메뉴 건너뛰기




Volumn 41, Issue 1, 2016, Pages 77-93

Gates, Channels, and Switches: Elements of the Proteasome Machine

Author keywords

ATPase; Proteasome; Protein degradation; Ubiquitin

Indexed keywords

ADENOSINE TRIPHOSPHATASE; HOLOENZYME; PROTEASOME; UBIQUITIN; ADENOSINE TRIPHOSPHATE; ION CHANNEL; PROTEIN;

EID: 84952639230     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.10.009     Document Type: Review
Times cited : (214)

References (158)
  • 1
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M., et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997, 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 2
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20S proteasomes by 11S regulators
    • Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
    • (2000) Nature , vol.408 , pp. 115-120
    • Whitby, F.G.1
  • 3
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M., et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 2000, 7:1062-1067.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1062-1067
    • Groll, M.1
  • 4
    • 0033517351 scopus 로고    scopus 로고
    • Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
    • Weber-Ban E.U., et al. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401:90-93.
    • (1999) Nature , vol.401 , pp. 90-93
    • Weber-Ban, E.U.1
  • 5
    • 0035266072 scopus 로고    scopus 로고
    • ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    • Leev C. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
    • (2001) Mol. Cell , vol.7 , pp. 627-637
    • Leev, C.1
  • 6
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer R.T., Baker T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 2011, 80:587-612.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 7
    • 84892882219 scopus 로고    scopus 로고
    • Marching to the beat of the ring: polypeptide translocation by AAA+ proteases
    • Nyquist K., Martin A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem. Sci. 2014, 39:53-60.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 53-60
    • Nyquist, K.1    Martin, A.2
  • 8
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K., et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1380-1387.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1380-1387
    • Lasker, K.1
  • 9
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 10
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 11
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca P.C., et al. Molecular model of the human 26S proteasome. Mol. Cell 2012, 46:54-66.
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • da Fonseca, P.C.1
  • 12
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • Glickman M.H., et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1
  • 13
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 14
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko R.J., Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 2013, 82:415-445.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 15
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R., et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1
  • 16
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 17
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden E.J., et al. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 2014, 21:220-227.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 220-227
    • Worden, E.J.1
  • 18
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare G.R., et al. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:2984-2989.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 2984-2989
    • Pathare, G.R.1
  • 19
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 20
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P., et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1
  • 21
    • 84938782305 scopus 로고    scopus 로고
    • Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis
    • Hamazaki J., et al. Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet. 2015, 11:e1005401.
    • (2015) PLoS Genet. , vol.11
    • Hamazaki, J.1
  • 22
    • 23144449583 scopus 로고    scopus 로고
    • Delivery of ubiquitinated substrates to protein-unfolding machines
    • Elsasser S., Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 2005, 7:742-749.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 742-749
    • Elsasser, S.1    Finley, D.2
  • 23
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome
    • Hiyama H., et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 1999, 274:28019-28025.
    • (1999) J. Biol. Chem. , vol.274 , pp. 28019-28025
    • Hiyama, H.1
  • 24
    • 0037065732 scopus 로고    scopus 로고
    • Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
    • Walters K.J., et al. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 2002, 41:1767-1777.
    • (2002) Biochemistry , vol.41 , pp. 1767-1777
    • Walters, K.J.1
  • 25
    • 0035034417 scopus 로고    scopus 로고
    • UBA domains of DNA damage-inducible proteins interact with ubiquitin
    • Bertolaet B.L., et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat. Struct. Biol. 2001, 8:417-422.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 417-422
    • Bertolaet, B.L.1
  • 26
    • 0034762028 scopus 로고    scopus 로고
    • Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly
    • Chen L., et al. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2001, 2:933-938.
    • (2001) EMBO Rep. , vol.2 , pp. 933-938
    • Chen, L.1
  • 27
    • 0037248908 scopus 로고    scopus 로고
    • ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
    • Benaroudj N., et al. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 2003, 11:69-78.
    • (2003) Mol. Cell , vol.11 , pp. 69-78
    • Benaroudj, N.1
  • 28
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith D.M., et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 29
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 30
    • 66449131251 scopus 로고    scopus 로고
    • Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
    • Djuranovic S., et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
    • (2009) Mol. Cell , vol.34 , pp. 580-590
    • Djuranovic, S.1
  • 31
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • Rubin D.M., et al. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17:4909-4919.
    • (1998) EMBO J. , vol.17 , pp. 4909-4919
    • Rubin, D.M.1
  • 32
    • 84861553163 scopus 로고    scopus 로고
    • Functional asymmetries of proteasome translocase pore
    • Erales J., et al. Functional asymmetries of proteasome translocase pore. J. Biol. Chem. 2012, 287:18535-18543.
