
77953113655
-
Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
-
Isasa M, Katz EJ, Kim W, et al. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 2010; 38: 733-745.
-
(2010)
Mol Cell
, vol.38
, pp. 733-745
-
-
Isasa, M.1
Katz, E.J.2
Kim, W.3
-
83
-
-
84900862275
-
Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
-
Besche HC, Sha Z, Kukushkin N V, et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 2014; 33: 1159-1176.
-
(2014)
EMBO J
, vol.33
, pp. 1159-1176
-
-
Besche, H.C.1
Sha, Z.2
Kukushkin, N.V.3
-
84
-
-
84890645801
-
Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human
-
Wang D, Fang C, Zong NC, et al. Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 2013; 12: 3793-3802.
-
(2013)
Mol Cell Proteomics
, vol.12
, pp. 3793-3802
-
-
Wang, D.1
Fang, C.2
Zong, N.C.3
-
86
-
-
84947030771
-
N-myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system
-
Kimura A, Kurata Y, Nakabayashi J, Kagawa H, Hirano H. N-myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteomics 2016; 130: 33-41.
-
(2016)
J Proteomics
, vol.130
, pp. 33-41
-
-
Kimura, A.1
Kurata, Y.2
Nakabayashi, J.3
Kagawa, H.4
Hirano, H.5
-
87
-
-
0346965700
-
O-GlcNAc modification is an endogenous inhibitor of the proteasome
-
Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 2003; 115: 715-725.
-
(2003)
Cell
, vol.115
, pp. 715-725
-
-
Zhang, F.1
Su, K.2
Yang, X.3
Bowe, D.B.4
Paterson, A.J.5
Kudlow, J.E.6
-
88
-
-
0033033698
-
Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
-
Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA 1999; 96: 6223-6228.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 6223-6228
-
-
Ullrich, O.1
Reinheckel, T.2
Sitte, N.3
Hass, R.4
Grune, T.5
Davies, K.J.6
-
89
-
-
0037129213
-
A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
-
Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002; 416: 763-767.
-
(2002)
Nature
, vol.416
, pp. 763-767
-
-
Lam, Y.A.1
Lawson, T.G.2
Velayutham, M.3
Zweier, J.L.4
Pickart, C.M.5
-
91
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P, Chen X, Husnjak K, et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008; 453: 548-552.
-
(2008)
Nature
, vol.453
, pp. 548-552
-
-
Schreiner, P.1
Chen, X.2
Husnjak, K.3
-
92
-
-
33748188085
-
Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
-
Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8: 994-1002.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 994-1002
-
-
Yao, T.1
Song, L.2
Xu, W.3
-
93
-
-
33749348820
-
A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
-
Hamazaki J, Iemura S-I, Natsume T, Yashiroda H, Tanaka K, Murata S. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 2006; 25: 4524-4536.
-
(2006)
EMBO J
, vol.25
, pp. 4524-4536
-
-
Hamazaki, J.1
Iemura, S.-I.2
Natsume, T.3
Yashiroda, H.4
Tanaka, K.5
Murata, S.6
-
94
-
-
84860376787
-
Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome
-
Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 2012; 287: 14659-14671.
-
(2012)
J Biol Chem
, vol.287
, pp. 14659-14671
-
-
Rosenzweig, R.1
Bronner, V.2
Zhang, D.3
Fushman, D.4
Glickman, M.H.5
-
95
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S, Gali RR, Schwickart M, et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 2002; 4: 725-730.
-
(2002)
Nat Cell Biol
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
-
96
-
-
79957637389
-
Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1
-
Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 2011; 9: 33.
-
(2011)
BMC Biol
, vol.9
, pp. 33
-
-
Gomez, T.A.1
Kolawa, N.2
Gee, M.3
Sweredoski, M.J.4
Deshaies, R.J.5
-
97
-
-
0030749261
-
Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease
-
Haracska L, Udvardy A. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease. FEBS Lett 1997; 412: 331-336.
-
(1997)
FEBS Lett
, vol.412
, pp. 331-336
-
-
Haracska, L.1
Udvardy, A.2
-
98
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker S, Sadis S, Rubin DM, et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 1996; 16: 6020-6028.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 6020-6028
-
-
Van Nocker, S.1
Sadis, S.2
Rubin, D.M.3
-
99
-
-
0030033982
-
Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome
-
van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci USA 1996; 93: 856-860.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 856-860
-
-
Van Nocker, S.1
Deveraux, Q.2
Rechsteiner, M.3
Vierstra, R.D.4
-
100
-
-
70350367837
-
Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster
-
Lipinszki Z, Kiss P, Pál M, et al. Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. J Cell Sci 2009; 122: 3083-3092.
-
(2009)
J Cell Sci
, vol.122
, pp. 3083-3092
-
-
Lipinszki, Z.1
Kiss, P.2
Pál, M.3
-
101
-
-
3142566639
-
Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
-
Verma R, Oania R, Graumann J, Deshaies RJ. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004; 118: 99-110.