    • (2012) J. Biol. Chem. , vol.287 , pp. 18535-18543
    • Erales, J.1
  • 33
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith R., et al. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 2013, 20:1164-1172.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1164-1172
    • Beckwith, R.1
  • 34
    • 84885094614 scopus 로고    scopus 로고
    • The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome
    • Peth A., et al. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J. Biol. Chem. 2013, 288:29215-29222.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29215-29222
    • Peth, A.1
  • 35
    • 84856023509 scopus 로고    scopus 로고
    • The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
    • Pathare G.R., et al. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:149-154.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 149-154
    • Pathare, G.R.1
  • 36
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian G., et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nat. Struct. Mol. Biol. 2011, 18:1259-1267.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1259-1267
    • Tian, G.1
  • 37
    • 84878131964 scopus 로고    scopus 로고
    • Reconfiguration of the proteasome during chaperone-mediated assembly
    • Park S., et al. Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 2013, 497:512-516.
    • (2013) Nature , vol.497 , pp. 512-516
    • Park, S.1
  • 38
    • 84943615255 scopus 로고    scopus 로고
    • Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly
    • Sokolova V., et al. Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci. Rep. 2015, 5:14909.
    • (2015) Sci. Rep. , vol.5 , pp. 14909
    • Sokolova, V.1
  • 39
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Sledz P., et al. Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7264-7269.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7264-7269
    • Sledz, P.1
  • 40
    • 84941730004 scopus 로고    scopus 로고
    • N-Terminal coiled-coil structure of ATPase subunits of 26S proteasome Is crucial for proteasome function
    • Inobe T., Genmei R. N-Terminal coiled-coil structure of ATPase subunits of 26S proteasome Is crucial for proteasome function. PLoS ONE 2015, 10:e0134056.
    • (2015) PLoS ONE , vol.10
    • Inobe, T.1    Genmei, R.2
  • 41
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash S., et al. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1
  • 42
    • 84924125611 scopus 로고    scopus 로고
    • Sequence composition of disordered regions fine-tunes protein half-life
    • Fishbain S., et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol. 2015, 22:214-221.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 214-221
    • Fishbain, S.1
  • 43
    • 84907406045 scopus 로고    scopus 로고
    • Intrinsically disordered segments affect protein half-life in the cell and during evolution
    • van der Lee R., et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep. 2014, 8:1832-1844.
    • (2014) Cell Rep. , vol.8 , pp. 1832-1844
    • van der Lee, R.1
  • 44
    • 84878270699 scopus 로고    scopus 로고
    • Rad23 escapes degradation because it lacks a proteasome initiation region
    • Fishbain S., et al. Rad23 escapes degradation because it lacks a proteasome initiation region. Nat. Commun. 2011, 2:192.
    • (2011) Nat. Commun. , vol.2 , pp. 192
    • Fishbain, S.1
  • 45
    • 79951850741 scopus 로고    scopus 로고
    • Defining the geometry of the two-component proteasome degron
    • Inobe T., et al. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol. 2011, 7:161-167.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 161-167
    • Inobe, T.1
  • 46
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B
    • Palombella V.J., et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994, 78:773-785.
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1
  • 47
    • 28544434064 scopus 로고    scopus 로고
    • A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB
    • Tian L., et al. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat. Struct. Mol. Biol. 2005, 12:1045-1053.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1045-1053
    • Tian, L.1
  • 48
    • 80655149450 scopus 로고    scopus 로고
    • A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome
    • Schrader E.K., et al. A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome. J. Biol. Chem. 2011, 286:39051-39058.
    • (2011) J. Biol. Chem. , vol.286 , pp. 39051-39058
    • Schrader, E.K.1
  • 49
    • 0034268493 scopus 로고    scopus 로고
    • Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing
    • Hoppe T., et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000, 102:577-586.
    • (2000) Cell , vol.102 , pp. 577-586
    • Hoppe, T.1
  • 50
    • 0035977095 scopus 로고    scopus 로고
    • Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone
    • Rape M., et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 2001, 107:667-677.
    • (2001) Cell , vol.107 , pp. 667-677
    • Rape, M.1
  • 51
    • 9644302406 scopus 로고    scopus 로고
    • Productive RUPture: activation of transcription factors by proteasomal processing
    • Rape M., Jentsch S. Productive RUPture: activation of transcription factors by proteasomal processing. Biochim. Biophys. Acta 2004, 1695:209-213.