-
(2004)
Cell
, vol.118
, pp. 99-110
-
-
Verma, R.1
Oania, R.2
Graumann, J.3
Deshaies, R.J.4
-
102
-
-
33750532531
-
Molecular mechanisms of coupled monoubiquitination
-
Woelk T, Oldrini B, Maspero E, et al. Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol 2006; 8: 1246-1254.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1246-1254
-
-
Woelk, T.1
Oldrini, B.2
Maspero, E.3
-
103
-
-
0038362292
-
When ubiquitin meets ubiquitin receptors: A signaling connection
-
Di Fiore PP, Polo S, Hofmann K. When ubiquitin meets ubiquitin receptors: a signaling connection. Nat Rev Mol Cell Biol 2003; 4: 491-497.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, pp. 491-497
-
-
Di Fiore, P.P.1
Polo, S.2
Hofmann, K.3
-
104
-
-
85047669941
-
The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway
-
Hofmann K, Bucher P. The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 1996; 21: 172-173.
-
(1996)
Trends Biochem Sci
, vol.21
, pp. 172-173
-
-
Hofmann, K.1
Bucher, P.2
-
105
-
-
0034798985
-
Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
-
Wilkinson CR, Seeger M, Hartmann-Petersen R, et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 2001; 3: 939-943.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 939-943
-
-
Wilkinson, C.R.1
Seeger, M.2
Hartmann-Petersen, R.3
-
106
-
-
3042677641
-
Rad23 and Rpn10 serve as alternate ubiquitin receptors for the proteasome
-
Elsasser S, Chandler-Mitilello D, Müller B, Hanna J, Finley D. Rad23 and Rpn10 serve as alternate ubiquitin receptors for the proteasome. J Biol Chem 2004; 279: 26817-26822.
-
(2004)
J Biol Chem
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
Chandler-Mitilello, D.2
Müller, B.3
Hanna, J.4
Finley, D.5
-
107
-
-
0032510057
-
Rad23 links DNA repair to the ubiquitin/proteasome pathway
-
Schauber C, Chen L, Tongaonkar P, et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 1998; 391: 715-718.
-
(1998)
Nature
, vol.391
, pp. 715-718
-
-
Schauber, C.1
Chen, L.2
Tongaonkar, P.3
-
109
-
-
0037065732
-
Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
-
Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 2002; 41: 1767-1777.
-
(2002)
Biochemistry
, vol.41
, pp. 1767-1777
-
-
Walters, K.J.1
Kleijnen, M.F.2
Goh, A.M.3
Wagner, G.4
Howley, P.M.5
-
110
-
-
0037154160
-
Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome
-
Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci USA 2002; 99: 745-750.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 745-750
-
-
Funakoshi, M.1
Sasaki, T.2
Nishimoto, T.3
Kobayashi, H.4
-
111
-
-
0030015075
-
Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center
-
Biggins S, Ivanovska I, Rose MD. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 1996; 133: 1331-1346.
-
(1996)
J Cell Biol
, vol.133
, pp. 1331-1346
-
-
Biggins, S.1
Ivanovska, I.2
Rose, M.D.3
-
112
-
-
55049090325
-
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
-
Matiuhin Y, Kirkpatrick DS, Ziv I, et al. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 2008; 32: 415-425.
-
(2008)
Mol Cell
, vol.32
, pp. 415-425
-
-
Matiuhin, Y.1
Kirkpatrick, D.S.2
Ziv, I.3
-
113
-
-
84955444799
-
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome
-
Zuin A, Bichmann A, Isasa M, Puig-Sàrries P, Díaz LM, Crosas B. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472: 353-365.
-
(2015)
Biochem J
, vol.472
, pp. 353-365
-
-
Zuin, A.1
Bichmann, A.2
Isasa, M.3
Puig-Sàrries, P.4
Díaz, L.M.5
Crosas, B.6
-
114
-
-
2442520399
-
Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains
-
Ko HS, Uehara T, Tsuruma K, Nomura Y. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 2004; 566: 110-114.
-
(2004)
FEBS Lett
, vol.566
, pp. 110-114
-
-
Ko, H.S.1
Uehara, T.2
Tsuruma, K.3
Nomura, Y.4
-
115
-
-
84938782305
-
Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis
-
Hamazaki J, Hirayama S, Murata S. Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet 2015; 11: 1-20.
-
(2015)
PLoS Genet
, vol.11
, pp. 1-20
-
-
Hamazaki, J.1
Hirayama, S.2
Murata, S.3
-
116
-
-
84894051837
-
Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice
-
Liu Y, Lü L, Hettinger CL, et al. Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci 2014; 34: 2813-2821.
-
(2014)
J Neurosci
, vol.34
, pp. 2813-2821
-
-
Liu, Y.1
Lü, L.2
Hettinger, C.L.3
-
117
-
-
34447095637
-
Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins
-
Wang H, Monteiro MJ. Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun 2007; 360: 423-427.