    • (2004) Biochim. Biophys. Acta , vol.1695 , pp. 209-213
    • Rape, M.1    Jentsch, S.2
  • 52
    • 84942903178 scopus 로고    scopus 로고
    • Pri sORF peptides induce selective proteasome-mediated protein processing
    • Zanet J., et al. Pri sORF peptides induce selective proteasome-mediated protein processing. Science 2015, 349:1356-1358.
    • (2015) Science , vol.349 , pp. 1356-1358
    • Zanet, J.1
  • 53
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P., et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5544-5549.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5544-5549
    • Unverdorben, P.1
  • 54
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela M.E., et al. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1
  • 55
    • 78649289427 scopus 로고    scopus 로고
    • ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
    • Peth A., et al. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 2010, 40:671-681.
    • (2010) Mol. Cell , vol.40 , pp. 671-681
    • Peth, A.1
  • 56
    • 84921752079 scopus 로고    scopus 로고
    • Proteasomes. A molecular census of 26S proteasomes in intact neurons
    • Asano S., et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 2015, 347:439-442.
    • (2015) Science , vol.347 , pp. 439-442
    • Asano, S.1
  • 57
    • 84925496573 scopus 로고    scopus 로고
    • Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine
    • Iosefson O., et al. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat. Chem. Biol. 2015, 11:201-206.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 201-206
    • Iosefson, O.1
  • 58
    • 84947035580 scopus 로고    scopus 로고
    • Dissection of axial-pore loop function during unfolding and translocation by a AAA+ proteolytic machine
    • Iosefson O., et al. Dissection of axial-pore loop function during unfolding and translocation by a AAA+ proteolytic machine. Cell Rep. 2015, 12:1032-1041.
    • (2015) Cell Rep. , vol.12 , pp. 1032-1041
    • Iosefson, O.1
  • 59
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • Estrin E., et al. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 2013, 21:1624-1635.
    • (2013) Structure , vol.21 , pp. 1624-1635
    • Estrin, E.1
  • 60
    • 84927535922 scopus 로고    scopus 로고
    • Substrate degradation by the proteasome: a single-molecule kinetic analysis
    • Lu Y., et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 2015, 348:1250834.
    • (2015) Science , vol.348 , pp. 1250834
    • Lu, Y.1
  • 61
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang Q., et al. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 2005, 348:727-739.
    • (2005) J. Mol. Biol. , vol.348 , pp. 727-739
    • Wang, Q.1
  • 62
    • 68349135106 scopus 로고    scopus 로고
    • Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13
    • Zhang N., et al. Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol. Cell 2009, 35:280-290.
    • (2009) Mol. Cell , vol.35 , pp. 280-290
    • Zhang, N.1
  • 63
    • 72149114101 scopus 로고    scopus 로고
    • Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor
    • Zhang D., et al. Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol. Cell 2009, 36:1018-1033.
    • (2009) Mol. Cell , vol.36 , pp. 1018-1033
    • Zhang, D.1
  • 64
    • 0028235965 scopus 로고
    • A 26 S protease subunit that binds ubiquitin conjugates
    • Deveraux Q., et al. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994, 269:7059-7061.
    • (1994) J. Biol. Chem. , vol.269 , pp. 7059-7061
    • Deveraux, Q.1
  • 65
    • 0036713383 scopus 로고    scopus 로고
    • Proteasome subunit Rpn1 binds ubiquitin-like protein domains
    • Elsasser S., et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 2002, 4:725-730.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 725-730
    • Elsasser, S.1
  • 66
    • 80052580969 scopus 로고    scopus 로고
    • Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia
    • Deng H.X., et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011, 477:211-215.
    • (2011) Nature , vol.477 , pp. 211-215
    • Deng, H.X.1
  • 67
    • 84893717532 scopus 로고    scopus 로고
    • The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
    • Tomko R.J., Hochstrasser M. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol. Cell 2014, 53:433-443.
    • (2014) Mol. Cell , vol.53 , pp. 433-443
    • Tomko, R.J.1    Hochstrasser, M.2
  • 68
    • 84878438614 scopus 로고    scopus 로고
    • Localization of the regulatory particle subunit Sem1 in the 26S proteasome
    • Bohn S., et al. Localization of the regulatory particle subunit Sem1 in the 26S proteasome. Biochem. Biophys. Res. Commun. 2013, 435:250-254.