-
(2007)
Biochem Biophys Res Commun
, vol.360
, pp. 423-427
-
-
Wang, H.1
Monteiro, M.J.2
-
118
-
-
33644771265
-
Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin
-
Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ. Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet 2006; 15: 1025-1041.
-
(2006)
Hum Mol Genet
, vol.15
, pp. 1025-1041
-
-
Wang, H.1
Lim, P.J.2
Yin, C.3
Rieckher, M.4
Vogel, B.E.5
Monteiro, M.J.6
-
119
-
-
84884615595
-
Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation
-
Haapasalo A, Viswanathan J, Kurkinen KM, et al. Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Commun Integr Biol 2011; 4: 428-432.
-
(2011)
Commun Integr Biol
, vol.4
, pp. 428-432
-
-
Haapasalo, A.1
Viswanathan, J.2
Kurkinen, K.M.3
-
120
-
-
26944465404
-
Diverse polyubiquitin interaction properties of ubiquitin-associated domains
-
Raasi S, Varadan R, Fushman D, Pickart CM. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 2005; 12: 708-714.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 708-714
-
-
Raasi, S.1
Varadan, R.2
Fushman, D.3
Pickart, C.M.4
-
122
-
-
33751581527
-
Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway
-
Ishii T, Funakoshi M, Kobayashi H. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. EMBO J 2006; 25: 5492-5503.
-
(2006)
EMBO J
, vol.25
, pp. 5492-5503
-
-
Ishii, T.1
Funakoshi, M.2
Kobayashi, H.3
-
123
-
-
84914680415
-
Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain
-
Liang RY, Chen L, Ko BT, et al. Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain. J Mol Biol 2014; 426: 4049-4060.
-
(2014)
J Mol Biol
, vol.426
, pp. 4049-4060
-
-
Liang, R.Y.1
Chen, L.2
Ko, B.T.3
-
124
-
-
3042764201
-
Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis
-
Kim I, Mi K, Rao H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 2004; 15: 3357-3365.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 3357-3365
-
-
Kim, I.1
Mi, K.2
Rao, H.3
-
125
-
-
0034282219
-
The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly
-
Ortolan TG, Tongaonkar P, Lambertson D, Chen L, Schauber C, Madura K. The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2000; 2: 601-608.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 601-608
-
-
Ortolan, T.G.1
Tongaonkar, P.2
Lambertson, D.3
Chen, L.4
Schauber, C.5
Madura, K.6
-
126
-
-
0037646406
-
Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains
-
Raasi S, Pickart CM. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 2003; 278: 8951-8959.
-
(2003)
J Biol Chem
, vol.278
, pp. 8951-8959
-
-
Raasi, S.1
Pickart, C.M.2
-
127
-
-
11844263929
-
A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
-
Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 2005; 120: 73-84.
-
(2005)
Cell
, vol.120
, pp. 73-84
-
-
Richly, H.1
Rape, M.2
Braun, S.3
Rumpf, S.4
Hoege, C.5
Jentsch, S.6
-
128
-
-
30944459275
-
The Png1-Rad23 complex regulates glycoprotein turnover
-
Kim I, Ahn J, Liu C, et al. The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 2006; 172: 211-219.
-
(2006)
J Cell Biol
, vol.172
, pp. 211-219
-
-
Kim, I.1
Ahn, J.2
Liu, C.3
-
129
-
-
17044368771
-
The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation
-
Heessen S, Masucci MG, Dantuma NP. The UBA2 domain functions as an intrinsic stabilization signal that protects rad23 from proteasomal degradation. Mol Cell 2005; 18: 225-235
-
(2005)
Mol Cell
, vol.18
, pp. 225-235
-
-
Heessen, S.1
Masucci, M.G.2
Dantuma, N.P.3
-
130
-
-
84867582157
-
C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation
-
Heinen C, Acs K, Hoogstraten D, Dantuma NP. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation. Nat Commun 2011; 2: 191.
-
(2011)
Nat Commun
, vol.2
, pp. 191
-
-
Heinen, C.1
Acs, K.2
Hoogstraten, D.3
Dantuma, N.P.4
-
131
-
-
84856474838
-
Emerging functions of the VCP/ p97 AAA-ATPase in the ubiquitin system
-
Meyer H, Bug M, Bremer S. Emerging functions of the VCP/ p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14: 117-123.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 117-123
-
-
Meyer, H.1
Bug, M.2
Bremer, S.3
-
133
-
-
52649138958
-
UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1 turnover
-
Alexandru G, Graumann J, Smith GT, Kolawa NJ, Fang R, Deshaies RJ. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1 turnover. Cell 2008; 134: 804-816.
-
(2008)
Cell
, vol.134
, pp. 804-816
-
-
Alexandru, G.1
Graumann, J.2
Smith, G.T.3
Kolawa, N.J.4
Fang, R.5
Deshaies, R.J.6
-
134
-
-
33845939821
-
Cdc48 (p97): A "molecular gearbox" in the ubiquitin pathway
-
Jentsch S, Rumpf S. Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway Trends Biochem Sci 2007; 32: 6-11.