    • (2013) Biochem. Biophys. Res. Commun. , vol.435 , pp. 250-254
    • Bohn, S.1
  • 69
    • 84922539969 scopus 로고    scopus 로고
    • Dss1 is a 26S proteasome ubiquitin receptor
    • Paraskevopoulos K., et al. Dss1 is a 26S proteasome ubiquitin receptor. Mol. Cell 2014, 56:453-461.
    • (2014) Mol. Cell , vol.56 , pp. 453-461
    • Paraskevopoulos, K.1
  • 70
    • 84942292342 scopus 로고    scopus 로고
    • Structural disorder and its role in proteasomal degradation
    • Aufderheide A., et al. Structural disorder and its role in proteasomal degradation. FEBS Lett. 2015, 589:2552-2560.
    • (2015) FEBS Lett. , vol.589 , pp. 2552-2560
    • Aufderheide, A.1
  • 71
    • 0034602845 scopus 로고    scopus 로고
    • Recognition of the polyubiquitin proteolytic signal
    • Thrower J.S., et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19:94-102.
    • (2000) EMBO J. , vol.19 , pp. 94-102
    • Thrower, J.S.1
  • 72
    • 79954448311 scopus 로고    scopus 로고
    • Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor
    • Kravtsova-Ivantsiv Y., et al. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Adv. Exp. Med. Biol. 2011, 691:95-106.
    • (2011) Adv. Exp. Med. Biol. , vol.691 , pp. 95-106
    • Kravtsova-Ivantsiv, Y.1
  • 73
    • 84862776836 scopus 로고    scopus 로고
    • APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1
    • Dimova N.V., et al. APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat. Cell Biol. 2012, 14:168-176.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 168-176
    • Dimova, N.V.1
  • 74
    • 84867398821 scopus 로고    scopus 로고
    • The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation
    • Shabek N., et al. The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol. Cell 2012, 48:87-97.
    • (2012) Mol. Cell , vol.48 , pp. 87-97
    • Shabek, N.1
  • 75
    • 84864222562 scopus 로고    scopus 로고
    • Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
    • Kulathu Y., Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 2012, 13:508-523.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 508-523
    • Kulathu, Y.1    Komander, D.2
  • 76
    • 84900337781 scopus 로고    scopus 로고
    • Enhanced protein degradation by branched ubiquitin chains
    • Meyer H.J., Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell 2014, 157:910-921.
    • (2014) Cell , vol.157 , pp. 910-921
    • Meyer, H.J.1    Rape, M.2
  • 77
    • 33745742269 scopus 로고    scopus 로고
    • Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
    • Kirkpatrick D.S., et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 2006, 8:700-710.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 700-710
    • Kirkpatrick, D.S.1
  • 78
    • 43049162227 scopus 로고    scopus 로고
    • Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
    • Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
    • (2008) Cell , vol.133 , pp. 653-665
    • Jin, L.1
  • 79
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 80
    • 0035958926 scopus 로고    scopus 로고
    • In vitro assembly and recognition of Lys-63 polyubiquitin chains
    • Hofmann R.M., Pickart C.M. In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem. 2001, 276:27936-27943.
    • (2001) J. Biol. Chem. , vol.276 , pp. 27936-27943
    • Hofmann, R.M.1    Pickart, C.M.2
  • 81
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1
  • 82
    • 72149130935 scopus 로고    scopus 로고
    • The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome
    • Jacobson A.D., et al. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J. Biol. Chem. 2009, 284:35485-35494.
    • (2009) J. Biol. Chem. , vol.284 , pp. 35485-35494
    • Jacobson, A.D.1
  • 83
    • 84875231510 scopus 로고    scopus 로고
    • Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
    • Nathan J.A., et al. Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?. EMBO J. 2013, 32:552-565.
    • (2013) EMBO J. , vol.32 , pp. 552-565
    • Nathan, J.A.1
  • 84
    • 84890183307 scopus 로고    scopus 로고
    • FAT10ylation as a signal for proteasomal degradation
    • Schmidtke G., et al. FAT10ylation as a signal for proteasomal degradation. Biochim. Biophys. Acta 2014, 1843:97-102.
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 97-102
    • Schmidtke, G.1
  • 85
    • 79952452227 scopus 로고    scopus 로고
    • The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron
    • Godderz D., et al. The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J. Mol. Biol. 2011, 407:354-367.
    • (2011) J. Mol. Biol. , vol.407 , pp. 354-367
    • Godderz, D.1
  • 86
    • 84859175458 scopus 로고    scopus 로고
    • FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis
    • Rani N., et al. FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nat. Commun. 2012, 3:749.