-
(2007)
Trends Biochem Sci
, vol.32
, pp. 6-11
-
-
Jentsch, S.1
Rumpf, S.2
-
135
-
-
0029809134
-
P62, a phosphotyrosine-independent ligand of the SH2 domain of p56 lck, belongs to a new class of ubiquitin-binding proteins
-
Vadlamudi RK, Joung I, Strominger JL, Shin J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56 lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 1996; 271: 20235-20237.
-
(1996)
J Biol Chem
, vol.271
, pp. 20235-20237
-
-
Vadlamudi, R.K.1
Joung, I.2
Strominger, J.L.3
Shin, J.4
-
136
-
-
4444220680
-
Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
-
Seibenhener M, Babu J. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 2004; 24: 8055-8068.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8055-8068
-
-
Seibenhener, M.1
Babu, J.2
-
137
-
-
21344463770
-
Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
-
Babu JR, Geetha T, Wooten MW. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 2005; 94: 192-203.
-
(2005)
J Neurochem
, vol.94
, pp. 192-203
-
-
Babu, J.R.1
Geetha, T.2
Wooten, M.W.3
-
138
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131-24145.
-
(2007)
J Biol Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
-
139
-
-
33749049581
-
Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
-
Hanna J, Hathaway NA, Tone Y, et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006; 127: 99-111.
-
(2006)
Cell
, vol.127
, pp. 99-111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
-
140
-
-
0030699383
-
Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26S proteasomes
-
Lam YA, Demartino GN, Pickart CM, Cohen RE, Chem JB. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26S proteasomes. J Biol Chem 1997; 272: 28438-28446.
-
(1997)
J Biol Chem
, vol.272
, pp. 28438-28446
-
-
Lam, Y.A.1
Demartino, G.N.2
Pickart, C.M.3
Cohen, R.E.4
Chem, J.B.5
-
141
-
-
84937111175
-
Structural characterization of the interaction of Ubp6 with the 26S proteasome
-
Aufderheide A, Beck F, Stengel F, et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA 2015; 112: 8626-8631.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 8626-8631
-
-
Aufderheide, A.1
Beck, F.2
Stengel, F.3
-
142
-
-
27744516748
-
Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14
-
Hu M, Li P, Song L, et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 2005; 24: 3747-3756.
-
(2005)
EMBO J
, vol.24
, pp. 3747-3756
-
-
Hu, M.1
Li, P.2
Song, L.3
-
143
-
-
84964453431
-
USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites
-
Lee BH, Lu Y, Prado MA, et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 2016; 532: 398-401.
-
(2016)
Nature
, vol.532
, pp. 398-401
-
-
Lee, B.H.1
Lu, Y.2
Prado, M.A.3
-
144
-
-
84940984237
-
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
-
Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol 2015; 22: 712-719.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 712-719
-
-
Bashore, C.1
Dambacher, C.M.2
Goodall, E.A.3
Matyskiela, M.E.4
Lander, G.C.5
Martin, A.6
-
145
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298: 611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
-
146
-
-
0028823598
-
Metabolism of the polyubiquitin degradation signal: Structure, mechanism, and role of isopeptidase T
-
Wilkinson KD, Tashayev VL, O'Connor LB, Larsen CN, Kasperek E, Pickart CM. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 1995; 34: 14535-14546.
-
(1995)
Biochemistry
, vol.34
, pp. 14535-14546
-
-
Wilkinson, K.D.1
Tashayev, V.L.2
O'Connor, L.B.3
Larsen, C.N.4
Kasperek, E.5
Pickart, C.M.6
-
147
-
-
0026530899
-
A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains: Role in protein degradation
-
Hadari T, Warms JVB, Rose IA, Hershko A. A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains: Role in protein degradation. J Biol Chem 1992; 267: 719-727.
-
(1992)
J Biol Chem
, vol.267
, pp. 719-727
-
-
Hadari, T.1
Warms, J.V.B.2
Rose, I.A.3
Hershko, A.4
-
148
-
-
0030746105
-
In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome
-
Amerik Ay, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 1997; 16: 4826-4838.
-
(1997)
EMBO J
, vol.16
, pp. 4826-4838
-
-
Amerik, Ay.1
Swaminathan, S.2
Krantz, B.A.3
Wilkinson, K.D.4
Hochstrasser, M.5
-
149
-
-
33646066025
-
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
-
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 2006; 124: 1197-1208.
-
(2006)
Cell
, vol.124
, pp. 1197-1208
-
-
Reyes-Turcu, F.E.1
Horton, J.R.2
Mullally, J.E.3
Heroux, A.4
Cheng, X.5
Wilkinson, K.D.6
-
150
-
-
64149087218
-
Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53
-
Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2009; 284: 5030-5041.