    • (2012) Nat. Commun. , vol.3 , pp. 749
    • Rani, N.1
  • 87
    • 25844503753 scopus 로고    scopus 로고
    • Interaction of NUB1 with the proteasome subunit S5a
    • Tanji K., et al. Interaction of NUB1 with the proteasome subunit S5a. Biochem. Biophys. Res. Commun. 2005, 337:116-120.
    • (2005) Biochem. Biophys. Res. Commun. , vol.337 , pp. 116-120
    • Tanji, K.1
  • 88
    • 33749049581 scopus 로고    scopus 로고
    • Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
    • Hanna J., et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006, 127:99-111.
    • (2006) Cell , vol.127 , pp. 99-111
    • Hanna, J.1
  • 89
    • 34249007126 scopus 로고    scopus 로고
    • A ubiquitin stress response induces altered proteasome composition
    • Hanna J., et al. A ubiquitin stress response induces altered proteasome composition. Cell 2007, 129:747-759.
    • (2007) Cell , vol.129 , pp. 747-759
    • Hanna, J.1
  • 90
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.H.1
  • 91
    • 0344629427 scopus 로고    scopus 로고
    • Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
    • Hanna J., et al. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 2003, 23:9251-9261.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 9251-9261
    • Hanna, J.1
  • 92
    • 0000783145 scopus 로고
    • Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes
    • Hershko A., Rose I.A. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl. Acad. Sci. U.S.A. 1987, 84:1829-1833.
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 1829-1833
    • Hershko, A.1    Rose, I.A.2
  • 93
    • 84910068147 scopus 로고    scopus 로고
    • Catching a DUB in the act: novel ubiquitin-based active site directed probes
    • Ekkebus R., et al. Catching a DUB in the act: novel ubiquitin-based active site directed probes. Curr. Opin. Chem. Biol. 2014, 23:63-70.
    • (2014) Curr. Opin. Chem. Biol. , vol.23 , pp. 63-70
    • Ekkebus, R.1
  • 94
    • 71149107057 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
    • Peth A., et al. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 2009, 36:794-804.
    • (2009) Mol. Cell , vol.36 , pp. 794-804
    • Peth, A.1
  • 95
    • 84940984237 scopus 로고    scopus 로고
    • Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
    • Bashore C., et al. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 2015, 22:712-719.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 712-719
    • Bashore, C.1
  • 96
    • 84937111175 scopus 로고    scopus 로고
    • Structural characterization of the interaction of Ubp6 with the 26S proteasome
    • Aufderheide A., et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:8626-8631.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 8626-8631
    • Aufderheide, A.1
  • 97
    • 0031038169 scopus 로고    scopus 로고
    • Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
    • Lam Y.A., et al. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997, 385:737-740.
    • (1997) Nature , vol.385 , pp. 737-740
    • Lam, Y.A.1
  • 98
    • 52049112825 scopus 로고    scopus 로고
    • Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
    • Yao T., et al. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 2008, 31:909-917.
    • (2008) Mol. Cell , vol.31 , pp. 909-917
    • Yao, T.1
  • 99
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T., et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 2006, 8:994-1002.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 994-1002
    • Yao, T.1
  • 100
    • 33749348820 scopus 로고    scopus 로고
    • A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
    • Hamazaki J., et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 2006, 25:4524-4536.
    • (2006) EMBO J. , vol.25 , pp. 4524-4536
    • Hamazaki, J.1
  • 101
    • 33845713194 scopus 로고    scopus 로고
    • HRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37
    • Qiu X.B., et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 2006, 25:5742-5753.
    • (2006) EMBO J. , vol.25 , pp. 5742-5753
    • Qiu, X.B.1
  • 102
    • 77951972141 scopus 로고    scopus 로고
    • Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
    • Chen X., et al. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol. Cell 2010, 38:404-415.
    • (2010) Mol. Cell , vol.38 , pp. 404-415
    • Chen, X.1
  • 103
    • 84923894408 scopus 로고    scopus 로고
    • Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
    • Sahtoe D.D., et al. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell 2015, 57:887-900.
    • (2015) Mol. Cell , vol.57 , pp. 887-900
    • Sahtoe, D.D.1
  • 104
    • 84923894407 scopus 로고    scopus 로고
    • Structural basis for the activation and inhibition of the UCH37 deubiquitylase
    • VanderLinden R.T., et al. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol. Cell 2015, 57:901-911.
    • (2015) Mol. Cell , vol.57 , pp. 901-911
    • VanderLinden, R.T.1
  • 105
    • 84923928277 scopus 로고    scopus 로고
    • Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G
    • Chen X., Walters K.J. Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G. Mol. Cell 2015, 57:767-768.