-
(2009)
J Biol Chem
, vol.284
, pp. 5030-5041
-
-
Dayal, S.1
Sparks, A.2
Jacob, J.3
Allende-Vega, N.4
Lane, D.P.5
Saville, M.K.6
-
151
-
-
0032828077
-
The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes
-
Zaiss DMW, Standera S, Holzhütter H, Kloetzel PM, Sijts AJAM. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 1999; 457: 333-338.
-
(1999)
FEBS Lett
, vol.457
, pp. 333-338
-
-
Zaiss, D.M.W.1
Standera, S.2
Holzhütter, H.3
Kloetzel, P.M.4
Ajam, S.5
-
152
-
-
0034674655
-
CDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome
-
McCutchen-Maloney SL, Matsuda K, Shimbara N, et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 2000; 275: 18557-18565.
-
(2000)
J Biol Chem
, vol.275
, pp. 18557-18565
-
-
McCutchen-Maloney, S.L.1
Matsuda, K.2
Shimbara, N.3
-
154
-
-
79955544968
-
A conserved F box regulatory complex controls proteasome activity in Drosophila
-
Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 2011; 145: 371-382.
-
(2011)
Cell
, vol.145
, pp. 371-382
-
-
Bader, M.1
Benjamin, S.2
Wapinski, O.L.3
Smith, D.M.4
Goldberg, A.L.5
Steller, H.6
-
155
-
-
84903475943
-
Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function
-
Li X, Thompson D, Kumar B, DeMartino GN. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 2014; 289: 17392-17405.
-
(2014)
J Biol Chem
, vol.289
, pp. 17392-17405
-
-
Li, X.1
Thompson, D.2
Kumar, B.3
DeMartino, G.N.4
-
156
-
-
80054703106
-
Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
-
Lee SYC, De La Mota-Peynado A, Roelofs J. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 2011; 286: 36641-36651.
-
(2011)
J Biol Chem
, vol.286
, pp. 36641-36651
-
-
Lee, S.Y.C.1
De La Mota-Peynado, A.2
Roelofs, J.3
-
157
-
-
84885586226
-
The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
-
De La Mota-Peynado A, Lee SYC, Pierce BM, Wani P, Singh CR, Roelofs J. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 2013; 288: 29467-29481.
-
(2013)
J Biol Chem
, vol.288
, pp. 29467-29481
-
-
De La Mota-Peynado, A.1
Lee, S.Y.C.2
Pierce, B.M.3
Wani, P.4
Singh, C.R.5
Roelofs, J.6
-
158
-
-
77955503621
-
Ecm29 fulfils quality control functions in proteasome assembly
-
Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C. Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 2010; 38: 879-888.
-
(2010)
Mol Cell
, vol.38
, pp. 879-888
-
-
Lehmann, A.1
Niewienda, A.2
Jechow, K.3
Janek, K.4
Enenkel, C.5
-
159
-
-
80054702676
-
Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
-
Park S, Kim W, Tian G, Gygi SP, Finley D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 2011; 286: 36652-36666.
-
(2011)
J Biol Chem
, vol.286
, pp. 36652-36666
-
-
Park, S.1
Kim, W.2
Tian, G.3
Gygi, S.P.4
Finley, D.5
-
160
-
-
78649980437
-
Regulation of the 26S proteasome complex during oxidative stress
-
Wang X, Yen J, Kaiser P, Huang L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 2010; 3: ra88.
-
(2010)
Sci Signal
, vol.3
, pp. ra88
-
-
Wang, X.1
Yen, J.2
Kaiser, P.3
Huang, L.4
-
161
-
-
0035072229
-
Degradation of oxidized proteins by the 20S proteasome
-
Davies KJ a. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83: 301-310.
-
(2001)
Biochimie
, vol.83
, pp. 301-310
-
-
Davies, K.J.A.1
-
162
-
-
40149100476
-
Regulation of proteasome-mediated protein degradation during oxidative stress and aging
-
Breusing N, Grune T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 2008; 389: 203-209.
-
(2008)
Biol Chem
, vol.389
, pp. 203-209
-
-
Breusing, N.1
Grune, T.2
-
163
-
-
84979047223
-
KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition
-
Haratake K, Sato A, Tsuruta F, Chiba T. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J Biochem 2016; 159: 609-618.
-
(2016)
J Biochem
, vol.159
, pp. 609-618
-
-
Haratake, K.1
Sato, A.2
Tsuruta, F.3
Chiba, T.4
-
164
-
-
11144225834
-
Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles
-
Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M. Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 2004; 279: 54849-54861.
-
(2004)
J Biol Chem
, vol.279
, pp. 54849-54861
-
-
Gorbea, C.1
Goellner, G.M.2
Teter, K.3
Holmes, R.K.4
Rechsteiner, M.5
-
165
-
-
77957817388
-
A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components
-
Gorbea C, Pratt G, Ustrell V, et al. A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 2010; 285: 31616-31633.