    • (2015) Mol. Cell , vol.57 , pp. 767-768
    • Chen, X.1    Walters, K.J.2
  • 106
    • 84942303989 scopus 로고    scopus 로고
    • Evolution of proteasome regulators in eukaryotes
    • Fort P., et al. Evolution of proteasome regulators in eukaryotes. Genome Biol. Evol. 2015, 7:1363-1379.
    • (2015) Genome Biol. Evol. , vol.7 , pp. 1363-1379
    • Fort, P.1
  • 107
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E., Hill C.P. Structural biology of the proteasome. Annu. Rev. Biophys. 2013, 42:29-49.
    • (2013) Annu. Rev. Biophys. , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 108
    • 84865094127 scopus 로고    scopus 로고
    • Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine
    • Barthelme D., Sauer R.T. Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine. Science 2012, 337:843-846.
    • (2012) Science , vol.337 , pp. 843-846
    • Barthelme, D.1    Sauer, R.T.2
  • 109
    • 84950107036 scopus 로고    scopus 로고
    • An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication
    • Barthelme D., et al. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci. 2015, 24:1521-1527.
    • (2015) Protein Sci. , vol.24 , pp. 1521-1527
    • Barthelme, D.1
  • 110
    • 84899411254 scopus 로고    scopus 로고
    • Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1
    • Tar K., et al. Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1. J. Biol. Chem. 2014, 289:12145-12156.
    • (2014) J. Biol. Chem. , vol.289 , pp. 12145-12156
    • Tar, K.1
  • 111
    • 83355169695 scopus 로고    scopus 로고
    • Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism
    • Dange T., et al. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J. Biol. Chem. 2011, 286:42830-42839.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42830-42839
    • Dange, T.1
  • 112
    • 34250339984 scopus 로고    scopus 로고
    • Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway
    • Li X., et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol. Cell 2007, 26:831-842.
    • (2007) Mol. Cell , vol.26 , pp. 831-842
    • Li, X.1
  • 113
    • 34250342888 scopus 로고    scopus 로고
    • Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome
    • Chen X., et al. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol. Cell 2007, 26:843-852.
    • (2007) Mol. Cell , vol.26 , pp. 843-852
    • Chen, X.1
  • 114
    • 84878314537 scopus 로고    scopus 로고
    • Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis
    • Qian M.X., et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 2013, 153:1012-1024.
    • (2013) Cell , vol.153 , pp. 1012-1024
    • Qian, M.X.1
  • 115
    • 31044449824 scopus 로고    scopus 로고
    • The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome
    • Li X., et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 2006, 124:381-392.
    • (2006) Cell , vol.124 , pp. 381-392
    • Li, X.1
  • 116
    • 0141856404 scopus 로고    scopus 로고
    • Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein
    • Moriishi K., et al. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J. Virol. 2003, 77:10237-10249.
    • (2003) J. Virol. , vol.77 , pp. 10237-10249
    • Moriishi, K.1
  • 117
    • 79952342817 scopus 로고    scopus 로고
    • Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10
    • Lopez A.D., et al. Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol. Biol. Cell 2011, 22:528-540.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 528-540
    • Lopez, A.D.1
  • 118
    • 84922220547 scopus 로고    scopus 로고
    • PA28alphabeta: the enigmatic magic ring of the proteasome?
    • Cascio P. PA28alphabeta: the enigmatic magic ring of the proteasome?. Biomolecules 2014, 4:566-584.
    • (2014) Biomolecules , vol.4 , pp. 566-584
    • Cascio, P.1
  • 119
    • 0034640520 scopus 로고    scopus 로고
    • Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis
    • Tanahashi N., et al. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J. Biol. Chem. 2000, 275:14336-14345.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14336-14345
    • Tanahashi, N.1
  • 120
    • 84942293377 scopus 로고    scopus 로고
    • Control of p97 function by cofactor binding
    • Buchberger A., et al. Control of p97 function by cofactor binding. FEBS Lett. 2015, 589:2578-2589.
    • (2015) FEBS Lett. , vol.589 , pp. 2578-2589
    • Buchberger, A.1
  • 121
    • 11844263929 scopus 로고    scopus 로고
    • A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
    • Richly H., et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 2005, 120:73-84.
    • (2005) Cell , vol.120 , pp. 73-84
    • Richly, H.1
  • 122
    • 3042764201 scopus 로고    scopus 로고
    • Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis
    • Kim I., et al. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 2004, 15:3357-3365.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3357-3365
    • Kim, I.1
  • 123
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett D.S., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 124
    • 33845600006 scopus 로고    scopus 로고
    • Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities
    • Crosas B., et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2006, 127:1401-1413.