-
(2010)
J Biol Chem
, vol.285
, pp. 31616-31633
-
-
Gorbea, C.1
Pratt, G.2
Ustrell, V.3
-
166
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier E, Hill CP. Structural biology of the proteasome. Annu Rev Biophys 2013; 42: 29-49.
-
(2013)
Annu Rev Biophys
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
167
-
-
31044449824
-
The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REG' proteasome
-
Li X, Lonard DM, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REG? proteasome. Cell 2006; 124: 381-392.
-
(2006)
Cell
, vol.124
, pp. 381-392
-
-
Li, X.1
Lonard, D.M.2
Jung, S.Y.3
-
168
-
-
34250339984
-
Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REG-proteasome pathway
-
Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW. Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REG-proteasome pathway. Mol Cell 2007; 26: 831-842.
-
(2007)
Mol Cell
, vol.26
, pp. 831-842
-
-
Li, X.1
Amazit, L.2
Long, W.3
Lonard, D.M.4
Monaco, J.J.5
O'Malley, B.W.6
-
169
-
-
34250342888
-
Ubiquitin-independent degradation of cell-cycle inhibitors by the REG proteasome
-
Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM. Ubiquitin-independent degradation of cell-cycle inhibitors by the REG proteasome. Mol Cell 2007; 26: 843-852.
-
(2007)
Mol Cell
, vol.26
, pp. 843-852
-
-
Chen, X.1
Barton, L.F.2
Chi, Y.3
Clurman, B.E.4
Roberts, J.M.5
-
170
-
-
84922933771
-
Deciphering preferential interactions within supramolecular protein complexes: The proteasome case
-
Fabre B, Lambour T, Garrigues L, et al. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11: 771.
-
(2015)
Mol Syst Biol
, vol.11
, pp. 771
-
-
Fabre, B.1
Lambour, T.2
Garrigues, L.3
-
171
-
-
84902075951
-
Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines
-
Fabre B, Lambour T, Garrigues L, et al. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J Proteome Res 2014; 13: 3027-3037.
-
(2014)
J Proteome Res
, vol.13
, pp. 3027-3037
-
-
Fabre, B.1
Lambour, T.2
Garrigues, L.3
-
172
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012; 482: 186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
173
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F, Unverdorben P, Bohn S, et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 2012; 109: 14870-14875.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
-
174
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, Förster F, Bohn S, et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 2012; 109: 1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
Förster, F.2
Bohn, S.3
-
175
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben P, Beck F, Sledz P, et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 2014; 111: 5544-5549.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 5544-5549
-
-
Unverdorben, P.1
Beck, F.2
Sledz, P.3
-
176
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20: 781-788.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
177
-
-
84876909425
-
Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
led P, Unverdorben P, Beck F, et al. Structure of the 26S proteasome with ATP-S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 2013; 110: 7264-7269.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 7264-7269
-
-
Led, P.1
Unverdorben, P.2
Beck, F.3
-
178
-
-
84921752079
-
Proteasomes. A molecular census of 26S proteasomes in intact neurons
-
Asano S, Fukuda Y, Beck F, et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 2015; 347: 439-442.
-
(2015)
Science
, vol.347
, pp. 439-442
-
-
Asano, S.1
Fukuda, Y.2
Beck, F.3
-
179
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan B, Huang X, Wu J, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 2016; 113: 2642-2647.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 2642-2647
-
-
Luan, B.1
Huang, X.2
Wu, J.3
-
180
-
-
53149123284
-
Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core
-
da Fonseca PCA, Morris EP. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 2008; 283: 23305-23314.
-
(2008)
J Biol Chem
, vol.283
, pp. 23305-23314
-
-
Da Fonseca, P.C.A.1
Morris, E.P.2
-
181
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome
-
Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 2008; 283: 31813-31822.
-
(2008)
J Biol Chem
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
Kumar, B.2
Thompson, D.3
Slaughter, C.A.4
DeMartino, G.N.5
-
182
-
-
0036198110
-
Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions
-
Schmidt T, Lindenberg KS, Krebs A, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 2002; 51: 302-310.
-
(2002)
Ann Neurol
, vol.51
, pp. 302-310
-
-
Schmidt, T.1
Lindenberg, K.S.2
Krebs, A.3
-
183
-
-
0032945938
-
Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone
-
Stenoien DL, Cummings CJ, Adams HP, et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 1999; 8: 731-741.
-
(1999)
Hum Mol Genet
, vol.8
, pp. 731-741
-
-
Stenoien, D.L.1
Cummings, C.J.2
Adams, H.P.3
-
184
-
-
84890988864
-
Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies
-
Schipper-Krom S, Juenemann K, Jansen AH, et al. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies. FEBS Lett 2014; 588: 151-159.
-
(2014)
FEBS Lett
, vol.588
, pp. 151-159
-
-
Schipper-Krom, S.1
Juenemann, K.2
Jansen, A.H.3
-
185
-
-
18544410106
-
Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation
-
Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90: 537-548.