    • (2006) Cell , vol.127 , pp. 1401-1413
    • Crosas, B.1
  • 125
    • 84900862275 scopus 로고    scopus 로고
    • Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
    • Besche H.C., et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 2014, 33:1159-1176.
    • (2014) EMBO J. , vol.33 , pp. 1159-1176
    • Besche, H.C.1
  • 126
    • 84902668478 scopus 로고    scopus 로고
    • Autoregulation of the 26S proteasome by in situ ubiquitination
    • Jacobson A.D., et al. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell 2014, 25:1824-1835.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1824-1835
    • Jacobson, A.D.1
  • 127
    • 80054702676 scopus 로고    scopus 로고
    • Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
    • Park S., et al. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 2011, 286:36652-36666.
    • (2011) J. Biol. Chem. , vol.286 , pp. 36652-36666
    • Park, S.1
  • 128
    • 80455122748 scopus 로고    scopus 로고
    • Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins
    • Fang N.N., et al. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell. Biol. 2011, 13:1344-1352.
    • (2011) Nat. Cell. Biol. , vol.13 , pp. 1344-1352
    • Fang, N.N.1
  • 129
    • 47749090557 scopus 로고    scopus 로고
    • Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation
    • Kohlmann S., et al. Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J. Biol. Chem. 2008, 283:16374-16383.
    • (2008) J. Biol. Chem. , vol.283 , pp. 16374-16383
    • Kohlmann, S.1
  • 130
    • 75749101797 scopus 로고    scopus 로고
    • The ubiquitin ligase Hul5 promotes proteasomal processivity
    • Aviram S., Kornitzer D. The ubiquitin ligase Hul5 promotes proteasomal processivity. Mol. Cell Biol. 2010, 30:985-994.
    • (2010) Mol. Cell Biol. , vol.30 , pp. 985-994
    • Aviram, S.1    Kornitzer, D.2
  • 131
    • 84864623914 scopus 로고    scopus 로고
    • Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes
    • Martinez-Noel G., et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol. Cell Biol. 2012, 32:3095-3106.
    • (2012) Mol. Cell Biol. , vol.32 , pp. 3095-3106
    • Martinez-Noel, G.1
  • 132
    • 84889072454 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates
    • Chu B.W., et al. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J. Biol. Chem. 2013, 288:34575-34587.
    • (2013) J. Biol. Chem. , vol.288 , pp. 34575-34587
    • Chu, B.W.1
  • 133
    • 84885586226 scopus 로고    scopus 로고
    • The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
    • De La Mota-Peynado A., et al. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J. Biol. Chem. 2013, 288:29467-29481.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29467-29481
    • De La Mota-Peynado, A.1
  • 134
    • 78649980437 scopus 로고    scopus 로고
    • Regulation of the 26S proteasome complex during oxidative stress
    • Wang X., et al. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 2010, 3:ra88.
    • (2010) Sci. Signal. , vol.3
    • Wang, X.1
  • 135
    • 80054703106 scopus 로고    scopus 로고
    • Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
    • Lee S.Y., et al. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J. Biol. Chem. 2011, 286:36641-36651.
    • (2011) J. Biol. Chem. , vol.286 , pp. 36641-36651
    • Lee, S.Y.1
  • 136
    • 84902330507 scopus 로고    scopus 로고
    • Reversible 26S proteasome disassembly upon mitochondrial stress
    • Livnat-Levanon N., et al. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 2014, 7:1371-1380.
    • (2014) Cell Rep. , vol.7 , pp. 1371-1380
    • Livnat-Levanon, N.1
  • 137
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis
    • Marshall R.S., et al. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 2015, 58:1053-1066.
    • (2015) Mol. Cell , vol.58 , pp. 1053-1066
    • Marshall, R.S.1
  • 138
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit
    • Xie Y., Varshavsky A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:3056-3061.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 139
    • 77950366349 scopus 로고    scopus 로고
    • Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
    • Radhakrishnan S.K., et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 2010, 38:17-28.
    • (2010) Mol. Cell , vol.38 , pp. 17-28
    • Radhakrishnan, S.K.1
  • 140
    • 77957341511 scopus 로고    scopus 로고
    • Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
    • Steffen J., et al. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 2010, 40:147-158.
    • (2010) Mol. Cell , vol.40 , pp. 147-158
    • Steffen, J.1
  • 141
    • 84898769387 scopus 로고    scopus 로고
    • P97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition
    • Radhakrishnan S.K., et al. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. Elife 2014, 3:e01856.