-
(1997)
Cell
, vol.90
, pp. 537-548
-
-
Davies, S.W.1
Turmaine, M.2
Cozens, B.A.3
-
186
-
-
59449084849
-
Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones
-
Rousseau E, Kojima R, Hoffner G, Djian P, Bertolotti A. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J Biol Chem 2009; 284: 1917-1929.
-
(2009)
J Biol Chem
, vol.284
, pp. 1917-1929
-
-
Rousseau, E.1
Kojima, R.2
Hoffner, G.3
Djian, P.4
Bertolotti, A.5
-
187
-
-
0031838352
-
Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1
-
Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998; 19: 148-154.
-
(1998)
Nat Genet
, vol.19
, pp. 148-154
-
-
Cummings, C.J.1
Mancini, M.A.2
Antalffy, B.3
DeFranco, D.B.4
Orr, H.T.5
Zoghbi, H.Y.6
-
188
-
-
0030752709
-
Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain
-
DiFiglia M. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277: 1990-1993.
-
(1997)
Science
, vol.277
, pp. 1990-1993
-
-
DiFiglia, M.1
-
189
-
-
0035336658
-
Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release
-
Jana NR. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 2001; 10: 1049-1059.
-
(2001)
Hum Mol Genet
, vol.10
, pp. 1049-1059
-
-
Jana, N.R.1
-
190
-
-
0035031779
-
Polyglutamine and CBP: Fatal attraction?
-
McCampbell A, Fischbeck KH. Polyglutamine and CBP: fatal attraction? Nat Med 2001; 7: 528-530.
-
(2001)
Nat Med
, vol.7
, pp. 528-530
-
-
McCampbell, A.1
Fischbeck, K.H.2
-
191
-
-
84905257556
-
The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution
-
Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014; 7: 70.
-
(2014)
Front Mol Neurosci
, vol.7
, pp. 70
-
-
Dantuma, N.P.1
Bott, L.C.2
-
192
-
-
69549131138
-
Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment
-
Maynard CJ, Böttcher C, Ortega Z, et al. Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proc Natl Acad Sci USA 2009; 106: 13986-13991.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 13986-13991
-
-
Maynard, C.J.1
Böttcher, C.2
Ortega, Z.3
-
193
-
-
0035947372
-
Impairment of the ubiquitin-proteasome system by protein aggregation
-
Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292: 1552-1555.
-
(2001)
Science
, vol.292
, pp. 1552-1555
-
-
Bence, N.F.1
Sampat, R.M.2
Kopito, R.R.3
-
194
-
-
84859983420
-
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
-
Hipp MS, Patel CN, Bersuker K, et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J Cell Biol 2012; 196: 573-587.
-
(2012)
J Cell Biol
, vol.196
, pp. 573-587
-
-
Hipp, M.S.1
Patel, C.N.2
Bersuker, K.3
-
195
-
-
84954291382
-
Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling
-
Myeku N, Clelland CL, Emrani S, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 2015; 22: 46-53.
-
(2015)
Nat Med
, vol.22
, pp. 46-53
-
-
Myeku, N.1
Clelland, C.L.2
Emrani, S.3
-
196
-
-
4143112402
-
Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity
-
Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73: 311-357.
-
(2004)
Prog Neurobiol
, vol.73
, pp. 311-357
-
-
Hegde, A.N.1
-
197
-
-
84978786221
-
The proteasome controls presynaptic differentiation through modulation of an onsite pool of polyubiquitinated conjugates
-
Pinto MJ, Alves PL, Martins L, et al. The proteasome controls presynaptic differentiation through modulation of an onsite pool of polyubiquitinated conjugates. J Cell Biol 2016; 212: 789-801.
-
(2016)
J Cell Biol
, vol.212
, pp. 789-801
-
-
Pinto, M.J.1
Alves, P.L.2
Martins, L.3
-
198
-
-
84907470628
-
Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side
-
Tsai NP. Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side. Biochim Biophys Acta 2014; 1843: 2838-2842.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 2838-2842
-
-
Tsai, N.P.1
-
199
-
-
84930427217
-
GluN2B-containing NMDA receptors regulate AMPA receptor traffic through anchoring of the synaptic proteasome
-
Ferreira JS, Schmidt J, Rio P, et al. GluN2B-containing NMDA receptors regulate AMPA receptor traffic through anchoring of the synaptic proteasome. J Neurosci 2015; 35: 8462-8479.
-
(2015)
J Neurosci
, vol.35
, pp. 8462-8479
-
-
Ferreira, J.S.1
Schmidt, J.2
Rio, P.3
-
201
-
-
84966388957
-
PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence
-
Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M, de Thé H. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA 2015; 112: 14278-14283.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 14278-14283
-
-
Ivanschitz, L.1
Takahashi, Y.2
Jollivet, F.3
Ayrault, O.4
Le Bras, M.5
De Thé, H.6
-
203
-
-
0035147230
-
Interferon regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies
-
Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN. Interferon regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J Cell Sci 2001; 114: 29-36.