    • (2014) Elife , vol.3
    • Radhakrishnan, S.K.1
  • 142
    • 84904990897 scopus 로고    scopus 로고
    • Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
    • Sha Z., Goldberg A.L. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr. Biol. 2014, 24:1573-1583.
    • (2014) Curr. Biol. , vol.24 , pp. 1573-1583
    • Sha, Z.1    Goldberg, A.L.2
  • 143
    • 79959823394 scopus 로고    scopus 로고
    • Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity
    • Li X., et al. Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet. 2011, 7:e1002119.
    • (2011) PLoS Genet. , vol.7
    • Li, X.1
  • 144
    • 84943771460 scopus 로고    scopus 로고
    • MTORC1 signaling activates NRF1 to increase cellular proteasome levels
    • Zhang Y., Manning B.D. mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 2015, 14:2011-2017.
    • (2015) Cell Cycle , vol.14 , pp. 2011-2017
    • Zhang, Y.1    Manning, B.D.2
  • 145
    • 84866167976 scopus 로고    scopus 로고
    • Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
    • Vilchez D., et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012, 489:304-308.
    • (2012) Nature , vol.489 , pp. 304-308
    • Vilchez, D.1
  • 146
    • 84866182143 scopus 로고    scopus 로고
    • RPN-6 determines C. elegans longevity under proteotoxic stress conditions
    • Vilchez D., et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012, 489:263-268.
    • (2012) Nature , vol.489 , pp. 263-268
    • Vilchez, D.1
  • 147
    • 84876935501 scopus 로고    scopus 로고
    • Proteasome regulation by ADP-ribosylation
    • Cho-Park P.F., Steller H. Proteasome regulation by ADP-ribosylation. Cell 2013, 153:614-627.
    • (2013) Cell , vol.153 , pp. 614-627
    • Cho-Park, P.F.1    Steller, H.2
  • 148
    • 84859529812 scopus 로고    scopus 로고
    • Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
    • Djakovic S.N., et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 2012, 32:5126-5131.
    • (2012) J. Neurosci. , vol.32 , pp. 5126-5131
    • Djakovic, S.N.1
  • 149
    • 81755163621 scopus 로고    scopus 로고
    • UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
    • Guo X., et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18649-18654.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18649-18654
    • Guo, X.1
  • 150
    • 84871940845 scopus 로고    scopus 로고
    • Development of proteasome inhibitors as research tools and cancer drugs
    • Goldberg A.L. Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 2012, 199:583-588.
    • (2012) J. Cell Biol. , vol.199 , pp. 583-588
    • Goldberg, A.L.1
  • 151
    • 84865405382 scopus 로고    scopus 로고
    • Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development
    • Huber E.M., Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 2012, 51:8708-8720.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 8708-8720
    • Huber, E.M.1    Groll, M.2
  • 152
    • 84890203542 scopus 로고    scopus 로고
    • Regulation of proteasome activity in health and disease
    • Schmidt M., Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 2014, 1843:13-25.
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 13-25
    • Schmidt, M.1    Finley, D.2
  • 153
    • 84946780874 scopus 로고    scopus 로고
    • Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production
    • Brehm A., et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 2015, 125:4196-4211.
    • (2015) J. Clin. Invest. , vol.125 , pp. 4196-4211
    • Brehm, A.1
  • 154
    • 84893364786 scopus 로고    scopus 로고
    • The mechanism for molecular assembly of the proteasome
    • Sahara K., et al. The mechanism for molecular assembly of the proteasome. Adv. Biol. Regul. 2014, 54:51-58.
    • (2014) Adv. Biol. Regul. , vol.54 , pp. 51-58
    • Sahara, K.1
  • 156
    • 84863230500 scopus 로고    scopus 로고
    • Assembly and function of the proteasome
    • Saeki Y., Tanaka K. Assembly and function of the proteasome. Methods Mol. Biol. 2012, 832:315-337.
    • (2012) Methods Mol. Biol. , vol.832 , pp. 315-337
    • Saeki, Y.1    Tanaka, K.2
  • 157
    • 84890859839 scopus 로고    scopus 로고
    • The unique functions of tissue-specific proteasomes
    • Kniepert A., Groettrup M. The unique functions of tissue-specific proteasomes. Trends Biochem. Sci. 2014, 39:17-24.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 17-24
    • Kniepert, A.1    Groettrup, M.2
  • 158
    • 34249883977 scopus 로고    scopus 로고
    • Regulation of CD8+ T cell development by thymus-specific proteasomes
    • Murata S., et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 2007, 316:1349-1353.
    • (2007) Science , vol.316 , pp. 1349-1353
    • Murata, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.