-
(2001)
J Cell Sci
, vol.114
, pp. 29-36
-
-
Fabunmi, R.P.1
Wigley, W.C.2
Thomas, P.J.3
DeMartino, G.N.4
-
204
-
-
0035908032
-
Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor degradation
-
Lallemand-Breitenbach V, Zhu J, Puvion F, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor degradation. J Exp Med 2001; 193: 1361-1371.
-
(2001)
J Exp Med
, vol.193
, pp. 1361-1371
-
-
Lallemand-Breitenbach, V.1
Zhu, J.2
Puvion, F.3
-
205
-
-
84903691140
-
A cellular system that degrades misfolded proteins and protects against neurodegeneration
-
Guo L, Giasson BI, Glavis-Bloom A, et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell 2014; 55: 15-30.
-
(2014)
Mol Cell
, vol.55
, pp. 15-30
-
-
Guo, L.1
Giasson, B.I.2
Glavis-Bloom, A.3
-
206
-
-
0345593387
-
Dynamic association of proteasomal machinery with the centrosome
-
Wigley CW, Fabunmi RP, Lee MG, et al. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 1999; 145: 481-490.
-
(1999)
J Cell Biol
, vol.145
, pp. 481-490
-
-
Wigley, C.W.1
Fabunmi, R.P.2
Lee, M.G.3
-
207
-
-
84892433922
-
The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain
-
Puram S V., Kim AH, Park HY, Anckar J, Bonni A. The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. Cell Rep 2013; 4: 19-30.
-
(2013)
Cell Rep
, vol.4
, pp. 19-30
-
-
Puram, S.V.1
Kim, A.H.2
Park, H.Y.3
Anckar, J.4
Bonni, A.5
-
208
-
-
33947301163
-
Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum
-
Ng W, Sergeyenko T, Zeng N, Brown JD, Römisch K. Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. J Cell Sci 2007; 120: 682-691.
-
(2007)
J Cell Sci
, vol.120
, pp. 682-691
-
-
Ng, W.1
Sergeyenko, T.2
Zeng, N.3
Brown, J.D.4
Römisch, K.5
-
209
-
-
22744456680
-
The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane
-
Kalies K-U, Allan S, Sergeyenko T, Kröger H, Römisch K. The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J 2005; 24: 2284-2293.
-
(2005)
EMBO J
, vol.24
, pp. 2284-2293
-
-
Kalies, K.-U.1
Allan, S.2
Sergeyenko, T.3
Kröger, H.4
Römisch, K.5
-
210
-
-
84922575718
-
Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD
-
Kaiser ML, Römisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 2015; 10: 1-19.
-
(2015)
PLoS One
, vol.10
, pp. 1-19
-
-
Kaiser, M.L.1
Römisch, K.2
-
211
-
-
76649093912
-
Degradation of an intramitochondrial protein by the cytosolic proteasome
-
Azzu V, Brand MD. Degradation of an intramitochondrial protein by the cytosolic proteasome. J Cell Sci 2010; 123: 578-585.
-
(2010)
J Cell Sci
, vol.123
, pp. 578-585
-
-
Azzu, V.1
Brand, M.D.2
-
212
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20: 1726-1737.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
-
213
-
-
34250787537
-
Anchoring of the 26S proteasome to the organellar membrane by FKBP38
-
Nakagawa T, Shirane M, Lemura SI, Natsume T, Nakayama KI. Anchoring of the 26S proteasome to the organellar membrane by FKBP38. Genes to Cells 2007; 12: 709-719.
-
(2007)
Genes to Cells
, vol.12
, pp. 709-719
-
-
Nakagawa, T.1
Shirane, M.2
Lemura, S.I.3
Natsume, T.4
Nakayama, K.I.5
-
214
-
-
1842472483
-
Caspase activation inhibits proteasome function during apoptosis
-
Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM. Caspase activation inhibits proteasome function during apoptosis. Mol Cell 2004; 14: 81-93.
-
(2004)
Mol Cell
, vol.14
, pp. 81-93
-
-
Sun, X.M.1
Butterworth, M.2
MacFarlane, M.3
Dubiel, W.4
Ciechanover, A.5
Cohen, G.M.6
-
215
-
-
4344598382
-
Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man
-
Adrain C, Creagh EM, Cullen SP, Martin SJ. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. J Biol Chem 2004; 279: 36923-36930.
-
(2004)
J Biol Chem
, vol.279
, pp. 36923-36930
-
-
Adrain, C.1
Creagh, E.M.2
Cullen, S.P.3
Martin, S.J.4
-
217
-
-
84964674982
-
Starvation induces proteasome autophagy with different pathways for core and regulatory particle
-
Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J. Starvation induces proteasome autophagy with different pathways for core and regulatory particle. J Biol Chem 2015; 291: 3239-3253.
-
(2015)
J Biol Chem
, vol.291
, pp. 3239-3253
-
-
Waite, K.A.1
De-La Mota-Peynado, A.2
Vontz, G.3
Roelofs, J.4
|